Enabling Grid-Network Services via Control Plane: the Phosphorus G²MPLS way to the e-Infrastructures

Giacomo Bernini
Nextworks

On-demand network services for the Scientific Community
workshop & demonstrations
Malaga (ES), June 7th 2009
On-demand network services for the Scientific Community - workshop & demonstrations
Malaga (ES), June 7th 2009

Outline

- Issues of Grids & network in research networking
- G²MPLS in a small nutshell
 - Rationale and functions
 - Deployment models and network service types
 - Protocol extensions
 - Software prototypes
- Phosphorus G²MPLS test-bed
- Brief introduction to the upcoming G²MPLS demonstration
BoD systems are moving to production in Research Networks
 • e.g. EU-GN2 AutoBAHN, ESNET-OSCARS
 • To provide dynamic connection services, e.g. for HPC/Grid centres
 – mostly WS-based & centralized
 – overlay-style approach for any BoD user
 – immediate and in-advance bandwidth reservations
 – No network recovery

Still difficult to have combined reservation of network & Grid resources
 • Most of the production Grid middlewares (GLOBUS, UNICORE, gLite, etc.) just play on the Grid layer
 – pre-established and QoS-guaranteed connections between Grid sites (tens of Gbps CBR, minimum jitter and delay, etc.)
 • The mutual unawareness between the decision-making entities in the Grid and in the network layers leads to oversubscription of network resources

A major step forward: the provisioning of network and Grid resources in a single-step, through a set of seamlessly integrated procedures (Grid Network Service – GNS)
G²MPLS rationale

- G²MPLS is …
 - a Network Control Plane architecture that implements the Grid Network Services (GNS)
 - Single-step provisioning of Grid and network resources
 - Advance reservations of Grid and network resources
 - an enhancement of the standard GMPLS for “power” users (HPC/Grids)
 - uniform interface for the Grid-user/applications (G.UNI)
 - basically, a superset of ASON/GMPLS
 - Grid extensions to UNI, I-NNI, E-NNI, protocols and PCE

- G²MPLS is not …
 - an application-specific architecture
 - Support for any kind of end-user applications by providing network transport services and procedures that can fall back to the standard GMPLS ones
 - automatic setup and resiliency of network connections for “standard” users
G²MPLS functional scope

- G²MPLS provides part of the functionalities related to the **selection and co-allocation** of both Grid and network resources

- Co-allocation functionalities
 - **Discovery and Advertisement** of Grid + network capabilities and resources of the participating virtual sites (Vsites)
 - **Service setup / teardown**
 - **coordinated** with local job scheduler in middleware
 - **configuration** of the involved network connections among the participating Vsites

 (The network end-point – TNA – might not be specified, if Grid resources are specified)
 - **resiliency** mgmt for the installed network connections and possible recovery escalation to the Grid MW for job recovery
 - **advance reservations** of Grid and network resources
 - **Service monitoring**
 - retrieving the status of a job (**Grid transaction**) and of the related network connections
G²MPLS positioning w.r.t. standards

I-Ds, RFCs
from CCAMP WG, MPLS WG

IAs
UNI, E-NNI

Recomm.s
From SG15, SG13

GFDs
From OGSA WG, GHPN RG, GLUE WG, JSDL WG

Net Protocols

Net Archs, Formals, Standards

G²MPLS architecture
G²MPLS main features

- Switching Capabilities: LSC (with some WSON extensions), FSC (including Eth port-switching)
- G.UNI gateways to allow applications to “drive” its reference G.UNI-C and get dedicated dynamic circuits
- Support for application-specific information across the Control Plane
 - I-NNI, E-NNI and UNI routing extensions to distribute application node resources (grid)
 - I-NNI, E-NNI and UNI signalling extensions, for both Call and LSP signalling
- Support for advance reservations (in a distributed way)
- G.E-NNI as an inter-carrier i/f
 - Integration with AuthN/AuthZ frameworks
- Anycast circuits, i.e. “connect this local TNA with this amount of app (grid) resources”
- Indirect calls, i.e. “connect this TNA / amount of app (grid) resources (maybe elsewhere) to this TNA / amount of app (grid) resources (anywhere)”
G2MPLS Control Plane models

G2MPLS Overlay model

- **Grid scheduler:**
 - configuration / monitoring of Grid resource
 - configuration / monitoring of net. resource

- **G2MPLS**
 - e2e bearer for network and Grid resources information
 - configuration of just network service

![G2MPLS Overlay model diagram](image1)

G2MPLS Integrated model

- **Grid scheduler:**
 - workflow coordination services

- **G2MPLS**
 - e2e bearer for network and Grid resources information
 - selection of the job providers (Grid and Net)
 - co-allocation of Grid and Net resources

![G2MPLS Integrated model diagram](image2)

On-demand network services for the Scientific Community - workshop & demonstrations
Malaga (ES), June 7th 2009
G²MPLS network service types

- **Unicasting**
 - GNS request A → B specified by Grid user
 - G²MPLS setup of the e2e call/connection
 - G²MPLS piggybacking of Grid information (resource and job)

- **Anycasting**
 - GNS request A → *any* (e.g. an amount of storage)
 - *G²MPLS chooses the “best” destination* (as viewed by routing topology) and setup the e2e call/connections
<table>
<thead>
<tr>
<th>Services at reference point</th>
<th>ASON / GMPLS</th>
<th>G²MPLS Overlay</th>
<th>G²MPLS Integrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(TE) topology resource publication and discovery</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Opaque piggybacking of discovered Grid resources (GLUE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection (LSP) setup/tear-down/crankback</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Connection (LSP) status inquire/notification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opaque piggybacking of Grid job (JSDL) data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handling of Grid job (JSDL) data (anycast GNS)</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Signalling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS (call) setup/tear-down</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NS (call) status inquire/notification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transparent handling of Grid job (JSDL) data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Advance) GNS setup/tear-down</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>(Advance) GNS status inquire/notification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid resources publication and discovery (GLUE)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Signalling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-domain TE information feed-up/feed-down</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Inter-domain Grid information feed-up/feed-down (GLUE)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>NS (call) setup/tear-down</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>NS (call) status inquire/notification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handling of Grid job (JSDL) data (anycast GNS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Advance) GNS setup/tear-down</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>(Advance) GNS status inquire/notification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network (TE) inter-domain resources publication and discovery</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Intermediate TE information feed-up/feed-down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid inter-domain resources publication and discovery (GLUE)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Signalling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS (call) setup/tear-down</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>NS (call) status inquire/notification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handling of Grid job (JSDL) data (anycast GNS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Advance) GNS setup/tear-down</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>(Advance) GNS status inquire/notification</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Four different kinds of controllers can be run depending just on the node configuration (i.e. location in the network)

- G²MPLS edge controller
- G²MPLS UNI-C controller
- G²MPLS core controller
- G²MPLS border controller
G²MPLS controller functional decomposition

On-demand network services for the Scientific Community - workshop & demonstrations
Malaga (ES), June 7th 2009
On-demand network services for the Scientific Community - workshop & demonstrations
Malaga (ES), June 7th 2009

G²MPLS main software modules

Parts of G²MPLS prototypes built on GNU QUAGGA routing suite v0.99.7 (http://www.quagga.net/)

G².CALL Controller

G².Call Controller

G².PCE-RA

G².Recovery Controller

G². RSVP-TE

G. I-NNI

G. RSVP-TE

G. I-NNI

G. UNI/G. E-NNI

G. UNI/G. E-NNI

Parts of G²MPLS prototypes built on GNU QUAGGA routing suite v0.99.7 (http://www.quagga.net/)

Send/receive protocol messages

Link Resource Manager

Transport Net. Res. Controller

TL1, SNMP (to real hw)

I/F to DCN
Permanent G²MPLS test-bed in Phosphorus [1]
Permanent G²MPLS test-bed in Phosphorus [2]

- 2 sites interconnected through the GÉANT2
 - PSNC-PIONIER
 - UESSEX-Photonic Networks Lab

- Multiple administrative domains

- 3 Switching Capabilities
 - LSC (ADVA FSP 3000RE-II ROADMs)
 - FSC (Calient Diamond Wave Fiber Connect)
 - FSC Eth (Allied Telesis AT-8000S + Allied Telesis AT-9424T)

- Different e-Science applications integrated with G²MPLS
 - Distributed Data Storage Systems (DDSS): [unicast & anycast]
 - Collaborative Data Visualisation (KoDaVis) for atmospheric simulations: [unicast & anycast]
 - Wide In Silico Docking On Malaria (WISDOM) for large-scale molecular dockings on malaria study: [unicast]
 - DDSS and G²MPLS publicly demonstrated at SC’08 & ICT’08

- Interoperation with Harmony in other Phosphorus local test-beds (I2CAT, VIOLA, SURFNET)
 - a dedicated gateway (HG²-GW) to handle reservations (signaling) & topology (routing)
Scope: Grid Network Services (GNS) by G2MPLS with a distributed computation grid application (KoDaVis + UNICORE6)

- 1 administrative domain
- Transport Plane on demo site because of remote connectivity issues
 - Allied Telesis AT-8000S (partitioned in 3 sub-nodes)
 - Allied Telesis AT-9424T
- Two full chain demo scenarios (KoDaVis-UNICORE6-G2MPLS)
 - G2MPLS Overlay (unicast)
 - G2MPLS Integrated (anycast)

- Anycast computing server selected through the dynamic FreeJobSlots parameter
G²MPLS testbed for TNC’09

Computational Elements

On-demand network services for the Scientific Community - workshop & demonstrations
Malaga (ES), June 7th 2009
Questions?

Giacomo Bernini
g.bernini@nextworks.it

Further details publicly available on