
A Framework for Providing Hard Delay Guarantees in Grid Computing

Panagiotis Kokkinos, Emmanouel A. Varvarigos and NikolaosD. Doulamis

Research Academic Computer Technology Institute, Patras,Greece.

Abstract

Future Grid Networks should be able to provide Qual-
ity of Service (QoS) guarantees to their users. In this work
we propose a framework for Grid Networks that provides
deterministic delay guarantees to its Guaranteed Service
(GS) users and best effort service to its Best Effort (BE)
users. The proposed framework is theoretically and exper-
imentally analyzed. We also define four types of computa-
tional resources based on the type of users (GS, BE) these
resources serve and the priority they give them. We imple-
ment the proposed QoS framework for Grids and verify that
it not only satisfies the delay guarantees given to GS users,
but also improves performance in terms of deadlines missed
and resource use. In our simulations, data from a real Grid
Network are used, validating in this way the appropriate-
ness and usefulness of the proposed framework.

1 Introduction

The existence of high speed optical networks makes the
vision of computational Grids [1] a reality. Grids consist
of geographically distributed and heterogeneous computa-
tional and storage resources that may belong to different
administrative domains, but can be shared among users by
establishing a global resource management architecture. A
number of applications in science, engineering and com-
merce, and especially those with small communication in-
terdependencies but large computational or storage needs,
can benefit from Grid Computing. An important issue in the
performance of Grids is the management of the resources
and the scheduling of the tasks to the available resources.
The Grid environment is quite dynamic, with resource avail-
ability and load varying rapidly with time, and tasks having
very different characteristics and requirements. Scheduling
is key to the success of Grid Networks, since it determines
the efficiency in the use of the resources and the Quality of
Service (QoS) provided to the users.

In Grid Networks, QoS usually refers to the communi-
cation and computation time it takes for a task to be com-
pleted, or to the amount of resources allocated to a user. In

order for a network to provide QoS guarantees to a user,
a three step procedure is generally followed. First, the
user informs the network of the exact QoS parameters re-
quested (delay, number of resources, etc). Then the net-
work, through a procedure called admission control, checks
if it can satisfy the user’s request for guaranteed service,
without violating the guarantees given previously to other
users. If the network can satisfy the QoS requirements
posed by the user, then various mechanisms (resource reser-
vation, scheduling, flow control) are employed to ensure
that the agreed upon QoS level will be provided.

Today’s Grids provide only a best effort service to the
users and their tasks. However, the best effort approach
is inappropriate if the Grid Network is to be used for real
world commercial applications and complex scientific sim-
ulations and computations. Under these thoughts we be-
lieve that future Grids will serve two types of users. Some
users, called Best Effort (BE) users, will be relatively in-
sensitive to the performance they receive from the Grid.
Besides BE users, we expect Grids to serve users that do
require a guaranteed QoS. These users will be referred to as
Guaranteed Service (GS) users. We must mention that by
the term “user” we do not necessarily mean an individual
user, but also (and probably more appropriately) a Virtual
Organization (VO), or a single application, using the Grid
Network’s infrastructure.

In this work we propose a QoS framework for compu-
tational Grids, concentrating more to GS users than to BE
users. Specifically for the GS users the framework guaran-
tees a maximum delay on the execution of the tasks submit-
ted by them. In order to achieve this, the GS users are leaky
bucket constrained, so as to follow a (ρ, σ) constrained task
generation pattern, which is agreed separately with each re-
source. We also consider four types of resources that serve
either GS, or BE, or both types of users, with varying prior-
ities. Finally, we implement our proposed QoS framework
in the GridSim [17] environment and execute a number of
simulations. Our results indicate that the proposed frame-
work succeeds in providing QoS guarantees to the GS users,
even when the BE users produce many tasks. In our simula-
tions, data from a real Grid Network are used, validating in
this way the appropriateness and usefulness of the proposed



framework.
The remainder of the paper is organized as follows. In

section 2 we report previous work. In section 3 we de-
scribe the proposed QoS framework for Grids. In section
4 we propose extensions to this framework. In section 5 we
present the simulation environment, the parameters used,
and the results of our simulations. Finally, conclusions are
presented in section 6.

2 Previous Work

A number of scheduling algorithms have been proposed
so far, both for single- and for multi-processor systems,
some of which have also been adapted for use in Grids.
These algorithms often wait for a period of time so that
several tasks accumulate at the scheduler, before making
scheduling decisions, and they consist of two phases: the
task-ordering phase and the task-to-resource assignment
phase. Lately, a number of scheduling schemes that are spe-
cific to Grids have also been proposed. [5],[8] present cen-
tralized scheduling schemes, while hierarchical schemes are
proposed in [9]. Distributed schemes are explored in [6] and
[7]. Usually in distributed scheduling algorithms the two-
phase procedure described above is not followed, but tasks
are scheduled to resources immediately upon their creation.

Many of the scheduling algorithms proposed so far try to
minimize the total average task delay [7] and maximize re-
source usage. Other works incorporate economic models in
Grid scheduling. In [18] and in [19] scheduling algorithms
that support deadline and budget constraints are proposed
and implemented. Our work differs from previous works
in that it gives to the users hard delay guarantees, provided
that certain constraints are enforced in the task submission
process.

QoS in Data Networks has been extensively studied.
The Internet Engineering Task Force (IETF) has proposed
the Integrated Services (IntServ) [11] and the Differenti-
ated Services (DiffServ) architectures [12] to support QoS
in networks, and differentiate traffic in terms of band-
width, latency and other data transfer parameters. Rela-
tively recently QoS in Grids has also started gaining at-
tention. Two important efforts addressing this issue were
the General-purpose Architecture for Reservation and Al-
location (GARA) [13] and the Grid QoS Management
(G-QoSM) architecture [16]. These works propose QoS
schemes for Grids that take into account the network, com-
putational and storage resources. Various other works have
concentrated on specific aspects of QoS in Grids, such as
network QoS for Grid applications [14], and admission con-
trol [3]. GARA is the oldest framework for supporting QoS
in Grids. This framework provides guarantees to an appli-
cation requesting specific end-to-end QoS characteristics.
G-QoSM is a newer QoS framework for Grids, which is

more actively developed, following the recent trends in Grid
Networks. So G-QoSM is Open Grid Service Architecture
(OGSA) enabled, and incorporates various useful features.

In the present work we propose a QoS framework for
Grid computing, which provides hard delay guarantees to
GS users. We show both theoretically and experimentally
that hard QoS, in terms of delay bounds guarantees given to
each user, can in fact be achieved without using resource
reservations. The users and the resources, simply, agree
upon the task load the former will generate and the latter
will serve. On the other hand the GARA and G-QoSM
frameworks reserve computational resources quantitatively,
either by reserving a number of CPUs in a resource or by
reserving a percentage of a CPU’s capacity (Dynamic Soft
Real-time scheduler - DSRT [15]). Furthermore, in our QoS
framework we also propose and evaluate the categorization
of computational resources so as to serve either GS, or BE,
or both types of users, with varying priorities.

3 Description of the Framework

3.1 General

We consider a Grid Network consisting of a number of
users and resources. There are two kind of users: Guar-
anteed Service (GS) and Best Effort (BE) users. The tasks
originating from these users are of GS or BE type, respec-
tively. Also there are various types of resources based on
the types of tasks they serve (GS or BE or both) and on the
priority they give to each type. Our framework gives service
guarantees to GS users. In order to achieve this the GS users
are leaky bucket constrained, so as to follow a (ρ, σ) con-
strained task generation pattern, which is agreed separately
with each resource. On the resources, the arriving tasks are
first queued in a Weighted Fair Queuing (WFQ) scheduler
[10]. This way guaranteed task service rates (e.g., measured
in Million Instructions Per Second - MIPS) can be given to
each GS user, in the same way that WFQ provides guaran-
teed bandwidth services in Data Networks.

Our proposed framework describes the distributed mech-
anisms used to provide service guarantees to GS users. We
assume that a task executing at a resource is non-divisible
and non-interruptible (non-preemptable). We initially de-
scribe our framework assuming that every machine has one
CPU, and later extend it to the multi-CPU machine case.

3.2 Guaranteed Service (GS) users

Based on our framework a GS user must first register to
a resource, before it can actually use it. During the regis-
tration phase the GS user and the resource agree upon the
characteristics of the traffic the GS user will send to that



resource, that is, the leaky bucket’s constraints character-
istics. A GS user can register himself to a number of re-
sources. Next, when a GS user creates a task, he chooses
for its execution one of his registered resources, based on
various criteria, such as performance (e.g., delay), fairness
(e.g., uniform usage of the registered resources) and others.

Our framework is implemented in a distributed way, and
as a result scheduling logic exists in the GS user and in the
resource (local scheduler). During the registration phasea
GS useri and a resourcer agree upon the (ρir, σir) con-
straints (Figure 1) of the user. The parameterρir is the long
term task generation rate, measured in computation units
per second (e.g. MIPS), that the GS user requests. The pa-
rameterσir is the maximum size of tasks (burstiness) that
the GS user will ever send, in a very short time interval,
to the specific resource. The parameterσir is measured in
computation units (e.g., Million Instructions - MI). If the
resourcer agrees that it will satisfy these constraints, then
the GS user is registered to the resource. From then on, the
GS user becomes responsible for the observance of these
constraints and the resource for the satisfaction of the QoS
guarantees given to the user, as explained below. Alterna-
tively, other approaches can be used (such as the centralized
and the hybrid approaches described in Section 4.1), where
a meta-scheduler is used as an intermediary for the moni-
toring of the observation of the (ρ, σ) constraints.

A1 B1

Users Resources

Ai Br

AM BL

.

.

.

.

.

.

.

.

.

(ρiL, σiL)

.

.

.

(ρir, σir)

(ρi1, σi1)

Figure 1. The (ρ, σ) constrained GS users in the Grid Network.

In order for a resourcer to accept the registration of
GS useri a number of requirements must be met. First,
the resource checks whether it can serve the GS user with
the requested task generation rateρir without violating the
task generation rates agreed with the already registered
GS users. The local scheduler of every resource applies
Weighted Fair Queuing (WFQ) to the queued tasks, so the
following condition must hold for new and old GS users:

ρir ≤ gir(t) =
Cr · wir

∑Nr(t)+1
k=1 wkr

, (1)

whereCr is the computing capacity of resourcer measured
in computation units per second (e.g. MIPS),Nr(t) is the

number of GS users already registered to the resourcer at
time t, andwir is the weight of the GS useri for using the
resourcer. This weight can depend on various parameters,
such as the price the GS user has paid or its other contri-
butions to the Grid. Condition (1) ensures that the resource
can satisfy the task generation rates of the new and the old
GS users. Furthermore, one more condition for the success-
ful registration is that the maximum task length (workload)
the GS user will ever send to the specific resourceJmax

ir

will not be larger than the resource’s maximum acceptable
task lengthJmax

r :

Jmax
ir ≤ Jmax

r . (2)

If both (1) and (2) hold then the GS user can register to the
resource; otherwise, the registration fails and the GS user
must search for another resource. The GS user can repeat
the same procedure so as to register to multiple resources.
Also a user can cancel its registration whenever he wants
to and for whatever reason. Finally, every user can repeat
periodically the registration phase, in order to negotiatethe
registration to new resources or to resources from which
other users have canceled their registration.

A GS user is equipped with a queue to temporarily with-
hold tasks that, if submitted to a resourcer, would invali-
date the agreed (ρir, σir) constraints. Specifically, we de-
note byJir(t), i = 1, 2, · · · , N the total tasks length (mea-
sured, e.g., in MI) submitted by GS useri to resourcer in
the interval[0, t]. We will say that a GS useri is (ρir, σir)
controlled with respect to resourcer, if the following con-
dition is valid:

Jir(t) < σir + ρir · t,∀t > 0. (3)

So the total tasks length (workload) a useri can send, over a
time period, for execution to a resourcer is restricted by the
(ρir, σir) constraints. If a GS useri would invalidate (3) by
submitting a taskj, then the GS user must locally withhold
this task for a time periodT j

ir until (3) becomes valid again
(Figure 2). So our framework includes in every GS user an
admission control (leaky bucket) mechanism to ensure that
the user’s (ρ, σ) constraints are always satisfied.

Jir(t)

Ii
j

σ+ρt

T
j
ir

t

Cummulative 

workload of 

tasks

Figure 2. The GS user is responsible for the observance of his
(ρir, σir) constraints.



When a taskj is created, the GS user searches for the
best suitable resource to which it has already registered. We
assume that taskj is characterized by its deadlineDj

i and
its lengthI

j
i (measured, e.g., in MI). In order for taskj to

be sent to the resourcer again two conditions must hold.
First, the task’s length must not exceed the one agreed,

I
j
i ≤ Jmax

ir , (4)

and, second, the task must not miss its deadline. One of
the benefits of (ρ, σ) constrained GS users and of the reg-
istration phase is that the maximum delay until a task is
completed on a resource can be bounded. If conditions (1)
and (3) hold and WFQ is used, then it can be proved, by
arguing as in [2], that the delay a task will incur from the
time it reaches resourcer until it finishes its execution at a
selected resource is at most:

σir

gir
+

Jmax
ir

gir
+

Jmax
r

Cr
,

wheregir is the minimum value ofgir(t) that does not in-
validates (1) for any registered user. To this delay we must
add the total communication delaydj

ir, required for trans-
ferring taskj data to the selected resourcer, and the total
timeT

j
ir the GS useri withholds the taskj in its local queue

(Figure 2). So the delay boundBj
ir the resourcer guaran-

tees to the useri for taskj is given by:

B
j
ir ≤ T

j
ir + d

j
ir +

σir

gir

+
Jmax

ir

gir

+
Jmax

r

Cr

. (5)

Finally, based on (1) and assuming thatwir = 1, for all i, r,
we have:

B
j
ir ≤ T

j
ir + d

j
ir +

(σir+Jmax
ir )·(Nr(t)+1)+·Jmax

r

Cr
.

So in order for a taskj of a GS useri to be scheduled to
a resourcer, its deadlineDj

i must be larger (or equal) than
the resource’s delay boundBj

ir:

B
j
ir ≤ D

j
i . (6)

Furthermore, we can pipeline theT j
ir andd

j
ir delays:

B
j
ir ≤ max(T j

ir, d
j
ir) +

(σir+Jmax
ir )·(Nr(t)+1)+·Jmax

r

Cr
.

By pipelining, we mean that ifdj
ir is larger thanT j

ir, then
the useri sends the taskj to the selected resource imme-
diately, without waiting for theT j

ir time period to expire,
while if T

j
ir is larger thandj

ir then the user sends the task to
the resource afterT j

ir − d
j
ir time units. In both cases time

savings are achieved.
If more than one resources fulfill the conditions of Equa-

tions (4) and (6) then the GS user can choose one based
on any other optimization criterion. If no resource fulfills

these conditions then the GS user drops the task or sched-
ules it like a BE task. Also from (5) we conclude that it may
be beneficial to distinguish resources in groups of resources
offering different maximum delay guarantees. More specif-
ically, the a priori knowledge or determination of a re-
source’s computational capacityC, maximum task length
J , maximum allowed burstinessσ and maximum number
of GS usersN allowed, provides a guaranteed maximum
delay for the tasks sent to that resource:

B(C, J,N, σ) ≤ max(T, d) +
(σ + J) · (N + 1) + J

C
,

(7)
whereT andd do not depend only on the resource but also
on the user side. Ifσ is expressed as a multiple ofJ , σ =
m ·J (that is, the user is allowed to send up tom maximum-
sized tasks in a very short interval if he has not sent any
other tasks recently), then (7) can also be written as:

B(C, J,N,m) ≤ max(T, d) + ((m+1)·N+1)·J
C

.

3.3 Resources

In the context of our framework we also propose to dis-
tinguish four types of resources: GS, BE, GSBE EQUAL
and GSBE PRIORITY. GS resources handle only tasks
originating from GS users. When a GS task arrives at
a GS resource, it is queued at the local WFQ scheduler.
When a machine is freed, the local WFQ scheduler se-
lects the next GS task for execution. BE resources han-
dle tasks originating only from BE users. The arriving
tasks are placed in a queue and served following a First
Come First Served (FCFS) policy to the first available ma-
chine. GSBE EQUAL resources handle tasks originating
from both GS and BE users. GS tasks are served using
a local WFQ scheduler as in the GS resources. Each ar-
riving BE task is considered as belonging to a new user,
who wants to register to the resource. So a BE task is
queued in the local WFQ scheduler only if the condition of
Equation (1) holds for all the registered users (the weight
of Equation (1) for any BE user, equals to the smallest
weight assigned to any GS user). In this case the number
of registered users is increased by one and when the BE
task finishes execution it is correspondingly decreased by
one. If (1) does not hold for at least one registered user
then the task is rejected and a failure notice is returned to
the originating user. GSBE PRIORITY resources handle
tasks originating from both GS and BE users, but their tasks
are not handled in the same queue. GS tasks are handled
by the local WFQ scheduler, while BE tasks are placed in
a FCFS queue. When a machine is freed the tasks in the
local WFQ scheduler are handled first. If there are no such
tasks then the BE tasks from the FCFS queue are served.



Table 1. Delay bounds given to GS users with respect to the
resource type.

Resource Delay Bound for GS users
GS max(T j

ir, d
j
ir)

+
(σir+Jmax

ir )·(Nr(t)+1)+Jmax
r

Cr

BE -

GS BE EQUAL max(T j
ir, d

j
ir)

+
(σir+Jmax

ir )·(Nr(t)+1)+Jmax
r

Cr

GS BE PRIORITY max(T j
ir, d

j
ir)

preemptive
+

(σir+Jmax
ir )·(Nr(t)+1)+Jmax

r

Cr

GS BE PRIORITY max(T j
ir, d

j
ir)

non-preemptive
+

(σir+Jmax
ir )·(Nr(t)+1)+2·Jmax

r

Cr

A GS BE PRIORITY resource is characterized as preemp-
tive if upon the arrival of a GS task, a BE task currently
under execution is paused and replaced by the new GS task;
otherwise, the GSBE PRIORITY resource is characterized
as non-preemptive. Finally, a BE task is scheduled to a
GS BE EQUAL or GSBE PRIORITY resource only when
its size is smaller than the resource’s maximum acceptable
task size.

When a GSBE PRIORITY non-preemptive resource is
used, the delay bound for GS tasks of Equation (5), be-
comes:

B
j
ir ≤ T

j
ir + d

j
ir + σir

gir
+

Jmax
ir

gir
+

Jmax
r

Cr
+ Rr,

whereRr is the residual time for the BE task found at the
resource (if any) to complete execution. Thus,

Rr ≤
Jmax

r

Cr
.

In the other resource typesRr equals to 0.
Using the proposed framework delay bounds can be pro-

vided to GS users. Table 1 summarizes the delay bounds
that the various resource types provide the GS and BE users.

4 Extensions of the Proposed Framework

4.1 Distributed, centralized and hybrid
implementations

In Section 3 we assumed a distributed implementation of
our proposed QoS framework, where registration is done by

each user (or VO) by communicating directly with the re-
source and negotiating its (ρ, σ) constraints. However, other
approaches can also be used. In the centralized approach
the registration of the GS users to the resources is handled
by a meta-scheduler. The meta-scheduler accepts, from the
GS users, registration requests containing their (ρ, σ) con-
straints. Then the meta-scheduler searches for resources
r that can satisfy these constraints. The GS users submit
tasks to the meta-scheduler, which schedules them to one
of their registered resources. Finally the meta-scheduleris
responsible for enforcing the (ρ, σ) constraints to the GS
users. A hybrid approach is also possible, where again a
meta-scheduler is responsible for the registration of the GS
users to the resources, but following the registration, the
users submit their tasks directly to one of their registered
resources, and are themselves responsible for the observa-
tion of their (ρ, σ) constraints.

4.2 Multi-machine resources

The proposed framework can easily be extended to the
case of resources that consist of many machines-CPUs, pro-
vided that some of the definitions and conditions given ear-
lier are appropriately modified. The total computational ca-
pacityC ′

r of a multi-machine resource’sr is expressed as:

C ′

r =
∑Mr

j=1 Crj ,

whereCrj is the computational capacity of machinej, and
Mr is the total number of machines (CPUs) in the resource
r. We also assume that the local scheduler assigns tasks to
the first available machine-CPU, in a round-robin manner.

In (1), gir(t) is the average service rate the resourcer

guarantees to provide to useri. SinceC ′

r is the total service
rate the user has access to from the resource,Cr in Equa-
tion (1) has to be replaced byC ′

r, yielding

ρir ≤ gir(t) =
wir·

∑ M
j=1 Crj

∑ Nr(t)+1
k=1 wkr

.

Since tasks are non-divisible, the resource cannot use its to-
tal computational capacity to process a task. The worst case
is obtained when a task is assigned to the machine (CPU)
with the lowest computational capacityCmin

r = minj Crj .
Therefore,Cr in Equation (5) and in all the other delay
bounds given in Section III has to be replaced byCmin

r .
For example, Equation (5) becomes:

B
j
ir ≤ T

j
ir + d

j
ir +

σir

gir

+
Jmax

ir

gir

+
Jmax

r

Cmin
r

. (8)

5 Simulation Results

We implemented the centralized version of the proposed
framework by extending the GridSim [17] simulator.



5.1 Parameters and scenarios

In our simulations we used realistic parameters based
on [4]. In [4] a thorough analysis of the task inter-arrival
times, the execution times, and the data sizes exchanged at
the kallisto.hellasgrid.gr cluster, which is part of the EGEE
Grid infrastructure, were presented and analytic models
were proposed. Based on these results and numeric data we
decided to simulate three GS users, corresponding to three
of the five VOs presented in [4] (namely, the Atlas, Magic
and Dteam VOs). So these VOs represent three different
classes of users, based on their task inter-arrival process
and execution times. Also, using the VO’s average tasks
execution times we calculated their average task lengths,
measured in MI. From [4] we got our initial data, and in
our simulations we used the corresponding normalized and
rounded values (Table 2).

Table 2. GS users task lengths and generation rates.

User Characteristic Distribution
Atlas/U1 Task Length Fixed: 10000 MI
Magic/U2 Task Length Fixed: 1700 MI
Dteam/U3 Task Length Fixed: 10 MI
Atlas/U1 Task G/tion Rate Fixed: 1

10 tasks/secs
Magic/U2 Task G/tion Rate Fixed: 1

60 tasks/secs
Dteam/U3 Task G/tion Rate Fixed: 1

110 tasks/secs

Based on these data, the (ρ, σ) constraints of each user were
statically calculated. Specifically theσ parameter of each
user is selectedm = 5 times bigger than the corresponding
GS user’s average task length. Theρ parameter of each GS
user is calculated by dividing its average task length by its
average task inter-arrival time (Table 3).

Table 3. GS users (ρ, σ) constraints.

User Characteristic Distribution
Atlas/U1 ρ Fixed:1000 MIPS
Magic/U2 ρ Fixed:30 MIPS
Dteam/U3 ρ Fixed:1 MIPS
Atlas/U1 σ Fixed:50000 MI
Magic/U2 σ Fixed:8500 MI
Dteam/U3 σ Fixed:50 MI

In our simulations we also used two BE users, named U4
and U5. U4’s task inter-arrival time changes in every sim-
ulation, while U5’s remain the same (Table 4). The lengths
of the tasks submitted by these users were fixed and equal
to the U1 GS user’s task length (namely, 10000 MI).

In our simulations we choose to use 3 computational re-
sources, named R1, R2, R3, each consisting of one machine

Table 4. BE users task lengths and generation rates.

User Characteristic Distribution
U4 Task Length Fixed: 10000 MI
U5 Task Length Fixed: 10000 MI
U4 Task G/tion Rate Fixed:0.05, 0.1, 1 tasks/sec
U5 Task G/tion Rate Fixed:0.01 tasks/sec

with one CPU and computational capacity 1015 MIPS, 680
MIPS and 340 MIPS, respectively. Furthermore, in our sim-
ulations we used the resources scenarios presented in Ta-
ble 5. When the BE resources scenario is used then the U1,
U2 ,U3 users are BE users with the exact same characteris-
tics as the corresponding GS users.

Table 5. Scenarios of resources configurations.

Scenario R1 R2 R3
Name
GB GS GS BE
GBE GS BE EQ. GS BE EQ. BE
GBP GS BE PR. n.pr. GS BE PR. n.pr. BE
BE BE BE BE

The meta-scheduler uses a two-phase scheduling proce-
dure for BE users. More specifically, the Earliest Dead-
line First (EDF) algorithm is used for the queuing phase
and the Earliest Start Time (EST) for the resource assign-
ment phase. All users have non-critical deadlines equal to
110 seconds. Furthermore, in our simulations we assume
a simple network topology, where the resources, the users
and the meta-scheduler communicate directly with links of
equal bandwidth (100 Mbps). The sizes of the data sent to a
resource from a user before a task’s execution, and the sizes
of the data produced by a resource after a task’s comple-
tion are the same for all users and equal to 1000 bytes. The
maximum acceptable task length of the resources is equal
to twice the larger task length produced by any user, that
is equal to 20000 MI. The GS users maximum task lengths
are equal to their corresponding task lengths presented in
Table 2. Finally, in each simulation experiment every user
produces 500 tasks.

5.2 Performance metrics

In our simulations we recorded the following perfor-
mance metrics:

• the per user percentage of the number of tasks that
miss their non-critical deadlines over the total number
of tasks each user creates. In general if a non-critical
deadline expires the task remains in the Grid.



• the resource use, defined as the total time a resource is
used for the execution of tasks.

5.3 Results obtained

A number of simulations where conducted in order to
validate that the proposed framework indeed guarantees
QoS to the GS users. In our simulations we used 5 users
(3 GS and 2 BE), 3 resources and a meta-scheduler. User
task lengths and task generation rates followed a fixed dis-
tribution, using the values of Table 2 and Table 4.

5.3.1 Framework Validation

In Figure 3 we show that our framework succeeds in pro-
viding QoS to the GS users. Figure 3 presents the per
user percentage of the number of tasks that miss their non-
critical deadlines over the total number of tasks each user
creates. This percentage is presented for all the combina-
tions of the resources scenarios (GB, GBE, GBP, BE) and
the BE user’s U4 task generation rates (0.05, 0.1, and 1
tasks/sec): GB/0.05, GB/0.1, GB/1, GBE/0.05, GBE/0.1,
GBE/1, GBP/0.05, GBP/0.1, GBP/1, BE/0.05, BE/0.1,
BE/1. We observe that in all cases the GS users (U1, U2,
U3) do not miss their deadlines. Only when the BE scenario
is used, where the GS users are treated as BE users, then all
the users miss many of their deadlines. In the GBE and
the GBP scenarios (Table 5) fewer tasks miss their dead-
lines, but in the GBE scenario many tasks fail. In the GBE
scenario when a BE task arrives at a GSBE EQUAL re-
source but cannot be scheduled, because the constraints of
the already registered GS uses cannot be guaranteed, then
the task is dropped (fails). So the GBP scenario seems the
best in terms of the number of tasks successfully scheduled
without missing their deadlines.

0%

20%

40%

60%

80%

100%

G
B
/0

,0
5

G
B
/0

,1

G
B
/1

G
B
E
/0

,0
5

G
B
E
/0

,1

G
B
E
/1

G
B
P
/0

,0
5

G
B
P
/0

,1

G
B
P
/1

B
E
/0

,0
5

B
E
/0

,1

B
E
/1

Scenario/Task Rate

N
o
n
-C

ri
ti
ca

l 
D

ea
d
li
n
es

 E
xp

ir
ed

  
  
  
  
 .
 

p
er

 U
se

r

User U1 User U2
User U3 User U4
User U5

Figure 3. The per user percentage of the number of tasks that
miss their non-critical deadlines, for different resource scenarios
and U4 task generation rates.

In Figure 4 the total time each resource is used is pre-
sented for the same scenarios as before. Resource R3 is
utilized more in the GB resource scenario, since it handles

exclusively BE tasks. In the other resource scenarios, all
resources can serve both GS and BE tasks and as a result
the use of resource R3 is smaller. Finally, in Figure 5 the
standard deviations of the resources’ use are presented. The
standard deviation is high in the GB scenario, where re-
source R3 is more utilized than resources R1 and R2, while
it is very small for the GBP scenario. This indicates that the
GBP scenario makes more efficient and uniform use of the
available resources than the other scenarios.

0

50000

100000

150000

200000

250000

300000

350000

G
B
/0

.0
5

G
B
/0

.1

G
B
/1

G
B
E
/0

.0
5

G
B
E
/0

.1

G
B
E
/1

G
B
P
/0

.0
5

G
B
P
/0

.1

G
B
P
/1

B
E
/0

.0
5

B
E
/0

.1

B
E
/1

Scenario/Tasks Rate

R
es

ou
rc

e 
U

se
   

   
.

Resource R1
Resource R2
Resource R3

Figure 4. The resource use, for different resource scenarios and
U4 task generation rates.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

GB GBE GBP BE

Scenario

S
ta

n
d
ar

d
 D

ev
ia

ti
o
n
 o

f 
R

es
o
u
rc

e 
U

se
   

   
   

 .

0.05 tasks/sec
0.1 tasks/sec
1 tasks/sec

Figure 5. The standard deviation of the resource use, for differ-
ent resource scenarios and U4 task generation rates.

In our simulations we also experimented with scenarios
where the users do not fully respect their agreed (ρ, σ) con-
straints. Our simulations show that even when the GS users
violate their agreed task submission constraints, with small
deviation from the agreed values, then the framework is still
able to preserve the delay bounds guarantees given.

6 Conclusions

In this work we proposed a QoS framework for compu-
tational Grid Networks, which provides deterministic delay
guarantees to its Guaranteed Service (GS) users. Our sim-
ulations indicate that the framework indeed provides guar-
antee delay bounds to its GS users, even when a large num-
ber of tasks belonging to the Best Effort (BE) users request



service. We also examined several types of resources and
showed that the use of resources that serve both GS and
BE users, with varying priorities, results in fewer deadlines
missed and better resource use.

Acknowledgements

This work has been supported by the EC through the IP
Phosphorus IST project (http://www.ist-phosphorus.eu/).

References

[1] I. Foster, C. Kesselman,The Grid: Blueprint for a
New Computing Infrastructure, Morgan-Kaufmann,
1999.

[2] A. K. Parekh, R. G. Gallager,A generalized proces-
sor sharing approach to flow control in integrated
services networks: the single-node case, IEEE/ACM
ToN, 1993.

[3] Y. Zhang, J. Cao, X. Chen, S. Lu, L. Xie,Threshold-
based admission control for a multimedia Grid: anal-
ysis and performance evaluation: Research Articles,
Concurrency and Computation: Practice & Experi-
ence, 2006.

[4] M. Oikonomakos, K. Christodoulopoulos, E. Varvari-
gos, Profiling Computation Jobs in Grid Systems,
Proc. CCGrid, 2007.

[5] I. Ahmad, Y.K. Kwok, M.Y. Wu, K. Li, Experimental
Performance Evaluation of Job Scheduling and Pro-
cessor Allocation Algorithms for Grid Computing on
Metacomputers, Proc. IPDPS, 2004.

[6] V. Subramani, R. Kettimuthu, S. Srinivasan, P. Sa-
dayappan,Distributed job scheduling on computa-
tional grids using multiple simultaneous requests,
Proc. HPDC, 2002.

[7] Y. Cardinale, H. Casanova,An evaluation of Job
Scheduling Strategies for Divisible Loads on Grid
Platforms, Proc. HPC&S, 2006.

[8] T.D. Braun, H.J. Siegel, N. Beck, L.L. Boloni, M. Ma-
heswaran, A.I. Reuther, J.P. Robertson, M.D. Theys,
B. Yao, D. Hensgen, R.F. Freund,A Comparison of
Eleven Static Heuristics for Mapping a Class of Inde-
pendent Tasks onto Heterogeneous Distributed Com-
puting Systems, JPDC, 2001.

[9] S. Zhuk, A. Chernykh, A. Avetisyan, S. Gaissaryan,
D. Grushin, N. Kuzjurin, A. Pospelov, A. Shokurov,
Comparison of Scheduling Heuristics for Grid Re-
source Broker, Proc. Fifth Mexican Int. Conf. in Com-
puter Science, 2004.

[10] A. Demers, S. Keshav, S. Shenker,Analysis and simu-
lation of a fair queuing algorithm, Proc. SIGCOMM,
1989.

[11] R. Braden, D. Clark, S. Shenker,Integrated services
in the internet architecture: an overview, RFC 1633,
IETF, 1994.

[12] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,
W. Weiss,An Architecture for Differentiated Service,
RFC 2475, IETF, 1998.

[13] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrst-
edt, A. Roy,A Distributed Resource Management Ar-
chitecture that Supports Advance Reservation and Co-
Allocation, Proc. IWQOS, 1999.

[14] S. N. Bhatti, S.A. Srensen, P. Clarke, J. Crowcroft,
Network QoS for Grid Systems, Int. Journal of High
Performance Computing Applications, 2003.

[15] H. Chu, CPU Service Classes: a Soft Real Time
Framework for Multimedia Applications, UIUC,
Technical Report, 1999.

[16] R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, S. So-
hail, G- QoSM: Grid Service Discovery using QoS
Properties, Journal of Computing and Informatics,
2002.

[17] R. Buyya, M. Murshed,GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing,
Concurrency and Computation: Practice and Experi-
ence, 2002.

[18] R. Buyya, J. Giddy, D. Abramson,An evaluation of
economy-based resource trading and scheduling on
computational power grids for parameter sweep ap-
plications, Proc. 2nd Workshop on Active Middleware
Services, 2000.

[19] R. Buyya, M. Murshed, D. Abramson, S. Venugopal,
Scheduling Parameter Sweep Applications on Global
Grids: A Deadline and Budget Constrained Cost-Time
Optimization Algorithm, International Journal of Soft-
ware: Practice and Experience (SPE), 2005.


