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Abstract—When deploying Grid infrastructure, the problem of dimensioning arises: how many servers to provide,
where to place them, and which network to installdr interconnecting server sites and users generatinGrid jobs? In
contrast to classical optical network design problas, it is typical of optical Grids that the destinaion of traffic (jobs)
is not known beforehand. This leads to so-called gnast routing of jobs. For network dimensioning, tls implies the
absence of a clearly defined (source,destinationgbed traffic matrix, since only the origin of Grid jobs (and their
data) is known, but not their destination. The later depends not only on the state of Grid resourcesncluding
network, storage, and computational resources, bualso the Grid scheduling algorithm used. We presera phased
solution approach to dimension all these resourcegnd use it to evaluate various scheduling algoriths in two
European network case studies. Results show thatdéhGrid scheduling algorithm has a substantial impatcon the
required network capacity. This capacity can be miimized by appropriately choosing a (reasonably smBlnumber
of server site locations: an optimal balance can bfund, in between the single server site case rdgag a lot of
network traffic to this single location, and an ovey fragmented distribution of server capacity overtoo many sites
without much statistical multiplexing opportunities, and hence a relatively large probability of not ihding free

servers at nearby sites.

Index Terms—Optical networks, Grids, anycast, dimensioning, IIP, simulation



1.INTRODUCTION

GRIDS originated from the eScience community dealvith large experimental data sets (particle
physics, astrophysics etc.): to meet computaticsmadl storage demands, cluster centers were
interconnected via networks to achieve a huge comrasource pool to process the tasks (jobs). Ysi, a
business/consumer oriented applications can befrefit Grid infrastructure. Consider high-definition
(HD) video editing: applying effects, requiring oae multiple operations per pixel, or en/decodihgse
high resolution and high frame rate image streamckty leads to a non-negligible amount of procegsi
which already is challenging on today’s PCs. Inhsaases, also considering evolutions to more themtc
based consumer solutions, Grids offering off-s@enputational and storage capacity also make semse f
business/consumer solutions. Both high data ragpgal of eScience applications and low latency
requirements of consumer/business applicationsh(wieir typically high degree of interactivity) can
effectively be addressed by optical network techgglinterconnecting users and resources. ThussGrid
based on optical network infrastructure promiseoffer cost and resource efficient delivery of netkvo
services with possibly high data rate, processing atorage demands, for a geographically widely
dispersed user base. To fulfill that promise, fundatal questions need to be addressed, including
(re)designing the architecture of a flexible ogtieger, dimensioning and routing/scheduling altoris.
Fundamental differences with traditional networksida arise from for instance traffic volume being
dependent on dimensions and locations of computafgiorage resources, as well as the job schegulin
algorithm, and the fact that Grid users generallyrobt care where their jobs are processed (that is,
destinations are unknown, hence there is no clel@fiped traffic matrix). These Grid specific asjsegive
rise to multiple challenging research question2]1,

For the optical network architecture, whether t@@dOptical Circuit Switching (OCS) or Optical
Packet/Burst Switching (OPS/OBS) is debatable. Déjpgy on the ratio signaling time/job transmission
time, OCS can be acceptable [3]. For small jobmyptex grooming/aggregation at the OCS edges will be
required. As job data size reduces and/or latepogiivity increases, OBS will be more efficien{.[4
Another advantage of OBS is its ease in dealingp Wighly dynamic traffic patterns (both in spacel an
time). The methodology proposed in this paper afdre both OBS and OCS alternatives.

Given the optical network architecture of choidee so-called anycast routing principle has a major
impact on the scheduling and routing decision: howecide where to execute a job submitted to the G
system, and how to get the job there? In contmasbuting and wavelength assignment problems inemor
traditional optical networks, an extra degree afeftom arises since not only the route, but also the

destination itself can be chosen. This typicalgdie to multi-cost routing problems [6], incorpongtithe



state of both network and computational/storagel @sources. Given this paper’s focus on dimens@ni
we will assume relatively simple routing and schHedualgorithms.

In this paper we address the Grid dimensioning lprob The input is a given network topology
comprising the locations of the sites where jolgimate (or aggregation points, for example pouwfts-
presence (PoP) nodes of Grid service providers)ladbackbone) network interconnecting them, &ed t
amount of jobs generated. We want to answer thstiguehow to decide where to provide server capacit
and how to figure out the network dimensions regpito process the submitted jobs. The major difieze
with classical (optical) network dimensioning aganises from the aforementioned anycast principke:
are not given the complete so-called traffic matsince only the source of the jobs is given, & t
destination (that can be freely chosen by somegbleduling algorithm).

The remainder of this paper discusses our phaseagh to Grid dimensioning. A concise problem
statement, and an overview of related work on @imdensioning is presented in Section 2. Our satutio
method is described in Section 3, followed by aecstsidy and its discussion in Section 4. The paper

concluded in Section 5.

2.THE GRID DIMENSIONING PROBLEM

A classical network design problem is dimensionifiguring out how much capacity is needed for the
network to be able to transport a given amountraffic. Typically, this traffic is specified in aaffic
matrix: for each source siteand destination sitge the amount of traffic flowing from siteto j is given by

as a numbefl (say in Mbit/s). A broad range of dimensioningaaithms is available, either based on
heuristics or exact solution methods using for gxannteger Linear Programming (ILP). The algorithm
vary depending on the network technologies andlbogies (for instance single- or multi-layer sceaoari
involving one or more network layers such as whantly dimensioning IP routers and WDM cross-
connects [8], with or without grooming [9] where fiastance IP flows between different end points ca
share the same WDM circuits over multiple hops bgpay some of the IP routers; for ring [10] or mesh
networks), design criteria (such as survivabilipd]; availability), single or multi-period planning2]
(where the network evolves over time, in responsg ¢hanging traffic demand over a longer timerirate
spanning multiple years), single domain or hiermadhnetworks [13] (providing algorithms for deaidi
how to partition the network in access and backbwordes, as well as designing the backbone topaglogy)
etc. Yet, if we want to apply any of these apprescfor dimensioning grids, the problem arises of
accurately estimating the traffic matrix. Indeeyeg the anycast principle typical of Grids, thestiieation

of the traffic (Grid jobs) is not given a priori.



Another aspect in Grid dimensioning is that notydhle network resources, but also the computational
and/or storage resources need to be dimensioned:ntemy servers need to be installed, and at which
sites? Note that the latter will have an impactdrere jobs will end up being executed, thus thenizd
traffic matrix, hence the network dimensions. Icisar that jointly determining both server andwek
dimensions is a very hard problem (note that ewgglesperiod dimensioning, where a single traffiatnx
is given specifying the average demand betweeryexate pair, may already be NP-hard [14]). Theesfor
we will propose a phased approach, dimensionisgttre servers and then the network (see Section 3)

Related work on dimensioning Grids is scarce. B [dnalytical ILP and heuristic approximations are
used to cater for excess load: it is assumed Hedt ef the grid sites (dimensioned for the locgéyerated
jobs) may suffer from overload, and network dimensi (humber of wavelengths and fibers used) are
determined by a finding a global optimum over albe-site overload problems.

One way to deal with the unknown destination foid@obs is to assume that the fraction of jobs
(originating at a particular site) going to a giveamputational Grid site is known, thus fixing aopirthe
arrival rates of jobs at each job execution siteisTapproach is taken in [16], where an analytical
methodology known as reduced load fixed-point apipnation [17] is used to dimension both network and
computational resources. In this paper howeverfoses on a ‘clean slate’ or greenfield Grid dimensgng
problem finding the complete Grid capacity requitedmeet a given Grid job arrival pattern. Also, we
assume fully flexible scheduling strategies withanly knowledge of probabilities for selecting aegiv
destination site.

This presents a viable dimensioning methodology, @ssesses the impact of the scheduling algorithm
on Grid network dimensions. Yet, since developnwrdcheduling algorithms as such is not this paper’
primary concern, we will assume fairly straightfand scheduling strategies, based on a single allvkig
scheduler, finding a free server for every arrivjag based solely on the job’s arrival time andation,
and server processing speed and occupation. Fonpdes of more advanced scheduling algorithms,
including QoS support and advance reservation giacand, we refer to [5] and [7] respectively. We
believe that adding QoS support or advance resengis unlikely to affect the qualitative compansof

the different scheduling strategies discussed éuarth

3.A PHASED SOLUTION OF THEGRID DIMENSIONING PROBLEM

We will take an iterative dimensioning approachytatg with an algorithm for choosing appropriagever
site locations: not every grid site will necessalie a server site. Next we will calculate the antoof
servers needed (and distribute them amongst theeohserver site locations). Subsequently the Biter-

job rates are determined, and hence required bdtidwn the work presented, we focus on computation



Grids, where jobs consist of a single unit of wedbmitted to the Grid, characterized by a data siad a
computational requirement (say, expressed in nurobéloating point operations, FLOP). An accurate
problem statement is the following:
* Given:

— Graph representing the network topology (nodesesepiting Grid sites and switches, links the

optical fibers interconnecting them),

— Arrival process of jobs originating at each site,

— Job processing capacity of a single server CPlyanage oj/jobs/s), and

— Target maximum job loss rate,
* Find:

— Locations of the server sites,

— Amount of Grid server CPUs at each site, and

— Amount of link bandwidth to install,

— While meeting the maximum job loss rate criteriod aninimizing network capacity.
Given the complexity of the problem (such as thpetelence of the network capacities on the choites o
server locations and capacities), we opt for a g@tha®lution approach comprising subsequent stdps. T
first step will be to findK server locations (out of thé grid sites), while a second step finds the server
capacities at each of tH€ chosen sites. The third step will determine theoamh of jobs exchanged
between the grid sites and the server locations.fiftal fourth step will be to calculate the actoatwork

dimensions, that is link bandwidth. Each of thespsis now discussed in detail.

3.1.Finding the K best server locations

The aim of the first step in solving our Grid dins@ming problem is to figure out which locationg &est
suited for placing the servers. The cost critetmmeasure by will be the total expected link baiakwv
The major difficulty in evaluating that cost fogaven choice oK locations, is that the required bandwidth
depends also on the amount of server capacityllestat each of the server sites and possibly thd G
scheduling and routing algorithm. Therefore, we enakme simplifying assumptions: (i) each Grid site
will send all its jobs to a single destinatibf and (ii) shortest path routing is used. Hencegmgia choice
of K locations, a sitewill send its jobs to server siféf the routing distancel; is the minimum over al
values fork = 1. K.

Finding the optimal choice df sites hence is a k-means clustering problem (ibreraa k-medoid
problem, since cluster centers are actual datatg)oiwe are looking foK cluster centers, the centers

representing the server sites, and the cluster rammihe Grid sites sending their jobs to that gente



(server). A well-known heuristic k-means clusteraigorithm [18] solving the problem is rephrasedFig.

1 as a k-medoids algorithm for the Grid site lamatiproblem. Repeating this algorithm for various

randomly chosen initigk server locations leads to solutions close to #aetesolution. However, given the

simplifying assumptions, a fairly compact ILP foraion of the problem can be devised, as outlimed i

Fig. 2. Given the relatively small number of (biyjavariables and equation®(\?) with N the number of

sites), the time to solve it for the case studiescansidered (comprising a few tens of nodes) wast m

acceptable (a few seconds at most). The resulig@gent in this paper therefore are obtained ubiedLP

solution method. (Note that for other, prohibitivéhrge problem instances, the k-medoid heuristic c

provide acceptable solutions quite fast.)

(1)
)

®3)

(4)

Given constants: H; = routing distance (for instance hop count) from site i to site j (i, j = 1..N)

Ai=job arrival rate at site i (i = 1..N)

K = number of clusters and centers (hence server sites) to choose
Choose K initial medoids my (k = 1..K).
Form clusters: assign each object (Grid site) to closest centroid:

For each i = 1..N, assign node i to the cluster set C, with centroid my if
Him, =min(H;p 1 =1.K)
Recalculate the positions of the K medoids within their cluster:

For each k=1..K, let m, be that node m in set C, minimizing > A; [H;,
i0C,

Repeat steps 2-3 until the medoids m, no longer change; these cluster centers are the

server locations.

Fig. 1 — K-medoids clustering algorithm for choagik server locations. (Note: the term ‘k-medoids'used, instead of ‘k-

means’, since the cluster centers are actual daiats—in casu site locations—and not freely chareans.)



Decision variables: T;=1if and only if site j is chosen as a server site location, else 0

S = 1 if and only if site j is the target server for traffic from site i, else 0

Given constants: Hj = routing distance (for instance hop count) from site i to site j (i, j = 1..N)
Ai = job arrival rate at site i (i=1..N)
K = the number of server sites to choose

( sz =K (only K server locations)
j

< zsij =1 0O (simplifying assumption: for each site i, only
min) > A; [H; [B;  with ] send jobs to a single server site j; the objective
i

will ensure it is the closest one)

L Sj<T, 0i,j  (only send traffic to server sites)

Fig. 2 — ILP for choosing K server locations.

3.2.Determining the server capacities

For determining the amount of required server a@ypait is necessary to make some assumptions en th
Grid job arrival process. In this paper, we focascomputational Grid jobs, hence we will dimensiba
servers in terms of processing capacity, expressadmber of CPUs. A job is assumed to fully occapy
single CPU for its entire duration. Furthermore, wi# assume that Grid job requests are to be sdleed
immediately, leading to a bufferless system moiedt job arrival no free server is found, the jishost.
Backed by real world Grid measurements [20], wé agbume Poisson job arrivals (mean arrival katd
sitei). This implies that, given the lack of buffers, wan use th&rlangB formula (1) to calculate the total

number of server CPUsrequired to achieve a maximal loss rate

_ _ v/
L =ErlangB(n,A, ) SN 1)

To place then server CPUs among thé(< N) server site locations chosen in step 1, we censitee
strategies:
(i) unif: uniformly distribute the server CPUs among Kllserver sitesnc=n/K, for each server
locationk = 1.K.
(i) prop: distribute the server CPUs proportionally to {bkister) arrival rate at each server dite
ne= A /(KR), with A =2 A; and A == AilSk , whereSy is 1 if and only ifk is the server site
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closest td (as defined in the ILP of Fig. 2). Note that equals the total job arrival rate summed
over all Grid sites in clusté
(i) lloss try and achieve the same “local loss rate” ahessver site, that is, ugglangBto calculate
n. as the number of server CPUs to install locallperver sitek to achieve loss rate (solve
L = ErlangB(n¢ , A, 1)) and instalhn,= n/m /(Z ni’) servers.
Intuitively, we expect therop andlloss strategies to perform better thanif, since more server capacity
will be installed where more traffic is arriving.a€e studies below will assess the penalty of usieg

simpleunif strategy in terms of required network resources.

3.3.Determining the inter-site bandwidths

Once the location and the amount of CPUs are fipatl the Grid scheduling algorithms determine the
amount of jobs, and hence bandwidth, that will Rehanged between each Grid (site, server)-pair. To
demonstrate that the difference may indeed be autiskt we will consider three scheduling altervedi
Note that all algorithms account for the anycasitimy principle: it depends on the instantaneous
availability of Grid resources, without a priorigigon on where to execute a job. Since we areasted in
minimizing the required amount of resources, intlgdink bandwidth, all scheduling strategies cdesed

will always try to use a ‘local’ server CPU bef@meything else. Jobs arriving at a siteelonging to cluster

k (as derived in step 1), withy as cluster center (thus server site) will alwagstheduled on a ‘local’ free
server CPU at sitay if available. The strategies only differ in chaggian alternative CPU if for a job
arriving ati, all CPUs at its cluster centex, are occupied:

(i) rand: randomly choose a free server CPU (hence, aradnege servers, each hasIthance);

(i) SP. the closest free server in terms of routing distaf; as defined in the algorithms in Section
3.3.1, for example hop count) is chosen, thusisgito minimize network usage;

(i) mostfree choose a free CPU at server djtevheref is the server site with the highest number of
free server CPUs, in an attempt to avoid overlgadsites and thus limiting non-local job
execution.

To calculate the job exchange rate for every Gsitk( server)-pair, we resort to simulations. lis,tkve
make abstraction of the network capacity (since ihaxactly what we want to calculate in the n&bep):
we assume infinite link bandwidth, the only waygatan be lost is because of lack of CPU capacity.

The reason for resorting to simulations is thatalbse of the anycast principle it is hard to obtain
accurate estimates for the inter-site traffic baiddhwusing analytical techniques. To illustratesthive
compared our simulation results with those obtaingidg a fixed-point approximation methodology. We

iteratively solve the equations (2)-(4), initiatigi the system with, = A,. Equation (2) gives the blocking
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probability at sitek, being the probability that all it% servers are occupied. The total job arrival hatat
sitek is calculated from equation (3) as the sum ofltieally arriving jobsA¢ and the fraction$y of the
jobs arriving at all other sites which are blocking there with probability. The fractionsfy of jobs
blocking atj and sent td, are assumed to be proportional to the probalitity of finding a free server at
sitek, as given in equation (4). We stop the numeriggibtions solving this system of equations when the
difference between successive calculations of ts rates with equation (2) is smaller than a given

tolerancer (in the results below, we set 109).

Ly :ErlangB(nk,)\'k,u) 2)
, K
)\k:)\k+_§LjD\jEﬁjk (3)
2k
1-L
e ()
Z(l_l-m)
m=1
mzj

Note that the approximation lies in fixing a pridte amount of jobs that is off-loaded to a rensitie: a
blocked job originally intended for siteis sent to a remote sitewith probability fi, regardless of the
availability of servers at site Hence, under this assumption, the blocking ratdr&ffic initially sent to
sitei is given byP; as in equation (5). The total blocking probabiftyas given by equation (6), will be
larger than the ErlangB blocking of equation (1hieged by fully sharing all available server capaand

sending jobs using the anycast principle to any server.

P=L01- ifik f1-Ly) (5)
et
2A R
= IZ)\“ (6)

3.4.Determining the link bandwidths

After the previous step, we know how many jobsks exchanged between every Grid node pair in the
considered Grid network. Assuming a given data dig&ibution, the number of jobs/s can be traeslat
into a bandwidth requirement (say in Mbit/s). Thus, now have obtained a traffic matrix listing thegfic

demand between each (source, destination)-paircdjeme can apply ‘classical’ network dimensioning
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algorithms to assess the required network resoufmesber of wavelengths on each link) for given
switching technologies (such as OBS, OCS or hyj2i4) and requirements (resilience for instance).

For the case study presented next, we will assuroeest path routing and make abstraction of the
actual network technology to judge the cited scheduand CPU dimensioning variants by. We will use
the average hop count traversed by a job as a meabnetwork resource usage. Note that by accognti
for overhead (such as packet headers or burstatguaicket offsets), or discrete bandwidth increment
(multiples of wavelength bandwidth), the actuafeténce in bandwidth requirements can be largen tha

what the hop count based results may suggestthégualitative conclusions will remain valid.

4 .CASE STUDY

In the previous section, we have outlined a stegeveicheme to dimension both server CPU and network
resources for computational Grid. We will now apiply a realistic case study, to highlight the on@ance

of choosing an appropriate scheduling and servdd @Rcement algorithm when trying to limit the
network resource requirements. The scenario anat ipgrameters are outlined and motivated in Section

4.1, whereas the actual results will be subsequedigtussed in 4.2 and 4.3.

4.1.Scenario

To obtain a realistic case study, we performed oreasents on a real world Grid, deployed in Eurape i
the frame of the Large Hadron Collider (LHC) expents in Geneva and the Enabling Grids for E-s&enc
(EGEE) project [19], referred to in short as theBEA.CG Grid. From Grid-wide job arrival logs, it wa
derived that the Poisson traffic model (with negali exponentially distributed inter-arrival times)
accurately fits the real world arrivals [20].

We considered two network topology and job demate cases, whose topologies are sketched in Fig.
3, and the input parameters are summarized in Thblée first used a fairly densely meshed European
backbone network (the “Large Topology” taken fro22]), with artificially generated job arrival rates
each site (each ratewas with 30% chance uniformly chosen in [1, 15 &3% from [30, 60]).

The second case is based on measurement datalfeoBEGEE/LCG Grid (the same data set as [20]),
and for a topology based on the EGEE site locatmmg the Geant2 [23] network topology and its
associated various national research and educaéitworks (NRENSs). The arrival rates at each siteewe
set to the values derived from a one-month trdee (INote that the job trace data comprised 58 Gitik,
rather than the 20 of the Geant2-inspired topology:attributed their job arrivals to the geographyc

closest Geant2 site, based on the coordinatesedt GEE/LCG sites as found with IP-address-based geo
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location software by MaxMind Inc.) In this EGEE/LC¢ase, also the average job duration was derived

from the real-life trace file.
For both cases, we applied the dimensioning styatetjined in Sections 3.1 to 3.3. As acceptable jo

loss for the ErlangB calculation we chose L = 0.05.
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Fig. 3 — Case study topologies: (a) a European bacdlke network, (b) Geant2 network.

Table 1 — Case study parameters

Parameter Case 1 (EU) Case 2 (EGEE/Geant2)
Topology European backbone [22] Geant2 network
Number of nodes 37 20

Number of links 57 31

Average shortest path hop count 3.62 2.55

Job duration 100 s (per job) 854.92 s (per job)

IAT distribution Exponential distribution Exponeailtidistribution
Average arrival rate over all sites 2.23E-01 jobs/s 3.56E-02 jobs/s

Stdev of arrival rate over all sites 2.02E-01 jsbs/ 6.47E-02 jobs/s

Total arrival rate over all sites 8.24E+00 jobs/s .12E-01 jobs/s
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4.2.Local processing rates

To evaluate the CPU distribution and job schedulifgprithms, a first criterion we considered wasvho
many jobs are off-loaded to a remote site, or dmpglement, the so-called ‘local processing rateé t
fraction of jobs that is processed at the closesstes. To limit network load, we strive for keepitinge local
processing rate high. This fraction of jobs thagxgcuted at their respective closest serversipotted in
Fig. 4 against the number of chosen server sitatimesK. Note that the maximal value of 95% is due to
the L = 0.05 target job loss rate we dimensionedstrver sites for.

To assess the influence of offloading jobs to o#its, we have also calculated an upper bounthér
local processing rate, using the ErlangB formulais bound was obtained by assuming that jobs omly m
be executed at the closest server site (see thglifsimg assumption used in the server site sebecti
approach of Section 3.1). Given this assumptiom nlaximal local processing rate at serverlsgguals 1-

Ly, with Ly = L calculated using ErlangB formula (1) fdr= n, the number of servers at skeandl = i
the aggregate arrival rate of its closest Gridssite

With respect to the server distribution schemeagcipy more servers where more jobs originate is
beneficial: theprop and lloss strategies attain higher local processing rates tinif. The difference
betweenprop and lloss from this respect is minimal (relative differendess than 5%):. only for the
European backbone case we noted a slightly higivad rate forloss for low server site counts, in all
other caseprop attains a higher fraction of jobs executed at éspective closest server site. This indicates
that the more compleboss dimensioning strategy doesn’'t seem to pay off caneg to the simplerop
strategy.

From the graphs it is clear that the schedulingrétlyn also impacts the local processing rate. Agnon
the considered alternativenpstfreefrom this perspective performs best.

With respect to the influence of the traffic andwark topology, we note that in the EGEE/Geant2cas
the matching the server capacities to the traffriviag (prop and lloss cases) seems more effective:
especially for larger server counts, the local processing rate stabilizes around 3%-6f the
EGEE/Geant2 case (compared to 30-40% for the E&) c@his can be explained by the larger variance in
job arrival rates in the EGEE/Geant2 case (seeeTaplfor bigger discrepancies in site arrival satihe

server counts will differ more between tin@f andprop/llossdimension strategies.
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Fig. 4 — The fraction of jobs executed at the resipe closest server site (‘local processing raig’jnaximized by intelligently

positioning server capacity (prop vs unif), andaisll below the ErlangB upper bound: results for {a¢ European backbone
network, (b) the Geant2 network. Note the diffeMésatxis scale in thprop andlloss graphs for EGEE/Geant2. The analytical
fixed point approximation (approx) fails to matdietmore accurate simulation results for a higheroant of server sites

(K>5).

Looking at the ErlangB upper bound, the betterqrarance of the@rop/llossapproaches (compared to
unif) also is immediately apparent. It is striking thia¢re is a rather big gap between the ErlangB ruppe
bound, and the actually attained local processatgsr This suggests that as soon as the total @ambun
servers is distributed over multiple locations réhis a non-negligible amount of jobs that is genmemote
sites (instead of being dropped as in case of tten§B bound assumptions), which there compete for

server capacity with the locally arriving jobs. Yby allowing this interchange of jobs, the overaltcess
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rate is improved: the target success rate attanyedon-local job execution remains at 95%, whetbas
ErlangB curve drops well below that (note thatase of ErlangB the ‘local processing rate’ showfim
4 is exactly the success rate since it assumesmote execution of jobs).

Note also that the ‘approx’ curves, showing theultssof the fixed point approximation solving the
equations (2)-(4), do not very well match the siatioh results. This approach indeed does not atyra
model the site blocking probabilities’ inter-dependies. As a result, the approximation overestimate
local processing probabilities as soon as the nuwib@rid server sitek increases (see curves #r 5).

Solely looking at local processing rates, one maydmpted to opt for a minimal number of server

locations. In the following sections we will argings is not optimal from a correct network perspect

4.3.Used link bandwidth

From network perspective, the most important dotetis network bandwidth. To establish the network
dimensions in the considered case study, we woeddl io choose a particular network technology (OBS
versus OCS, or hybrids). Yet, these relate to riddid¢ matrix stating the amount of bandwidth exohed
between each node pair. A useful measure to corapsérely summarize this information in the assumed
Grid context is the average hop count a job needsatverse to reach the server it will be execued
Hence, we will use the average job hop count agasuore to judge the network capacity requiremaves.
obtained this measure from the simulation appraescribed in Section 3.3. We summarize the average
job hop count results for varying number of sesitgsK in Fig. 5.

These graphs also include results obtained fromattadytical fixed point approximation. Given the
solution of the equations (2)-(4), the bandwiBhflowing from sitei to server sitd& can be calculated by
eqguation (7). From these valugg the average hop count can be calculated as fremithulation results.

(7)

B, = {)\i fi-L,) k = closest server c for.sitf-:-i o
AL Oy [ﬂl—Lk) k # closest server for sitei(c = closest server for site i)
Comparing the analytical approximation, we noteisnmatch compared to simulation results for larger

values of number of server sités as before. For thanif site dimensioning strategy results in case of

EGEE/Geant2, we observe non-smooth fluctuations. réason is that in thenif case, all server sites get

an equal portion of the available server capauityile there is quite some discrepancy in job afmages.

Hence, adding extra server sites may result ini giastic change in the inter-site traffic ragese also

the less smooth ‘local processing rate curves’antisn 3.2), stemming from a severe reduction mese

capacity in certain network segments. The fact thigtis far less pronounced in the European Bao&bo
case can be explained by the smaller variatiorlingrrival rates. In thprop andlloss cases, the server

capacities better match the arrival rates and htéreceurves evolve smoothly.
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Fig. 5 — The required network capacity, which isportional to the average job hop count, is mingdiby adopting shortest
path routing and scheduling (SP), intelligently piasing server capacity (prop vs unif), and deplaya reasonable number
of server locations: average hop count over allgdbr (a) the European backbone network, (b) thar& network. The
analytical fixed point approximation (approx) detd@a from simulation results because it does notietely capture site inter-

dependencies.

Comparing the various combinations of dimensiorand scheduling alternatives, the relative influence
of the scheduling algorithm seems to be import&he reasonably large fraction of traffic sent tanho
closest server sites—recall the ‘local processiatps’ from the previous section—has an important
influence on the network load. Hence, by adoptimgrtest path driven scheduling (SP), the lowestagee

job hob count is reached.
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The influence of the dimensioning strategy is addwious, though less significant. Especially for a
larger number of server sit&s it pays off to intelligently distribute serverpaity: prop andlloss (which
hardly differ in resulting average job hop coum3ult in lower network load than straightforwanciform
server distribution.

Comparing the European backbone case with the EG&ht2 case, we note that the major qualitative
difference lies in the curves for thaiform dimensioning strategy: this curve is mainlyr@asing for larger
values ofK in the EGEE/Geant2 case. This can be explainethdyarger relative variations in shortest
path hop counts in this network: the penalty ofntelligently distributing server capacity is more
pronounced.

With respect to the choice of the number of sesiteisK, we observe there is an optimal choice, which
tends to lie aroundl = 5 in the studied cases, ranging between 1/7 &hdfthe total number of sites. Note
that the optimum depends on both the dimensiorirages)y and the scheduling approach. When too much
server sites are installed, the total server cap&ifragmented too much, resulting not only i ltdocal
processing rates’ (see Fig. 4) but also a lot bkjeent to remote servers. Indeed, for larger nurabe
server sites, the opportunities of statistical mpldking diminish and with it the probability ofrding a
free server at the closest server site for a pdatigob. This apparently outweighs the fact of éoing the

average distance to a server site.

5.CONCLUSION

Contrary to (rather scarce) earlier work on Grichelnsioning, we proposed a dimensioning methodology
fully taking into account the anycast routing piphe, that is, without presuming a priori knowledge
(source, destination)-based traffic. The proposef-wise methodology is suitable for dimensionimghb
server and network capacities. We outlined it famputational Grids, but extension to also incorpofar
example storage capacity is possible.

We used the methodology to evaluate various schrepalgorithms and server dimensioning options
with respect to the required network capacity. Fteim case studies on European topologies, we cdadlu
that placing server capacity where a lot of jobsvaris important to minimize network bandwidth
requirements: th@rop dimensioning strategy, placing a number of serpeoportional to the job arrival
rates at its closest Grid sites is most benefitiath respect to Grid scheduling, a simple shonash SP
strategy, preferring closer server sites, led ®oltwest bandwidth demands. With respect to chgoam
appropriate number of server sit€qranging from 1 to the total number of Grid sit¢s we found that
there is an optimal value. For a larger numberestex sites, the total server capacity gets fragetken

reducing opportunities for statistical multiplexjnghereas for smaller server site coudtshe average
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distance jobs need to travel is too large. Thatmpnh of K depends on the scheduling algorithm and server
site dimensioning strategy, and in the considesest studies was about 1/7 to 1/4 of the total nurabe

sites.
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