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Abstract—When deploying Grid infrastructure, the problem of dimensioning arises: how many servers to provide, 

where to place them, and which network to install for interconnecting server sites and users generating Grid jobs? In 

contrast to classical optical network design problems, it is typical of optical Grids that the destination of traffic (jobs) 

is not known beforehand. This leads to so-called anycast routing of jobs. For network dimensioning, this implies the 

absence of a clearly defined (source,destination)-based traffic matrix, since only the origin of Grid jobs (and their 

data) is known, but not their destination. The latter depends not only on the state of Grid resources, including 

network, storage, and computational resources, but also the Grid scheduling algorithm used. We present a phased 

solution approach to dimension all these resources, and use it to evaluate various scheduling algorithms in two 

European network case studies. Results show that the Grid scheduling algorithm has a substantial impact on the 

required network capacity. This capacity can be minimized by appropriately choosing a (reasonably small) number 

of server site locations: an optimal balance can be found, in between the single server site case requiring a lot of 

network traffic to this single location, and an overly fragmented distribution of server capacity over too many sites 

without much statistical multiplexing opportunities, and hence a relatively large probability of not finding free 

servers at nearby sites. 
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1. INTRODUCTION 

RIDS originated from the eScience community dealing with large experimental data sets (particle 

physics, astrophysics etc.): to meet computational and storage demands, cluster centers were 

interconnected via networks to achieve a huge common resource pool to process the tasks (jobs). Yet, also 

business/consumer oriented applications can benefit from Grid infrastructure. Consider high-definition 

(HD) video editing: applying effects, requiring one or multiple operations per pixel, or en/decoding these 

high resolution and high frame rate image streams quickly leads to a non-negligible amount of processing 

which already is challenging on today’s PCs. In such cases, also considering evolutions to more thin client 

based consumer solutions, Grids offering off-site computational and storage capacity also make sense for 

business/consumer solutions. Both high data rates typical of eScience applications and low latency 

requirements of consumer/business applications (with their typically high degree of interactivity) can 

effectively be addressed by optical network technology interconnecting users and resources. Thus, Grids 

based on optical network infrastructure promise to offer cost and resource efficient delivery of network 

services with possibly high data rate, processing and storage demands, for a geographically widely 

dispersed user base. To fulfill that promise, fundamental questions need to be addressed, including 

(re)designing the architecture of a flexible optical layer, dimensioning and routing/scheduling algorithms. 

Fundamental differences with traditional network design arise from for instance traffic volume being 

dependent on dimensions and locations of computational/storage resources, as well as the job scheduling 

algorithm, and the fact that Grid users generally do not care where their jobs are processed (that is, 

destinations are unknown, hence there is no clearly defined traffic matrix). These Grid specific aspects give 

rise to multiple challenging research questions [1, 2]. 

For the optical network architecture, whether to adopt Optical Circuit Switching (OCS) or Optical 

Packet/Burst Switching (OPS/OBS) is debatable. Depending on the ratio signaling time/job transmission 

time, OCS can be acceptable [3]. For small jobs, complex grooming/aggregation at the OCS edges will be 

required. As job data size reduces and/or latency-sensitivity increases, OBS will be more efficient [4]. 

Another advantage of OBS is its ease in dealing with highly dynamic traffic patterns (both in space and 

time). The methodology proposed in this paper addresses both OBS and OCS alternatives. 

Given the optical network architecture of choice, the so-called anycast routing principle has a major 

impact on the scheduling and routing decision: how to decide where to execute a job submitted to the Grid 

system, and how to get the job there? In contrast to routing and wavelength assignment problems in more 

traditional optical networks, an extra degree of freedom arises since not only the route, but also the 

destination itself can be chosen. This typically leads to multi-cost routing problems [6], incorporating the 
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state of both network and computational/storage Grid resources. Given this paper’s focus on dimensioning, 

we will assume relatively simple routing and scheduling algorithms. 

In this paper we address the Grid dimensioning problem. The input is a given network topology 

comprising the locations of the sites where jobs originate (or aggregation points, for example points-of-

presence (PoP) nodes of Grid service providers) and the (backbone) network interconnecting them, and the 

amount of jobs generated. We want to answer the question how to decide where to provide server capacity, 

and how to figure out the network dimensions required to process the submitted jobs. The major difference 

with classical (optical) network dimensioning again arises from the aforementioned anycast principle: we 

are not given the complete so-called traffic matrix, since only the source of the jobs is given, not the 

destination (that can be freely chosen by some job scheduling algorithm). 

The remainder of this paper discusses our phased approach to Grid dimensioning. A concise problem 

statement, and an overview of related work on Grid dimensioning is presented in Section 2. Our solution 

method is described in Section 3, followed by a case study and its discussion in Section 4. The paper is 

concluded in Section 5. 

2. THE GRID DIMENSIONING PROBLEM 

A classical network design problem is dimensioning: figuring out how much capacity is needed for the 

network to be able to transport a given amount of traffic. Typically, this traffic is specified in a traffic 

matrix: for each source site i and destination site j, the amount of traffic flowing from site i to j is given by 

as a number Tij (say in Mbit/s). A broad range of dimensioning algorithms is available, either based on 

heuristics or exact solution methods using for example Integer Linear Programming (ILP). The algorithms 

vary depending on the network technologies and topologies (for instance single- or multi-layer scenarios 

involving one or more network layers such as when jointly dimensioning IP routers and WDM cross-

connects [8], with or without grooming [9] where for instance IP flows between different end points can 

share the same WDM circuits over multiple hops bypassing some of the IP routers; for ring [10] or mesh 

networks), design criteria (such as survivability [11], availability), single or multi-period planning [12] 

(where the network evolves over time, in response to a changing traffic demand over a longer time interval 

spanning multiple years), single domain or hierarchical networks [13] (providing algorithms for deciding 

how to partition the network in access and backbone nodes, as well as designing the backbone topology), 

etc. Yet, if we want to apply any of these approaches for dimensioning grids, the problem arises of 

accurately estimating the traffic matrix. Indeed, given the anycast principle typical of Grids, the destination 

of the traffic (Grid jobs) is not given a priori. 
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Another aspect in Grid dimensioning is that not only the network resources, but also the computational 

and/or storage resources need to be dimensioned: how many servers need to be installed, and at which 

sites? Note that the latter will have an impact on where jobs will end up being executed, thus the eventual 

traffic matrix, hence the network dimensions. It is clear that jointly determining both server and network 

dimensions is a very hard problem (note that even single-period dimensioning, where a single traffic matrix 

is given specifying the average demand between every node pair, may already be NP-hard [14]). Therefore, 

we will propose a phased approach, dimensioning first the servers and then the network (see Section 3). 

Related work on dimensioning Grids is scarce. In [15] analytical ILP and heuristic approximations are 

used to cater for excess load: it is assumed that each of the grid sites (dimensioned for the locally generated 

jobs) may suffer from overload, and network dimensions (number of wavelengths and fibers used) are 

determined by a finding a global optimum over all single-site overload problems. 

One way to deal with the unknown destination for Grid jobs is to assume that the fraction of jobs 

(originating at a particular site) going to a given computational Grid site is known, thus fixing a priori the 

arrival rates of jobs at each job execution site. This approach is taken in [16], where an analytical 

methodology known as reduced load fixed-point approximation [17] is used to dimension both network and 

computational resources. In this paper however, we focus on a ‘clean slate’ or greenfield Grid dimensioning 

problem finding the complete Grid capacity required to meet a given Grid job arrival pattern. Also, we 

assume fully flexible scheduling strategies without any knowledge of probabilities for selecting a given 

destination site. 

This presents a viable dimensioning methodology, and assesses the impact of the scheduling algorithm 

on Grid network dimensions. Yet, since development of scheduling algorithms as such is not this paper’s 

primary concern, we will assume fairly straightforward scheduling strategies, based on a single all-knowing 

scheduler, finding a free server for every arriving job based solely on the job’s arrival time and duration, 

and server processing speed and occupation. For examples of more advanced scheduling algorithms, 

including QoS support and advance reservation concepts and, we refer to [5] and [7] respectively. We 

believe that adding QoS support or advance reservations is unlikely to affect the qualitative comparison of 

the different scheduling strategies discussed further.  

3. A PHASED SOLUTION OF THE GRID DIMENSIONING PROBLEM 

We will take an iterative dimensioning approach, starting with an algorithm for choosing appropriate server 

site locations: not every grid site will necessarily be a server site. Next we will calculate the amount of 

servers needed (and distribute them amongst the chosen server site locations). Subsequently the inter-site 

job rates are determined, and hence required bandwidth. In the work presented, we focus on computational 
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Grids, where jobs consist of a single unit of work submitted to the Grid, characterized by a data size, and a 

computational requirement (say, expressed in number of floating point operations, FLOP). An accurate 

problem statement is the following: 

• Given: 

− Graph representing the network topology (nodes representing Grid sites and switches, links the 

optical fibers interconnecting them), 

− Arrival process of jobs originating at each site, 

− Job processing capacity of a single server CPU (an average of µ jobs/s), and 

− Target maximum job loss rate, 

• Find: 

− Locations of the server sites, 

− Amount of Grid server CPUs at each site, and 

− Amount of link bandwidth to install,  

− While meeting the maximum job loss rate criterion and minimizing network capacity. 

Given the complexity of the problem (such as the dependence of the network capacities on the choices of 

server locations and capacities), we opt for a phased solution approach comprising subsequent steps. The 

first step will be to find K server locations (out of the N grid sites), while a second step finds the server 

capacities at each of the K chosen sites. The third step will determine the amount of jobs exchanged 

between the grid sites and the server locations. The final fourth step will be to calculate the actual network 

dimensions, that is link bandwidth. Each of these steps is now discussed in detail. 

3.1. Finding the K best server locations 

The aim of the first step in solving our Grid dimensioning problem is to figure out which locations are best 

suited for placing the servers. The cost criterion to measure by will be the total expected link bandwidth. 

The major difficulty in evaluating that cost for a given choice of K locations, is that the required bandwidth 

depends also on the amount of server capacity installed at each of the server sites and possibly the Grid 

scheduling and routing algorithm. Therefore, we make some simplifying assumptions: (i) each Grid site i 

will send all its jobs to a single destination Di, and (ii) shortest path routing is used. Hence, given a choice 

of K locations, a site i will send its jobs to server site j if the routing distance Hij is the minimum over all Hik 

values for k = 1..K. 

Finding the optimal choice of K sites hence is a k-means clustering problem (or rather a k-medoid 

problem, since cluster centers are actual data points): we are looking for K cluster centers, the centers 

representing the server sites, and the cluster members the Grid sites sending their jobs to that center 
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(server). A well-known heuristic k-means clustering algorithm [18] solving the problem is rephrased in Fig. 

1 as a k-medoids algorithm for the Grid site location problem. Repeating this algorithm for various 

randomly chosen initial K server locations leads to solutions close to the exact solution. However, given the 

simplifying assumptions, a fairly compact ILP formulation of the problem can be devised, as outlined in 

Fig. 2. Given the relatively small number of (binary) variables and equations (O(N2) with N the number of 

sites), the time to solve it for the case studies we considered (comprising a few tens of nodes) was most 

acceptable (a few seconds at most). The results we present in this paper therefore are obtained using the ILP 

solution method. (Note that for other, prohibitively large problem instances, the k-medoid heuristic can 

provide acceptable solutions quite fast.)  

 

     

 Given constants: Hij = routing distance (for instance hop count) from site i to site j  (i, j = 1..N) 

λi = job arrival rate at site i (i = 1..N) 

K = number of clusters and centers (hence server sites) to choose 

 

 (1) Choose K initial medoids mk (k = 1..K).  

 (2) Form clusters: assign each object (Grid site) to closest centroid: 

For each i = 1..N, assign node i to the cluster set Ck with centroid mk if  

( )K..1l,HminH
lk m,im,i ==  

 

 (3) Recalculate the positions of the K medoids within their cluster: 

For each k=1..K, let mk be that node m in set Ck minimizing ∑
∈

⋅λ
kCi

imi H  

 

 (4) Repeat steps 2-3 until the medoids mk no longer change; these cluster centers are the 

server locations. 

 

    

Fig. 1 – K-medoids clustering algorithm for choosing K server locations. (Note: the term ‘k-medoids’ is used, instead of ‘k-

means’, since the cluster centers are actual data points—in casu site locations—and not freely chosen means.) 
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 Decision variables: Tj = 1 if and only if site j is chosen as a server site location, else 0 

Sij = 1 if and only if site j is the target server for traffic from site i, else 0 

 

    

 Given constants: Hij = routing distance (for instance hop count) from site i to site j  (i, j = 1..N)  

  λi = job arrival rate at site i  (i = 1..N) 

K = the number of server sites to choose 

 

   KT
j

j =∑  (only K server locations)  

 

∑∑ ⋅⋅λ
i j

ijiji SHmin   with  

i1S
j

ij ∀=∑  (simplifying assumption: for each site i, only 

send jobs to a single server site j; the objective 

will ensure it is the closest one) 

 

   j,iTS jij ∀≤  (only send traffic to server sites)  

      

Fig. 2 – ILP for choosing K server locations. 

3.2. Determining the server capacities 

For determining the amount of required server capacity, it is necessary to make some assumptions on the 

Grid job arrival process. In this paper, we focus on computational Grid jobs, hence we will dimension the 

servers in terms of processing capacity, expressed in number of CPUs. A job is assumed to fully occupy a 

single CPU for its entire duration. Furthermore, we will assume that Grid job requests are to be scheduled 

immediately, leading to a bufferless system model: if at job arrival no free server is found, the job is lost. 

Backed by real world Grid measurements [20], we will assume Poisson job arrivals (mean arrival rate λi at 

site i). This implies that, given the lack of buffers, we can use the ErlangB formula (1) to calculate the total 

number of server CPUs n required to achieve a maximal loss rate L. 

 ( ) ( )
( )∑ = µλ
µλ=µλ=

n
0k

k

n

!k

!n
,,nErlangBL  (1) 

To place the n server CPUs among the K (≤ N) server site locations chosen in step 1, we consider three 

strategies: 

(i) unif: uniformly distribute the server CPUs among all K server sites: nk = n/K, for each server 

location k = 1..K. 

(ii)  prop: distribute the server CPUs proportionally to the (cluster) arrival rate at each server site k: 

nk = λk
*/(K⋅λ), with λ = Σ λi  and λk

* = Σ λi⋅Sik , where Sik is 1 if and only if k is the server site 
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closest to i (as defined in the ILP of Fig. 2). Note that λk
* equals the total job arrival rate summed 

over all Grid sites in cluster k. 

(iii)  lloss: try and achieve the same “local loss rate” at each server site, that is, use ErlangB to calculate 

nk
* as the number of server CPUs to install locally at server site k to achieve loss rate L (solve 

L = ErlangB(nk
* , λk

*, µ)) and install nk = n⋅ nk
*/(Σ ni

*) servers. 

Intuitively, we expect the prop and lloss strategies to perform better than unif, since more server capacity 

will be installed where more traffic is arriving. Case studies below will assess the penalty of using the 

simple unif strategy in terms of required network resources. 

3.3. Determining the inter-site bandwidths 

Once the location and the amount of CPUs are fixed, only the Grid scheduling algorithms determine the 

amount of jobs, and hence bandwidth, that will be exchanged between each Grid (site, server)-pair. To 

demonstrate that the difference may indeed be substantial, we will consider three scheduling alternatives. 

Note that all algorithms account for the anycast routing principle: it depends on the instantaneous 

availability of Grid resources, without a priori decision on where to execute a job. Since we are interested in 

minimizing the required amount of resources, including link bandwidth, all scheduling strategies considered 

will always try to use a ‘local’ server CPU before anything else. Jobs arriving at a site i belonging to cluster 

k (as derived in step 1), with mk as cluster center (thus server site) will always be scheduled on a ‘local’ free 

server CPU at site mk if available. The strategies only differ in choosing an alternative CPU if for a job 

arriving at i, all CPUs at its cluster center mk are occupied: 

(i) rand: randomly choose a free server CPU (hence, among F free servers, each has 1/F chance); 

(ii)  SP: the closest free server in terms of routing distance (Hij as defined in the algorithms in Section 

3.3.1, for example hop count) is chosen, thus striving to minimize network usage; 

(iii)   mostfree: choose a free CPU at server site f, where f is the server site with the highest number of 

free server CPUs, in an attempt to avoid overloading sites and thus limiting non-local job 

execution. 

To calculate the job exchange rate for every Grid (site, server)-pair, we resort to simulations. In this, we 

make abstraction of the network capacity (since that is exactly what we want to calculate in the next step): 

we assume infinite link bandwidth, the only way jobs can be lost is because of lack of CPU capacity. 

The reason for resorting to simulations is that because of the anycast principle it is hard to obtain 

accurate estimates for the inter-site traffic bandwidth using analytical techniques. To illustrate this, we 

compared our simulation results with those obtained using a fixed-point approximation methodology. We 

iteratively solve the equations (2)-(4), initializing the system with λk
’= λk. Equation (2) gives the blocking 
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probability at site k, being the probability that all its nk servers are occupied. The total job arrival rate λk
’ at 

site k is calculated from equation (3) as the sum of the locally arriving jobs λk
 and the fractions fjk of the 

jobs arriving at all other sites j which are blocking there with probability Lj. The fractions fjk of jobs 

blocking at j and sent to k, are assumed to be proportional to the probability 1–Lk of finding a free server at 

site k, as given in equation (4). We stop the numerical iterations solving this system of equations when the 

difference between successive calculations of the loss rates with equation (2) is smaller than a given 

tolerance τ (in the results below, we set τ = 10–8).  

 ( )µλ= ,,nErlangBL '
kkk  (2) 

 ∑

≠
=

⋅λ⋅+λ=λ
K

kj
1j

jkjjk
'
k fL  (3) 

 

( )∑

≠
=

−

−
=

K

jm
1m

m

k
jk

L1

L1
f  (4) 

Note that the approximation lies in fixing a priori the amount of jobs that is off-loaded to a remote site: a 

blocked job originally intended for site i is sent to a remote site k with probability fjk, regardless of the 

availability of servers at site k. Hence, under this assumption, the blocking rate for traffic initially sent to 

site i is given by Pi as in equation (5). The total blocking probability P, as given by equation (6), will be 

larger than the ErlangB blocking of equation (1) achieved by fully sharing all available server capacity, and 

sending jobs using the anycast principle to any free server. 

 ( )
















−⋅−⋅= ∑

≠
=

K

ik
1k

kikii L1f1LP  (5) 

 
∑

∑

λ

⋅λ
=

i
ii

i
ii P

P  (6) 

 

3.4. Determining the link bandwidths 

After the previous step, we know how many jobs/s are exchanged between every Grid node pair in the 

considered Grid network. Assuming a given data size distribution, the number of jobs/s can be translated 

into a bandwidth requirement (say in Mbit/s). Thus, we now have obtained a traffic matrix listing the traffic 

demand between each (source, destination)-pair. Hence, we can apply ‘classical’ network dimensioning 
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algorithms to assess the required network resources (number of wavelengths on each link) for given 

switching technologies (such as OBS, OCS or hybrid [21]) and requirements (resilience for instance). 

For the case study presented next, we will assume shortest path routing and make abstraction of the 

actual network technology to judge the cited scheduling and CPU dimensioning variants by. We will use 

the average hop count traversed by a job as a measure of network resource usage. Note that by accounting 

for overhead (such as packet headers or burst control packet offsets), or discrete bandwidth increments 

(multiples of wavelength bandwidth), the actual difference in bandwidth requirements can be larger than 

what the hop count based results may suggest. Yet, the qualitative conclusions will remain valid. 

4. CASE STUDY  

In the previous section, we have outlined a step-wise scheme to dimension both server CPU and network 

resources for computational Grid. We will now apply it in a realistic case study, to highlight the importance 

of choosing an appropriate scheduling and server CPU placement algorithm when trying to limit the 

network resource requirements. The scenario and input parameters are outlined and motivated in Section 

4.1, whereas the actual results will be subsequently discussed in 4.2 and 4.3. 

4.1. Scenario 

To obtain a realistic case study, we performed measurements on a real world Grid, deployed in Europe in 

the frame of the Large Hadron Collider (LHC) experiments in Geneva and the Enabling Grids for E-sciencE 

(EGEE) project [19], referred to in short as the EGEE/LCG Grid. From Grid-wide job arrival logs, it was 

derived that the Poisson traffic model (with negatively exponentially distributed inter-arrival times) 

accurately fits the real world arrivals [20]. 

We considered two network topology and job demand rate cases, whose topologies are sketched in Fig. 

3, and the input parameters are summarized in Table 1. The first used a fairly densely meshed European 

backbone network (the “Large Topology” taken from [22]), with artificially generated job arrival rates at 

each site (each rate λi was with 30% chance uniformly chosen in [1, 15] and 70% from [30, 60]). 

The second case is based on measurement data from the EGEE/LCG Grid (the same data set as [20]), 

and for a topology based on the EGEE site locations and the Geant2 [23] network topology and its 

associated various national research and education networks (NRENs). The arrival rates at each site were 

set to the values derived from a one-month trace file. (Note that the job trace data comprised 58 Grid sites, 

rather than the 20 of the Geant2-inspired topology: we attributed their job arrivals to the geographically 

closest Geant2 site, based on the coordinates of the EGEE/LCG sites as found with IP-address-based geo-
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location software by MaxMind Inc.) In this EGEE/LCG case, also the average job duration was derived 

from the real-life trace file. 

For both cases, we applied the dimensioning strategy outlined in Sections 3.1 to 3.3. As acceptable job 

loss for the ErlangB calculation we chose L = 0.05. 

 

  

(a) (b) 

Fig. 3 – Case study topologies: (a) a European backbone network, (b) Geant2 network. 

Table 1 – Case study parameters 

Parameter Case 1 (EU) Case 2 (EGEE/Geant2) 

Topology European backbone [22] Geant2 network 

Number of nodes 37 20 

Number of links 57 31 

Average shortest path hop count 3.62 2.55 

Job duration 100 s (per job) 854.92 s (per job) 

IAT distribution Exponential distribution Exponential distribution 

Average arrival rate over all sites 2.23E–01 jobs/s 3.56E–02 jobs/s 

Stdev of arrival rate over all sites 2.02E–01 jobs/s 6.47E–02 jobs/s 

Total arrival rate over all sites 8.24E+00 jobs/s 7.12E–01 jobs/s 
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4.2. Local processing rates 

To evaluate the CPU distribution and job scheduling algorithms, a first criterion we considered was how 

many jobs are off-loaded to a remote site, or its complement, the so-called ‘local processing rate’: the 

fraction of jobs that is processed at the closest server. To limit network load, we strive for keeping the local 

processing rate high. This fraction of jobs that is executed at their respective closest server site is plotted in 

Fig. 4 against the number of chosen server site locations K. Note that the maximal value of 95% is due to 

the L = 0.05 target job loss rate we dimensioned the server sites for. 

To assess the influence of offloading jobs to other sites, we have also calculated an upper bound for the 

local processing rate, using the ErlangB formula. This bound was obtained by assuming that jobs only may 

be executed at the closest server site (see the simplifying assumption used in the server site selection 

approach of Section 3.1). Given this assumption, the maximal local processing rate at server site k equals 1-

Lk, with Lk = L calculated using ErlangB formula (1) for N = nk the number of servers at site k, and λ = λk 

the aggregate arrival rate of its closest Grid sites. 

With respect to the server distribution schemes, placing more servers where more jobs originate is 

beneficial: the prop and lloss strategies attain higher local processing rates than unif. The difference 

between prop and lloss from this respect is minimal (relative differences less than 5%): only for the 

European backbone case we noted a slightly higher local rate for lloss for low server site counts K, in all 

other cases prop attains a higher fraction of jobs executed at the respective closest server site. This indicates 

that the more complex lloss dimensioning strategy doesn’t seem to pay off compared to the simple prop 

strategy. 

From the graphs it is clear that the scheduling algorithm also impacts the local processing rate. Among 

the considered alternatives, mostfree from this perspective performs best. 

With respect to the influence of the traffic and network topology, we note that in the EGEE/Geant2 case 

the matching the server capacities to the traffic arriving (prop and lloss cases) seems more effective: 

especially for larger server counts K, the local processing rate stabilizes around 55-65% in the 

EGEE/Geant2 case (compared to 30-40% for the EU case). This can be explained by the larger variance in 

job arrival rates in the EGEE/Geant2 case (see Table 1): for bigger discrepancies in site arrival rates, the 

server counts will differ more between the unif and prop/lloss dimension strategies.  
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(a) (b) 

Fig. 4 – The fraction of jobs executed at the respective closest server site (‘local processing rate’) is maximized by intelligently 

positioning server capacity (prop vs unif), and is well below the ErlangB upper bound: results for (a) the European backbone 

network, (b) the Geant2 network. Note the different Y-axis scale in the prop and lloss graphs for EGEE/Geant2. The analytical 

fixed point approximation (approx) fails to match the more accurate simulation results for a higher amount of server sites 

(K > 5). 

Looking at the ErlangB upper bound, the better performance of the prop/lloss approaches (compared to 

unif) also is immediately apparent. It is striking that there is a rather big gap between the ErlangB upper 

bound, and the actually attained local processing rates. This suggests that as soon as the total amount of 

servers is distributed over multiple locations, there is a non-negligible amount of jobs that is sent to remote 

sites (instead of being dropped as in case of the ErlangB bound assumptions), which there compete for 

server capacity with the locally arriving jobs. Yet, by allowing this interchange of jobs, the overall success 
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rate is improved: the target success rate attained by non-local job execution remains at 95%, whereas the 

ErlangB curve drops well below that (note that in case of ErlangB the ‘local processing rate’ shown in Fig. 

4 is exactly the success rate since it assumes no remote execution of jobs). 

Note also that the ‘approx’ curves, showing the results of the fixed point approximation solving the 

equations (2)-(4), do not very well match the simulation results. This approach indeed does not accurately 

model the site blocking probabilities’ inter-dependencies. As a result, the approximation overestimates 

local processing probabilities as soon as the number of Grid server sites K increases (see curves for K > 5). 

Solely looking at local processing rates, one may be tempted to opt for a minimal number of server 

locations. In the following sections we will argue this is not optimal from a correct network perspective. 

4.3. Used link bandwidth 

From network perspective, the most important criterion is network bandwidth. To establish the network 

dimensions in the considered case study, we would need to choose a particular network technology (OBS 

versus OCS, or hybrids). Yet, these relate to the traffic matrix stating the amount of bandwidth exchanged 

between each node pair. A useful measure to comprehensively summarize this information in the assumed 

Grid context is the average hop count a job needs to traverse to reach the server it will be executed on. 

Hence, we will use the average job hop count as a measure to judge the network capacity requirements. We 

obtained this measure from the simulation approach described in Section 3.3. We summarize the average 

job hop count results for varying number of server sites K in Fig. 5. 

These graphs also include results obtained from the analytical fixed point approximation. Given the 

solution of the equations (2)-(4), the bandwidth Bik flowing from site i to server site k can be calculated by 

equation (7). From these values Bik the average hop count can be calculated as from the simulation results. 
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=≠−⋅⋅⋅λ
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B

kckci
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Comparing the analytical approximation, we note a mismatch compared to simulation results for larger 

values of number of server sites K, as before. For the unif site dimensioning strategy results in case of 

EGEE/Geant2, we observe non-smooth fluctuations. The reason is that in the unif case, all server sites get 

an equal portion of the available server capacity, while there is quite some discrepancy in job arrival rates. 

Hence, adding extra server sites may result in a quite drastic change in the inter-site traffic rates (see also 

the less smooth ‘local processing rate curves’ in Section 3.2), stemming from a severe reduction in server 

capacity in certain network segments. The fact that this is far less pronounced in the European Backbone 

case can be explained by the smaller variation in job arrival rates. In the prop and lloss cases, the server 

capacities better match the arrival rates and hence the curves evolve smoothly. 
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Fig. 5 – The required network capacity, which is proportional to the average job hop count, is minimized by adopting shortest 

path routing and scheduling (SP), intelligently positioning server capacity (prop vs unif), and deploying a reasonable number 

of server locations: average hop count over all jobs for (a) the European backbone network, (b) the Geant2 network. The 

analytical fixed point approximation (approx) deviates from simulation results because it does not accurately capture site inter-

dependencies. 

Comparing the various combinations of dimensioning and scheduling alternatives, the relative influence 

of the scheduling algorithm seems to be important. The reasonably large fraction of traffic sent to non-

closest server sites—recall the ‘local processing rates’ from the previous section—has an important 

influence on the network load. Hence, by adopting shortest path driven scheduling (SP), the lowest average 

job hob count is reached. 
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The influence of the dimensioning strategy is also obvious, though less significant. Especially for a 

larger number of server sites K, it pays off to intelligently distribute server capacity: prop and lloss (which 

hardly differ in resulting average job hop count) result in lower network load than straightforward uniform 

server distribution. 

Comparing the European backbone case with the EGEE/Geant2 case, we note that the major qualitative 

difference lies in the curves for the uniform dimensioning strategy: this curve is mainly increasing for larger 

values of K in the EGEE/Geant2 case. This can be explained by the larger relative variations in shortest 

path hop counts in this network: the penalty of unintelligently distributing server capacity is more 

pronounced. 

With respect to the choice of the number of server sites K, we observe there is an optimal choice, which 

tends to lie around K = 5 in the studied cases, ranging between 1/7 and 1/4 of the total number of sites. Note 

that the optimum depends on both the dimensioning strategy and the scheduling approach. When too much 

server sites are installed, the total server capacity is fragmented too much, resulting not only in low ‘local 

processing rates’ (see Fig. 4) but also a lot of jobs sent to remote servers. Indeed, for larger number of 

server sites, the opportunities of statistical multiplexing diminish and with it the probability of finding a 

free server at the closest server site for a particular job. This apparently outweighs the fact of lowering the 

average distance to a server site. 

5. CONCLUSION 

Contrary to (rather scarce) earlier work on Grid dimensioning, we proposed a dimensioning methodology 

fully taking into account the anycast routing principle, that is, without presuming a priori knowledge of 

(source, destination)-based traffic. The proposed step-wise methodology is suitable for dimensioning both 

server and network capacities. We outlined it for computational Grids, but extension to also incorporate for 

example storage capacity is possible. 

We used the methodology to evaluate various scheduling algorithms and server dimensioning options 

with respect to the required network capacity. From two case studies on European topologies, we concluded 

that placing server capacity where a lot of jobs arrive is important to minimize network bandwidth 

requirements: the prop dimensioning strategy, placing a number of servers proportional to the job arrival 

rates at its closest Grid sites is most beneficial. With respect to Grid scheduling, a simple shortest path (SP) 

strategy, preferring closer server sites, led to the lowest bandwidth demands. With respect to choosing an 

appropriate number of server sites K (ranging from 1 to the total number of Grid sites N), we found that 

there is an optimal value. For a larger number of server sites, the total server capacity gets fragmented, 

reducing opportunities for statistical multiplexing, whereas for smaller server site counts K the average 
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distance jobs need to travel is too large. That optimum of K depends on the scheduling algorithm and server 

site dimensioning strategy, and in the considered case studies was about 1/7 to 1/4 of the total number of 

sites. 
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