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Abstract The existence of good probabilistic models
for the job arrival process and the delay components
introduced at different stages of job processing in a
Grid environment is important for the improved
understanding of the Grid computing concept. In this
study, we present a thorough analysis of the job
arrival process in the EGEE infrastructure and of the
time durations a job spends at different states in the
EGEE environment. We define four delay compo-
nents of the total job delay and model each compo-
nent separately. We observe that the job inter-arrival
times at the Grid level can be adequately modelled by
a rounded exponential distribution, while the total job
delay (from the time it is generated until the time it
completes execution) is dominated by the computing
element’s register and queuing times and the worker
node’s execution times. Further, we evaluate the
efficiency of the EGEE environment by comparing
the job total delay performance with that of a

hypothetical ideal super-cluster and conclude that we
would obtain similar performance if we submitted the
same workload to a super-cluster of size equal to 34%
of the total average number of CPUs participating in
the EGEE infrastructure. We also analyze the job
inter-arrival times, the CE’s queuing times, the WN’s
execution times, and the data sizes exchanged at the
kallisto.hellasgrid.gr cluster, which is node in the
EGEE infrastructure. In contrast to the Grid level, we
find that at the cluster level the job arrival process
exhibits self-similarity/long-range dependence. Final-
ly, we propose simple and intuitive models for the job
arrival process and the execution times at the cluster
level.
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1 Introduction

Grids introduce new ways to share computing and
storage resources across geographically separated
sites by establishing a global resource management
architecture [1]. The job inter-arrival times, the job
execution times, and the times jobs spent at different
phases of processing in Grids are unknown and are
better modeled probabilistically. Finding good prob-
abilistic models for the job submission process, the
job delay components, and the job characteristics
gives us important insight into the operation of Grid
systems and can be used by the developers and the
research community in several ways. By observing
the system behavior under different values of the
parameters involved the developers can evaluate the
performance, study the way it depends on the choice
of different parameters, and possible identify prob-
lems and propose new methods to improve and
optimize the employed middleware. Given the high
cost involved in setting up actual hardware imple-
mentations, simulations are a viable alternative. A
necessary prerequisite to obtain useful results is an
adequate model of the traffic (i.e. job arrival process)
and the times the job spend at different states.
Probabilistic models can be used to facilitate the
dimensioning of Grid systems and the prediction of
their performance under different scenarios. More-
over, simulations can be used to evaluate new quality
of service policies and scheduling algorithms both at
the Grid (meta-scheduling) and at the cluster level
(metacomputing).

Even though a large number of works on job
characterization and modeling [2] for single parallel
supercomputers [3, 4] and clusters [5] have appeared in
the literature, the corresponding attempts in the area of
Grid computing are quite limited [6]. In [6],Medernach
analyzed and modeled the workload of a LCG/
EGEE cluster. More specifically, a two-dimensional
Markov chain, which is equivalent to a two-phase
hyper-exponential process, was proposed for modeling

user behavior in a Grid environment. The user shifts
between login and logout states and submits jobs
when being in the login state. The results indicate
that the two-phase hyper-exponential process can
satisfactorily model the submission behavior of a
single user.

Taking a different approach, Li et al. [7] used the
LCG real time monitor tool [8] to collect data from
resource brokers (RBs) located at CERN, Germany,
and the UK, and proposed traffic models for the job
arrival processes at three different levels: Grids,
virtual organizations and regions. By comparing a
set of m-state Markov modulated Poisson processes
(MMPP) with Poisson and hyper-exponential pro-
cesses, they conclude that MMPP models with a
certain number of states are capable of modeling the
submitted job traffic at the three examined levels.
However, the proposed models are not intuitive
enough, and they do not provide an easy, adaptable
or extensible way for profiling arrival processes in
Grid environments. Focusing on certain VOs that
present strong pseudo-periodic components in their
job interarrival times at the Grid level, a methodology
to analyse and synthesize pseudo-periodic job arrival
processes is examined in [9]. D. Nurmi et al. [10]
used accurate predictions of both the execution time
of the task and the time the task spends waiting in the
queue of a cluster in order to propose enhancements
for a workflow scheduler. Experiments in five HPC
showed that incorporating these enhancements im-
prove the workflow execution time when batch
queues impose significant delays on these workflows.

The measurements that are presented in this study
correspond to two different levels of observation:
(1) the Grid level, meaning that we have considered
the overall LCG/EGEE infrastructure as a single entity
and observed the general properties of job submission
and execution in this real and highly utilized Grid
environment and (2) the cluster level; in particular we
present measurement for our local LCG/EGEE cluster
named kallisto.hellasgrid.gr.

Based on the LCG/EGEE job flow diagram we
distinguish four delay components of the job process-
ing, each corresponding to time spent at different
states in the LCG/EGEE environment, from the
submission of a job until the retrieval of the
corresponding output data. Considering the Grid level
of observation we analyze and model each delay
component separately. At this level, we also model
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the job arrival process and examine the efficiency of
the LCG/EGEE environment and the currently
employed super-scheduling algorithm.

We also analyze the inter-arrival times and the
workload at our local LCG/EGEE cluster (kallisto.
hellasgrid.gr), and propose models for the job arrival
process and execution times at a Grid node. Our
models are simple and use a small number of
modeling parameters, so as to remain comprehensive
and intuitive.

Our results indicate that if we consider the LCG/
EGEE Grid as the level of our observation, jobs are
submitted continuously without any specific weekly
or daily patterns. The job inter-arrival times are found
to match very well with a rounded exponential
distribution with mean 1.6077 s. We then define and
model the four delay components that comprise the
overall job processing in the LCG/EGEE environ-
ment. More specifically, the first delay component
(D1) corresponds to the time a job spends in the
pending, submitted and waiting states and can be
adequately modeled as a deterministic (constant)
parameter. The second delay component (D2) corre-
sponds to the time a job stays in the ready state and
can be modeled very well by a two-phase lognormal
distribution. We observe that the total time a job stays
in the LCG/EGEE environment is dominated by the
computing element’s register and queuing delay and
the worker node’s execution time that correspond to
the third (D3) and fourth (D4) delay components,
respectively. The register and queuing times (D3) can
be modeled with the same distribution (but different
parameters) as D2. For the WN execution time D4, we
find that a hyper-exponential model with three states
is sufficient for modeling the stepwise patterns
observed in the empirical distribution obtained from
our measurements.

We evaluate the efficiency of the LCG/EGEE
environment and (indirectly) of the currently
employed super-scheduling algorithm by comparing
the total delay experienced by a job in the LCG/
EGEE environment with that of a hypothetical ideal
super-cluster, and conclude that we would have
similar performance if we submitted the same
workload to a super-cluster having 34% of the total
average number of CPUs participating in the LCG/
EGEE project. This is an indication that the Grid
computing concept can meet to a satisfactory degree
its main promise, which is to provide to users the

ability to treat distributed computing and storage
resources, as if belonging to a single computer.

Turning our attention to the cluster level we again
observe that it is difficult to find patterns for the weekly
and daily cycle of the arrival process. By computing
the Hurst parameter of the inter-arrival times we found
that the job arrival process exhibits self-similarity/
long-range dependence. We investigated four models
for the job arrival process: a non-homogeneous
Poisson process model, a hyper-exponential model, a
Markov modulated Poisson process model and a
custom model, firstly introduced here, the Pareto-
exponential model. We found that, despite its simplic-
ity, the proposed Pareto-exponential model appears to
adequately describe the job arrival process at the
cluster level, and is more accurate than the other
models proposed in the literature. Similar to the Grid-
level, we found that a hyper-exponential process with
three states is sufficient to model the stepwise patterns
observed in the distribution of the jobs’ Worker Node
execution time. By looking at the CE queuing times we
found that a high percentage of jobs are served almost
immediately, while there are also jobs that remain for a
long period in the corresponding queues.

We have to mention that the statistical analysis,
and the modeling of the delay components presented
in this paper correspond to the LCG/EGEE produc-
tion Grid. Since the LCG/EGEE infrastructure con-
sists of a large number of heterogeneous and
distributed sites that is used by a wide diversity of
users and applications we believe that it is represen-
tative of large Grid infrastructures. Moreover, the
LCG g-lite middleware follows a general architecture
(http://www.globus.org/) and thus the definitions of
the delay components are applicable to a large variety
of systems.

The rest of this work is organized as follows. The
LCG/EGEE environment is presented in Section 2.
Section 3 describes the job flow in the LCG/EGEE
environment and the various metrics used for the
analysis of the job arrival process and the job delay
components. In Section 4 we introduce the candidate
traffic models considered. Section 5 presents the
statistical results obtained at the Grid level. The
modeling of the inter-arrival times and the job pro-
cessing delay components is presented in Section 6.
The evaluation of the overall efficiency of the
LCG/EGEE environment is presented in Section 7.
The kallisto.hellasgrid.gr Grid node is presented in
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Section 8. Section 9 presents the statistical analysis of
the kallisto’s computing element (CE) and storage
element (SE), while in Section 10 we propose and
validate models for the corresponding job arrival
process and the job execution times. Section 11
concludes the study.

2 LCG/EGEE Projects and Infrastructure

The EGEE project [11] aims at providing to the
researchers access to a geographically distributed Grid
infrastructure, available 24 h a day. It focuses on
maintaining the gLite middleware [12] and on
operating the infrastructure for the benefit of a large
and diverse research community.

The worldwide LHC computing Grid project
(LCG; http://lcg.web.cern.ch/LCG/) was created to
prepare the computing infrastructure for the simula-
tion, processing and analysis of the data of the large
hadron collider (LHC) experiments. The LCG and the
EGEE projects share a large part of their infrastruc-
ture and operate it in conjunction. For this reason, we
will refer to it as the LCG/EGEE infrastructure.
Currently, 207 clusters (sites) from 48 different
countries participate in the LCG/EGEE infrastructure.
In the observation period of our study, there were
totally 39,697 CPUs and about 5 Petabytes of storage
in the LCG/EGEE infrastructure, while the total
average number of available CPUs was 31,228
(http://goc.grid.sinica.edu.tw/gstat/index.html).

In the LCG/EGEE environment, users are orga-
nized in virtual organizations (VOs), which are
dynamic collections of individuals and institutions
sharing resources in a flexible, secure and coordinated
manner. A user has to belong to a VO to be able to
use the LCG/EGEE infrastructure. A list of existing
VOs in the EGEE is available at (https://lcg-registrar.
cern.ch/virtual_organization.html).

3 Job Flow in the LCG/EGEE Environment
and Metrics Used

Generally, a user has to login to a user interface (UI)
through which he can submit a job directly to a cluster
or submit it via a resource broker (RB). The second
case is the most commonly used and can be
monitored, and for this reason we have concentrated

on it. The description of the job is written in a specific
format (JDL – job description language [13]). This is
forwarded to the corresponding resource broker (RB)
where the matching process is performed [12]. An RB
runs the workload management system (WMS)
service that intercommunicates with the information
system (IS, providing information about the Grid
resources and their status). The RB uses the job
description, the related VO and available global load
information to decide about whether or not and where
to forward the job. Users, when submitting a job, give
a rough estimate of its maximum running time, but
this value is usually overestimated and is considerably
larger than the actual job execution time.

When a job is submitted to the LCG/EGEE environ-
ment it passes through several states till the user gets
back the desired output data. These states insert
corresponding delay components to the total job
processing time. The job flow from its submission from
a UI, till the retrieval of the job output is shown in Fig. 1.
Figure 2 presents the various states in which a job can
be in the LCG/EGGE environment. These states come
from the gLite 3 user’s guide [12] enhanced with a new
state (pending state) and specific time instances
(epochs) useful for the analysis of the inter-arrival
times and the delay components that comprise the job
life cycle in the LCG/EGEE environment.

The time instances (epochs) of specific events of
our interest for the purposes of modeling are the
following:

& V1 = userinterface_regjob_Epoch: The time in-
stance the user submits a job from the UI to a
resource broker

& V2 = networkserver_accepted_Epoch: The time
instance the job is accepted by the network server
of the resource broker

& V3 = workloadmanager_match_Epoch: The time
instance the WMS starts looking for the best
available CE to execute the job

& V4 = jobcontroller_transfer_Epoch: The time
instance the job controller of the RB starts sending
the job request to the appropriate CE

& V5 = logmonitor_accepted_Epoch: The time
instance the CE receives the request

& V6 = lrms_running_Epoch: The time instance the
local resource management system (LRMS)
assigns the job for execution to an available
worker node from the local farm
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& V7 = logmonitor_running_Epoch: The time in-
stance the user files have completed transferring
from the RB to the WN where the job will be
executed

& V8 = lrms_done_Epoch: The time instance the
CE starts transferring the output back to the RB
node

& V9 = logmonitor_done_Epoch: The time instance
after which the user can retrieve the job output to
the UI.

Based on the aforementioned time epochs, we can
define the various states (Fig. 2) at which a job can be

at any given time in the LCG/EGGE environment as
follows:

& The status of the job becomes pending at time
instance V1 (userinterface_regjob_Epoch) at
which the job (more specifically, the job JDL file)
is submitted from the UI to the RB.

& The RB receives the JDL file, which may specify
one or more files to be copied from the UI to the
worker node. This set of files is referred to as the
input sandbox. The status of the job becomes
submitted at time instance V2 (networkserver_
accepted_Epoch) at which the network server of
the RB accepts the job.

Fig. 1 Job flow in the LCG/EGEE environment

Statistical analysis and modeling of jobs in a Grid environment 81



& The RB node runs the WMS service whose role
is to find the best available CE to execute the
job based on the requirements the user has
specified in the JDL file and the status and
utilization of every site. TheWMS service starts to
execute at time V3 (workloadmanager_match_
Epoch) at which point the status of the job
becomes waiting.

& The RB creates a wrapper script to be passed,
together with other parameters, to the selected CE.
The status of job becomes ready at time instance
V4 (jobcontroller_transfer_Epoch) at which the
RB job controller sends the job to the appropriate
CE.

& The CE receives the request at time instance V5

(logmonitor_accepted_Epoch) and the gatekeeper
of the CE that controls access to local resources
maps the job certificate to a local UID. Various
mechanisms are in place to allow or disallow jobs
based on the accompanying certificate. Following
a successful mapping to UID, the gatekeeper
creates a jobmanager process to manage the local
submission and execution of the job on the local
batch farm. The status of the job then becomes
scheduled.

& The local resource management system (LRMS)
is the service running at the CE and is responsible
for the handling of the job execution on the local
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V 1= userinterface_regjob_Epoch
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V 3= w orkloadm anager_m atch_Epoch

V 4= jobcontroller_transfer_Epoch 

V 5= logm onitor_accepted_Epoch

V 6= lrm s_running_Epoch
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Fig. 2 The states of a job in
the LCG/EGEE environ-
ment and the corresponding
time instances (epochs)
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farm of worker nodes. A job remains in the LRMS
queue until the time instance V6 (lrms_running_
Epoch) at which time the LRMS assigns the job to
a WN, and the status of the job becomes running.
The user files complete transferring from the RB to
the WN at time V7 (logmonitor_running_Epoch).

& If the job completes without errors, the output of
the job (called output sandbox), starts transferring
back to the RB node at time instance V8

(lrms_done_Epoch), at which point the status of
the job becomes done.

& At time instance V9 (logmonitor_done_Epoch) the
output sandbox has been transferred to the RB and
the user can retrieve the output of his job back to
the UI. The status of the job then becomes and
remains cleared.

Using the previous epochs we can calculate the
metrics shown in Table 1. These metrics will be used
for the analysis of the various delay components that
comprise the job execution in the LCG/EGEE
environment. The first column of Table 1 indicates
the name of the variable, the second column the
corresponding state or states at which the variable
refers, and finally the third column shows how every
variable is calculated. For example the V12 variable
(getting ready to transfer to CE time) describes the
time spent at pending, submitted and waiting states
and is computed by subtracting V1 from V4 time
instance. We have to mention that V16 variable (WN
execution time logmonitor) and V17 variable (WN
execution time-lrms) correspond to the execution
times of the jobs. The first one is logged by the RB
while the second one by the CE and their difference is

the time the job spends at the Done state (see Table 1).
Also the variable V19 (efficiency) is defined as the
WN execution time (logmonitor) divided by the total
time (V19=V17/V18). Thus, if V19 approaches 1.00 this
means that the delay introduced at other states is
negligible compared to the execution time of the job.

Based on these metrics we define the four main
delay components that comprise the job processing in
the LCG/EGEE environment (Fig. 3); the total time of
a job (V18) is the sum of these four delay components.

& D1=V12 = getting ready to transfer to CE time
describes the time the job stays at the pending,
submitted and waiting states. This delay compo-
nent consists of the time a job requires to register
with the RB, and the time the RB takes to run the
match making service and create the wrapper
scripts to transfer the job to the chosen CE.

& D2=V13 = transfer time describes the time the job
stays at ready state. This time consists of the time
required to transfer the job wrapper scripts from
the RB to the chosen CE.

& D3=V15 = CE register and queuing time describes
the time the job stays at Scheduled state. This time
corresponds to the time required by the CE
gatekeeper to accept and match the job to a local
UID and the time the job stays at the CE queue
before it starts to execute at a WN. It also includes
the time that is required to transfer the input user
files – input sandbox – from the RB to the WN.

& D4=V16 = WN execution time (logmonitor)
describes the time the job stays at running and
done states. This time consists of the time required
to execute the job and to transfer the output files –

Table 1 Metrics used for analysis of the various states of the job in the Lcg/Egee environment

Variables Corresponding states

V10 = registration_Time Pending (V2−V1)
V11 = match_Time Submitted (V3−V2)
V12 = getting_ready_to_transfer_to_CE_Time Pending + submitted + waiting (V4−V1)
V13 = transfer_Time Ready (V5−V4)
V14 = logmonitor_CE_total_Time Scheduled + running + done (V9−V5)
V15 = logmonitor_CE_register_queueing_Time Scheduled (V6−V5)
V16 = logmonitor_WN_Time Running + done (V9−V6)
V17 = lrms_wn_Time Running (V8−V6)
V18 = total_Time Submitted + waiting + ready + running + done (V9−V1)
V19 = efficiency (Running + done) /(submitted + waiting + ready + running + done) (V17/V18)
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output sandbox – to the corresponding RB from
which the user can retrieve them. It is worth noting
that after the output files have been transferred to
the RB the job state becomes and remains cleared
(until the user retrieves the output files or the
system discards them). In the definition of the
delay components previously presented, we have
not considered the time the job stays in the cleared
state since it mainly depends on the user and does
not correspond to a quantifiable characteristic of
the Grid.

4 Analytical Models

It is possible to use directly log traces for the job
arrivals as an input to a static simulation, but it is
usually more convenient to define and use analytic
models for the job arrival process. Analytic models
are more flexible, since they allow the generation of
traces using different values of the parameters
involved, helping better understand the way these
parameters affect system performance.

In this section we present analytical models that are
used in the modeling sections (Sections 6 and 10) of
this study.

The classical Poisson process, in which the inter-
arrival times are exponentially distributed, forms the
basis for some of the more advanced models.

4.1 Non-Homogeneous Poisson Process (NHPP)

A non-homogeneous Poisson process (NHPP) is a
Poisson process whose arrival rate l at time t is a
function of time l(t). More specifically, the number of
arrivals N(t) in the interval (0,t) follows the distribution:

Pr N tð Þ ¼ nð Þ ¼ e�m tð Þ m tð Þð Þn
n!

; n � 0 and m tð Þ ¼
Z t

0

l sð Þds

4.2 Phase Type – Hyper Exponential model

A random variable that follows the m-phase-type
distribution (PT) can be defined as the transition time
until absorption of a continuous-time Markov chain
(CTMC) with m transient states and one absorbing
state. Generally, any inter-arrival process can be
approximated by a phase-type distribution provided
that a sufficient number of states are used.

From this general class we chose to consider only
the hyper-exponential subclass, which is the one most
often used in the literature.

The probability density function (pdf) of an m-
phase hyper-exponential random variable (r.v.) X is
given by:

fx xð Þ ¼
Xm
i¼1

pi � fEi eð Þ ¼ p1 � fE1 eð Þ þ p2 � fE2 eð Þ

þ . . .þ pm � fEm eð Þ

where Ei is an exponential r.v. with mean 1/li, and pi
is the probability that X takes on the form of Ei (thus,Pm
i¼1

pi ¼ 1)

4.3 Phase Lognormal Model

A r.v. Li is said to follow the lognormal distribution if
the r.v. ln(Li) is normally distributed.

Similarly to the hyper-exponential model, the pdf
of an m-phase lognormal r.v. X is given by:

fx xð Þ ¼
Xm
i¼1

pi � fLi lð Þ ¼ p1 � fL1 lð Þ þ p2 � fL2 lð Þ

þ . . .þ pm � fLm lð Þ

where Li is a lognormal r.v. with average ai and
standard deviation di, and pi is the probability that X
will take on the form of Li (

Pm
i¼1

pi ¼ 1).

4.4 Markov Modulated Poisson Process (MMPP)
Model

An m-state MMPP is a doubly stochastic Poisson
process [14]. Assuming an m-state continuous-time
Markov chain (CTMC), arrivals occur according to a

D1 D2 D3 D4

D1 : Getting Ready to Transfer to CE time (Pending+Submitted+Waiting)

D2 : Tranfer time (Ready)

D3 : CE Register and Queuing time (Scheduled)

D4 : CE Execution time (Running + Done)

Fig. 3 Delay component of a job in LCG/EGEE environment
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Poisson process of rate li when the chain is in state i.
An MMPP can be fully described by the parameters:

Q ¼
�σ1 σ12 . . . σ1m

σ21 �σ2 . . . σ2m

. . . . . . . . . . . .
σm1 σm2 . . . �σm

2
664

3
775;σι

¼
Xm

j¼1; j 6¼i

σij and Λ ¼ l1; l2; . . . lm½ �

where Q is the generator of the CTMC, and the
entries of Λ correspond to the Poisson arrival rates at
each state.

4.5 Pareto-Exponential Model

This model, to be referred to as the Pareto-exponential
model, will be used for modeling the job arrival
process at the cluster level (Section 10.1). Under this
model, the VOs submit jobs that have exponential
inter-arrival times (with rate l jobs per second) during
busy periods, each of which has an exponential
duration (with mean 1/μs). The times between the
beginnings of the VO busy periods are distributed
according to a truncated Pareto distribution with
Pareto shape parameter a, minimum value parameter
Xmin and maximum value parameter Xmax. The Pareto-
exponential model is depicted in Fig. 4.

5 Statistical Results On The LCG/EGEE Usage

Using the daily reports in ASCII format supplied by
the real time monitor tool we acquired information on
the traffic submitted to the LCG/EGEE infrastructure
and the time durations the jobs spent in each
processing state before completing execution. The
real time monitor (RTM) [8] is a Java applet that
monitors the LCG in real time. It shows the times at
which user jobs are submitted to the resource brokers
all over the world, the way they are distributed to the
sites, and finally, depending on their successful or not
execution, the times at which the jobs complete the
different states of their processing. It also presents the
times of delivery of the execution outcome to the
corresponding user. The real time monitor (RTM) tool
uses the Berkeley Database Information Index (BDII)
to automatically discover and plot new sites that join

the Grid. The users of the RTM can view the LCG/
EGEE traffic in real time.

We concatenated the daily ASCII report files and
obtained a file that included the desired information in
a form suitable for processing with statistical analysis
tools. The time period of the observation was 1 month
(from the 1st of October 2006 until the 31st of
October 2006). The total number of jobs submitted
during this period was 2.228.838.

From the real time monitor tool we were able to
retrieve general information regarding the job pro-
cessing and also the time epochs that correspond to
specific events in the LCG/EGEE environment. By
manipulating these epochs we were able to calculate
the metrics presented in Table 1 and thus analyze the

1

Inactive Login

Exponential (1/µ) Job Submission

Exponential (rate )

Pareto

(VO inter-arrival)

2

Inactive Login

Exponential (1/µ) Job Submission

Exponential (rate )

Pareto

(VO inter-arrival)

Time

Pareto

VO inter-arrival

Exponential
Duration (1/µ)

Inter-arrival (rate   )

Pareto

VO inter-arrival

Time

1

Exponential

2 3

3

Inactive Login

Exponential (1/µ) Job Submission

Exponential (rate )

Pareto 

(VO inter-arrival)
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times the job spent at different states of its processing
and the corresponding delay components. The results
obtained are described in the following sections.

5.1 General Statistics

In this section we present general statistics obtained
for the LCG/EGEE infrastructure using the daily
report files supplied by the real time monitor tool.

5.1.1 Exit Type

According to Real Time Monitor report files, there are
various exit types that describe the final-exit status of a
job. After manipulating the different exit types and
grouping them together we obtained the results of
Fig. 5. We observe that a high percentage of jobs
(∼59.5%) were successfully completed, while there is
also a considerable percent of jobs (∼37.4%) that were
aborted due to middleware or hardware errors. The

remaining seven exit types presented in Fig. 5 were
observed with frequency less than 1%. We note that the
CANCEL exit type corresponds to the case a job is
canceled by the user while it was being executed.

5.1.2 Daily and Hour Cycles

Figure 6 shows the number of submitted jobs at all the
resource brokers with respect to the submission date (in
October 2006), while Fig. 7 shows the number of jobs
submitted at different hours within a day (for each hour
we summed up the jobs submitted during that hour in
October). We observe that it is difficult to identify any
pattern with respect to the date of the submission
process. Jobs are submitted to the resource brokers
during all days of October but not with the same
frequency. There are few days that the usage is low,
near 40.000 jobs per day (4 days), and some days that
the usage is high, more that 80.000 jobs per day.

Regarding the daily cycle of the submission
process, we observe that the value varies between
80.000 and 100.000 jobs per hour (summed for all
days of October). The peak in utilization is observed
during midday hours (13:00–17:00), while the lowest
utilization is observed during night hours (00:00–
06:00). Times refer to the GMT time zone.

5.1.3 Virtual Organisations

Regarding the VOs, there are 75 VOs participating in
EGEE. The LCG/EGEE resources are not utilized to
the same degree by all VOs. Figure 8, shows the
percentage contribution of every VO to the total
number of submitted jobs. The VOs whose percent-
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age of contribution is less than 1% are categorized as
«Other». The five most active VOs are:

& Lhcb VO, contributing 37.16% of the total
number of jobs,

& Cms VO, contributing14.63% of the jobs,
& Alice VO, contributing 12.84% of the jobs,
& Atlas VO, contributing 10.72% of the jobs, and
& Biomed VO, contributing 9.82% of the jobs.

These top five VOs contribute 85.17% of the total
traffic, while 89% of all the VOs contribute less than
0.1% of the total traffic each.

5.1.4 Resource Brokers

There are 59 RBs in total that serve the jobs in the
LCG/EGEE environment and forward them to the
appropriate CE. Figure 9 shows the percentage of the

total traffic that is served by each RB. The RBs whose
percentage of use is less than 1% are categorized as
«Other». The five most active RBs are:

& rb107.cern.ch RB, handling 14.01% of the jobs,
& gridit-rb-01.cnaf.infn.it RB, handling 6.83% of

the jobs,
& rb108.cern.ch RB, handling 5.16% of the jobs, and
& rb01.pic.es RB, handling 5.05% of the jobs.
& mu3.matrix.sara.nl, handling 5.01% of the jobs.

These top five RBs serve 36.06% of the total
traffic, while 52.54% of the RBs serve less than 0.1%
of the total traffic each.

5.1.5 Computing Elements

There are totally 343 CEs at which jobs can be
executed in EGEE. In order to visualize how the
workload is distributed among the various CEs of the
EGEE infrastructure Fig. 10 presents the percentage
of jobs served by CEs that served more than 1% of
the total load. The remaining CEs are grouped together
as “other”. Also, there is a percentage of CEs that is
categorized as “unknown” (we did nït have the related
information). Figure 11 shows the exit types of the
jobs that were categorized as “unknown”. We can
observe that a high percentage of these jobs fall in the
exit type category REGISTERED–ABORT and also a
smaller number in the categories UNDEFINED–ABORT
and UNDEFINED–na. Therefore, CE “unknown”
corresponds to jobs that were aborted or did not register
correctly with their RB.

Fig. 8 Percentage of submitted jobs per VO (most active VOs,
≥1%)

Fig. 9 Percentage of served jobs per resource broker (most
active RBs, ≥1%)

Fig. 10 Percentage of executed jobs per cluster-CE (most
active Ces, ≥1%)
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In order to identify whether there are any hot spots
in the EGEE infrastructure we present the top five
CEs:

& ce03-lcg.cr.cnaf.infn.it CE, with percentage of use
3.42%,

& cclcgceli02.in2p3.fr CE, with percentage of use
2.9%,

& iut15auvergridce01.univ-bpclermont.fr. CE, with
percentage of use 2.88%.

& lcgce01.gridpp.rl.ac.uk, with percentage of use,
2.16% and

& lcgce0.shef.ac.uk, with percentage of use 1.72%

The top five CEs handle 13.08% of the total traffic,
while 93.29% of the CEs serve less than 0.1% of the
jobs each. Moreover, “other” appears with 48.18%,
while the “unknown” appears with 18.32%.

5.2 Analysis of the Inter-Arrival Times and the Times
of the Job at the Different States in the LCG/EGEE
Environment

Table 2 shows the values of the minimum, the
maximum, the mean, and the standard deviation of the
job inter-arrival times, and the metrics (V10 to V19)
representing the time durations spent by a job at
different states in the LCG/EGEE environment. In the
first column of Table 2 we have the number of available
entries-jobs (N) from which the statistics were comput-
ed. Due to the fact that jobs were discarded in different
states we did not have the same N for all the used
metrics. For example, for V12(D1) we had N=1.784.806
while for V18 (D1+D2+D3+D4) we had only N=
1.025.887. It seems that the jobs that remain in the
system (and especially these that successfully finish D3

and D4) are the jobs that have smaller delay component
values. For this reason, the addition of the mean values
of metrics V12, V13, V15 and V16 (D1+D2+D3+D4) is
larger than the mean value of the metric V18 (total time).

5.2.1 Job Inter-Arrival Times

Figure 12 illustrates the cumulative distribution func-
tion (cdf) of the inter-arrival times of the jobs submitted
to the LCG/EGEE infrastructure. It must be noted that
the Real TimeMonitor tool, fromwhich we obtained the
measurements, records the corresponding time instances
in seconds, which means that the real time values are
rounded to the closest integer second. This determines
the accuracy of our observations. We observe that with

Fig. 11 Distribution of the job exit type for the ‘unknown’ CE

Table 2 Statistical results for the metrics used

N Min Max Mean SD

Inter-arrival time 980,581 0 60 1.25 1.52
V10 = registration_Time 2,166,574 1 14,679 14.90 79.58
V11 = match_Time 1,824,822 1 65,794 96.76 841.78
V12 = D1 = ready _to_transfer_to_CE_Time 1,784,806 1 65,808 141.44 894.82
V13 = D2 = transfer_Time 1,767,897 1 999,822 12,411.7 72,363.76
V14 = D3 + D4 = logmonitor_CE_total_Time 1,365,789 2 1,099,682 39,757.3 88809.95
V15 = D3 = logmonitor_CE_queue_Time 1,170,688 2 1,099,673 16,899.1 61,007.08
V16 = D4 = logmonitor_wn_Time 1,170,804 1 1,201,163 14,454.5 38,012.27
V17 = lrms_wn_Time 1,039,674 1 1,752,808 14,248.7 36,403.98
V18=D1+D2+D3+D4 = total_Time 1,025,887 17 1,099,957 49,286.7 113,684.69
V19 = efficiency 1,042,871 0.01 1.00 0.519 0.33

N is the number of jobs from which the results were computed. Minimum, maximum, mean and std deviation values are measured in
seconds.
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high probability (around 0.4) the inter-arrival time
between two jobs is close to 0 s (the inter-arrival times
represented as 0 s include the inter-arrival times up to
0.5 s). The maximum observed value was 60 s, and the
probability of observing an inter-arrival time greater
than 7 s was negligible. Since the inter-arrival times’
standard deviation is quite small and close to its mean
(Table 2) we can conclude that the inter-arrival process
is quite close to a Poisson process.

5.2.2 Registration Times, Match-Making Times,
Getting Ready to Transfer to CE Times and Transfer
Times

In this section, we present results regarding the:
registration (V10), match-making (V11), getting ready to
transfer to CE (V12=D1), and transfer (V13=D2) times.

From Fig. 13 we observe that the match making
times and getting ready to transfer to CE times exhibit
similar behaviors, with the majority of the observed
values lying in the range of a few seconds to a few tens
of seconds, as can be deduced from the steep step-like

form of the cumulative distribution function (cdf) in
that region. Registration time has a small probability
(∼0.06) to be less than 5 s and a high probability (∼0.9)
to be between 6 and 50 s. Match making time has a
small probability (∼0.07) to be less than 7 s and a high
probability (∼0.85) to be between 8 and 66 s. Getting
ready to transfer to CE time includes the registration
time (pending state), the match making time (submitted
state) and an additional delay in which the RB creates a
wrapper script and prepares the job for submission to
the chosen CE (waiting state). Since the match making
time dominates the two other delay components,
getting ready to transfer to CE times cdf is similar to
the cdf of the match making times shifted by a few
seconds (10 to 100). This observation can also be
verified by comparing the mean and standard deviation
of the getting ready to transfer to CE times with those
of the match making times – Table 2 (their mean
values differ by 50 s while the values of their standard
deviation are almost equal).

From Fig. 13 we see that the probability of
observing a value for the transfer time smaller than
3 s is small (∼0,06), while the probability of
observing a value less than 80 s is high (∼0.84).
However, from the transfer times cdf we can see that
this variable exhibits a heavy tail, and there is a
considerable probability (∼0.16) of observing values
in the range of hundreds to millions of seconds. The
difference of the transfer times (namely its heavy tail)
with the variables analyzed in the previous paragraph
can be also verified by the large value of the transfer
times’ standard deviation (Table 2). The large devia-
tion in the transfer times is due to the large deviation
in the sizes of the input data and the deviation of the
propagation delays (due to geographic distribution of
sites). Moreover, problems with the RBs, the clusters,
and the middleware can affect this metric.

5.2.3 CE Register and Queuing Times, WN Execution
Times, and Total CE Times

In this section, we present results regarding the delay
introduced at the computing element (CE) of an LCG/
EGEE cluster. More specifically, we present results for
the CE register and queuing (V15=D3), the logmonitor
WN execution (V16=D4), the lrms WN execution
(V17), and the CE total (V14=V15+V16=D3+D4) times.

Comparing Fig. 14 and Fig. 13 we observe that the
cdf of the variables presented in this section increase
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less rapidly than the cdf of the variables presented in
the previous section. The results of Fig. 14 indicate
that a job register and queuing time starts from 100 s
and have a high probability to be less than 200 s.
However, CE register and queuing times can also take
large values and even reach 106 s.

The logmonitor WN times and the lrms WN times
differ only slightly for values less than 1,000 s
(specifically, lrms WN times have a higher probability
to take smaller values) and converge for large values.
They appear with equal probability (∼0.56) to be less
than 1,000 s, and can reach values of 106 s. Note that
the difference between these two variables (logmoni-
tor WN – lrms WN) corresponds to the time a job
spends in the done state, which is the time required to
transfer the output sandbox from the CE to the RB,
indicating that the output sandbox requires only a
small amount of time to be transferred.

CE total time includes the CE register and queuing
and logmonitor WN time. There is a medium
probability (∼0.35) to observe a CE total time less
than 1,000 s, while this variable can reach values of
the order of 106 s. The mean value of the CE total
times was measured to be equal to 38.75103 s and its
standard deviation was 88.8103 s.

5.2.4 Total Times and Efficiency

The results in Fig. 15 indicate that the job total times
(V18=D1+D2+D3+D4) exhibit almost similar behav-
ior with the CE total times (CE register and queuing+
WN execution times=D3+D4). CE total times dom-
inate the total delay, while getting ready to transfer to
CE times (D1) and transfer times (D2) contribute

negligibly to overall delay. The job total times are
between 200 and 105 s with probability ∼0.91, and
can also take large values (107 s).

Figure 16 illustrates the cumulative distribution
function of the efficiency of the executed jobs,
defined as the ratio of the WN execution time over
the total time. We can observe that the cdf of the
efficiency approaches a linear function. Therefore, a
job submitted to the Grid has roughly equal proba-
bility to exhibit efficiency between 0 and 1.

6 Modeling of the Inter-Arrival Times
and the Delay Components of a Job
in the Lcg/Egee Environment

In this section we are interested in modeling the job
arrival process and the delay components incurred by
a job in the LCG/EGEE environment. As delay
components we consider the four delay components
introduced in Section 3 (Fig. 3).
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6.1 Modeling the Job Arrival Process

Based on the descriptive statistics (Table 2) and
the cumulative distribution function of the inter-
arrival times (Fig. 12) we want to characterize the
overall job arrival process in EGEE/LCG. Since the
standard deviation of the inter-arrival times is quite
close to their mean and the corresponding cdf does
not seem to exhibit a heavy tail, a Poisson process
is quite likely to accurately model the arrival
process behavior. We have experimented with
exponential distributions and parameters close to
1=observedmean. Figure 17 shows the cdf of the
inter-arrival times and the cdf of an exponential
distribution with mean 1.6077 s. It is worth noting
that the observed values were integer (our observa-
tions were rounded to the closest second). There-
fore, in order to fairly compare the two distributions
we have rounded to the closest integers the values
produced by the proposed exponential distribution
(referred to as rounded exponential model). After
this adjustment, the exponential distribution with
mean 1.6077 s resulted in a distribution with mean
1.15 s and standard deviation 1.57.

Figure 18 shows the probability–probability (P–P)
graph of the rounded exponential model versus the
actual data. Given the two CDFs, a P–P plot is
constructed by pairing percentiles that correspond to
the same value. A “good” fit corresponds to a P–P
plot that is nearly linear. From this graph we can
observe that a rounded exponential distribution with
mean 1.6077 s can adequately model the job arrival
process in the EGEE/LCG environment.

6.2 Getting Ready to Transfer to CE Times (D1)
Modeling

From Table 2 we observe that delay component D1

exhibits the smallest standard deviation among the delay
components defined in Section 3. D1 corresponds to the
time a job stays at the pending, submitted and waiting
states and thus is the time that the jobs spends in the UI
and the RB before being transferred to a cluster. From
Fig. 13 we observe that D1 takes with high probability
values close to the value 25 s (rises sharply between 15
to 30 s). Moreover, from Fig. 15 we see that the job total
delay is dominated by CE times (D3 and D4). Therefore,
we regard that the modeling of the getting ready to
transfer to CE delay component (D1) as a constant equal
to 25 s is an acceptable approximation, since in any case
it contributes the smallest delay to the total delay.

6.3 Transfer Times (D2) Modeling

The transfer times (V13=D2) presented in Fig. 13, as
well as the CE register and queuing times (V15=D3)
presented in Fig. 14, exhibit linear behavior at
different stages (with different slopes) in the logarith-
mic scale. We investigate how a hyper-exponential
process (in the general category of phase type
distributions) and a phase lognormal distribution can
fit the behavior of these delay components. We
examined these two alternatives since the hyper-
exponential distribution is widely used for modeling,
while the phase lognormal distribution seems appro-
priate to model the linear behavior observed at
different stages in the logarithmic scale.

Regarding the modeling of the transfer times (V13=
D2), we considered three alternatives: (1) a three-
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phase hyper-exponential model (H3), (2) the sum of a
deterministic and a lognormal r.v. and (3) a two-phase
lognormal distribution.

We chose to use two phases for the lognormal model
driven by the observation that the empirical cdf of
Fig. 13 exhibits linear behavior in two different periods
in the logarithmic scale. For the hyper-exponential
model we used three phases driven by the observation
that Fig. 13 exhibits one noticeable step and also has a
heavy tail (assuming that we need one phase to model
the step and at least two phases to model the heavy tail).
For the hyper-exponential model we used the EMpht
utility [15] to obtain the corresponding parameters.

The parameters that provide the best fits of the
Transfer times (D2) under the three models examined
were found to be:

& Case (1) p1=0.8635, p2=0.0711, l1=9.377×
10−2 s−1, l2=2.959×10

−3 s−1, and l3=1.4×
10−5 s−1,

& Case (2) p1=0.83, constant=9, lognormal average=
8.8126 s, standard deviation=3.1227 s, and

& Case (3) p1=0.83, a1=2.027 s, d1=0.7380 s, a2=
8.8126 s, d2=3.1227 s

Figure 19 shows the empirical cdf of the job
transfer time, as presented in Section 5, and the cdfs
we obtained for the proposed models, while Fig. 20
shows the corresponding P–P plots. From Fig. 20 we
can observe that the two-phase lognormal distribution
is the more accurate model while the hyper-exponen-
tial and the sum of a deterministic and a lognormal
distribution converge to the observed data only for
large values (in the heavy tail region). Since, in
general, the heavy tail dominates the performance of
this delay component, these two alternatives can also
be considered as acceptable approximations.

6.4 CE Register and Queuing Times (D3) Modeling

We considered again three alternatives for modeling
the CE register and queuing times (V15=D3): (1) a
three-phase hyper-exponential model (H3), (2) the
sum of a deterministic and a lognormal r.v. and (3) a
2-phase lognormal distribution. The corresponding
parameters that provide the best modeling accuracy
with the observed data were found to be:

& Case (1) p1=0.619, p2=0.2408, l1=1.536×
10−3 s−1, l2=2.71×10

−4 s−1, and l3=1.2×10
−5 s−1,

& Case (2) p1=0.32, constant=210 s, lognormal
average=7.1093 s, standard deviation=2.85 s, and

& Case (3) p1=0.34, a1=5.13 s, d1=0.211 s, a2=
7.1093 s, d2=2.85 s

Figure 21 shows the empirical cdf of the job CE
register and queuing time as presented in Section 5
and the cdfs we obtained by the proposed models,
while Fig. 22 shows the corresponding P–P plots.
Similar to D2, the two-phase lognormal distribution
seems to be the best model for the CE register and
queuing delay component, D3, while the other two
models are also good approximations since they
accurately simulate the observed data for large
values.

6.5 WN Execution Times (D4) Modeling

The WN execution times (V16=D4), as presented in
Section 5 (Fig. 14), exhibit peaks at certain periods.
We investigated how well a hyper-exponential ran-
dom variable can fit this behavior. We used only this
type of process since it is widely used in the literature
to model execution times. More specifically, we
considered two cases: (1) a three-phase (H3), and
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(2) a four-phase (H4) hyper-exponential distribution.
We chose to use these values for the number of phases
driven by the observation that Fig. 14 exhibits three to
four steps. We used again the EMpht utility [15] to
obtain the corresponding parameters:

& Case (1) p1=0.3888, p2=0.3635, l1=8.0314×
10−3 s−1, l2=5.47×10

−4 s−1, and l3=1.46×
10−5 s−1, and

& Case (2) p1=0.3776, p2=0.3614, p3=0.1199, l1=
9.021×10−3 s−1, l2=5.52×10

−4 s−1, l3=1.359×
10−5 s−1, l4=1.559×10

−5 s−1.

Figure 23 shows the empirical cdf of the job WN
execution time as presented in Section 5 and the cdfs
obtained for the two hyper-exponential models, while
Fig. 24 shows the corresponding P–P plots. Since the
modeling accuracies obtained by the three- and four-
phase models are similar, we conclude that a three-
phase hyper-exponential model, which is the simpler
of the two, is sufficient for modeling the WN
execution times.

7 Efficiency of the Egee Environment
and the Employed Super-Scheduling (RB)
Algorithm

In Grids it is common to use a decentralized super-
scheduling architecture to assign the jobs to the CEs.
The current scheduling system in EGEE/LCG is a
distributed version of the centralized resource broker
(RB) originated from the EU DataGrid project, with
multiple RB instances distributed at different regions/
countries. A Grid tries to create a virtual computing
architecture for the execution of processes across
geographically distributed resources. We want to
evaluate the degree to which this objective is achieved
and thus measure indirectly the efficiency of the EGEE
environment and of the super-scheduling algorithm
used. In order to do so, we compared the job total time
delay metric (V19) obtained from the actual measure-
ments to that obtained in a hypothetical ideal super-
cluster consisting of N CPUs. We wanted to find the
number N of CPUs of a single super-cluster to which
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if we submitted the same workload we would obtain
the same total delay performance with that obtained in
the LCG/EGEE infrastructure (Fig. 25).

In the case of EGEE, the total time metric corresponds
to the overall delay experienced by a job (the time spent
at all job preparation or processing states), until comple-
tion. In the case of a single ideal super-cluster of N CPUs
there is no preparation or communication overhead, but
there is a delay introduced at the input queue (time to
find a free CPU). Therefore, by comparing the
performance of these two architectures we can evaluate
the efficiency of the EGEE environment.

We used a static simulation with input the inter-
arrival times and the WN execution times measured in
the LCG/EGEE environment for the 1 month period of
this study.We assumed a single super-cluster ofN CPUs
that uses a simple FCFS queuing strategy to store and
process the arriving jobs. In the single super-cluster
case we did not use any kind of access policy, but we
just scheduled the jobs on a FCFS basis in order to
obtain the bare performance of an ideal model. We
estimated the number N of CPUs of the ideal super-

cluster required to obtain the same total delay
performance to be around 10,650 CPUs, while the
maximum number of jobs that were queued in the
single-cluster FIFO queue was around 32,000. Con-
sidering that for the period of our observation the
average number of CPUs in the LCG/EGEE infra-
structure was 31,228 (the number of CPUs varied
dynamically with time) we estimate the efficiency of
the EGEE environment to be equal to 10,650/31,228=
0.34. We believe this is a rather satisfactory figure, and
it shows that the LCG/EGEE Grid infrastructure is
used efficiently. It also indicates that the Grid com-
puting concept can deliver to a satisfactory degree to
its main promise, which is that of providing users with
the ability to treat distributed computing, storage and
other resources, as if belonging to a single computer.

8 Local Grid Infrastructure

The kallisto.hellasgrid.gr node is part of the HellasGrid
[19] – EGEE infrastructure and has been a production

Fig. 25 Efficiency evalua-
tion of the EGEE environ-
ment and the employed
super-scheduling algorithm
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site since February 1, 2006. The node’s hardware
consists of two HP racks with 64 servers with Intel
Xeon CPUs at 3.4 GHz. There are 4 HP servers, each
with two 80 GB SCSI hard disks running RAID1,
2 GB RAM and two processors that comprise the core
elements of the EGEE site (CE, SE, Monitoring Box
and Quattor server). The remaining 60 machines are
the Working nodes, each of which has 80 GB SATA
hard disk, 1 GB RAM and one processor. The racks
also include a SAN that controls the 14 SCSI disks
(300 GB each) of the main storage and an optical
switch to connect the servers to the storage. The total
capacity of the Storage Element is 4.2 TB. All servers
are running Scientific Linux v.3 (SL3) and the
deployed middleware is gLite middleware.

The kallisto node serves the following VOs: Dteam
(development team), See (South Eastern Europe),
Lhcb (large hadron collider beauty), Esr (earth science
research), Atlas (A Toroidal LHC apparatus), Cms
(compact Muon solenoid), Biomed (biomedical –
drug discovery), Magic (MAGIC telescope), Comp-
chem (computational chemistry) and Hgdemo (Hellas
Grid demo). These VOs determine the queues in the
MAUI configuration of the CE. MAUI [16] is a local
scheduling engine that is used together with the PBS
batch system [17]. The MAUI configuration of our
node, reserves one slot for Dteam so that site
functional tests can run without waiting. Previous
LCG versions used queues that were based on the
estimation of the job execution times, and thus our
site configuration and the presented results differ from
those reported in [6] in this respect.

The workload of the LCG/EGEE is solely com-
posed of work-pile tasks termed bags. A bag is a
collection of serial independent jobs that perform no
communication and are not required to execute
simultaneously or to be assigned to the same cluster/
site. Jobs communicate, by writing output files to
Grid Storage Elements or to the user's machine
enabling other jobs to read and work on the generated
data (forming “pipelines” of jobs). Each job requests a
single processor and thus the degree of parallelism is
one (trivial parallel tasks). A higher level scheduler
fragments each bag into individual jobs and places
them on (possibly) different sites. Therefore, observ-
ing the jobs executed or queued at a site we get a set
of independent processes and thus we cannot see if
there are additional jobs belonging to the same bag
running on the same or other remote machines.

Using the log files of the CE (located under the
directory /var/spool/pbs/server_priv/accounting/) we
acquired information that was locally maintained in
the kallisto node. The time period of the observation
was three months (from February 1, 2006 until April
30, 2006), and the total number of jobs submitted
during this period was 25,737. We parsed the log files
and obtained the desired information in a form
suitable for processing using statistical analysis tools.
This was achieved by enhancing the Perl scripts
(http://www.cs.huji.ac.il/labs/parallel/workload/swf.
html) in order to match our metrics.

9 Statistical Analysis of the Kallisto Cluster

In order to obtain good models for the job submission
process and the job characteristics at the cluster level,
we performed a thorough statistical analysis of the
logs that were stored in the kallisto cluster. Apart
from examining the weekly and daily cycles of the
workload we studied the job inter-arrival times, the
job running times (worker node execution times), the
CE queuing times of the jobs and the data transfers
involved.

9.1 General Statistics

9.1.1 Submission Date and Time

Among the first things we looked at is whether the
cluster is in use for all days of the week and for 24 h per
day, or its utilization decreases during specific days
(e.g., weekends, holidays) or specific daily periods (e.g.,
at nights). Figure 26 shows the number of submitted
jobs during different days in a week, while Fig. 27
shows the number of jobs during different submission
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periods within a day. The graphs show that it is
difficult to identify any patterns with respect to the date
and time of the submission process. Jobs are submitted
to the cluster during all days of the week and, contrary
to our expectations, the cluster exhibits a gradual
increase of its usage at the late hours of the day. These
observations can be explained by the fact that users are
active across different time zones, and they often
schedule their jobs for later times, resulting in a rather
even distribution of jobs across all weekly/daily cycles.
In interpreting these results we also have to take into
account the geographical position of Greece relative to
that of the other EGEE users.

9.1.2 Job Execution Times

The node’s resources are not utilized to the same
degree by all VOs. The five most active VOs are
listed in Table 3, while the other VOs had a relatively
small number of jobs (∼3% maximum). The Atlas
VO contributed approximately 50% of the jobs
submitted to our cluster during the duration of our
observations.

Tables 4 and 5 show the mean and standard
deviation of the CPU execution time and the worker
node execution time which is the total running time
(CPU + I/O), for all jobs and for each VO separately.
Comparing these tables we observe that the standard
deviations for the whole set of jobs and for each VO
separately were almost equal. The difference between
the averages of Table 4 and Table 5 correspond to the

duration of the I/O operations and, since it is
relatively small, we can deduce that the jobs sent to
our cluster were CPU and not I/O intensive.

9.2 Analysis of the Inter-Arrival Times, CE Waiting
and WN Execution Times at the Cluster Level

9.2.1 Job Inter-Arrival Times

In this section we present results on the job arrival
process at our local node cluster. Figure 28 illustrates
the cumulative distribution function (cdf) of the inter-
arrival times for the jobs belonging to all the VOs and
for the jobs belonging to the VO Atlas, which is the
one that contributed the majority of jobs to our node.
It is worth noting that site functional tests from the
Dteam VO are performed every 3 h (10,800 s) [11],
posing an upper limit on the inter-arrival times.

To study the way job arrivals are distributed with
respect to the time of day, we divided the 24 h of a
day into three 8-h periods, and present the cor-
responding graphs in Fig. 29. We observe that the
cdfs have the same shape for the different time
periods, while jobs that arrive between 4:00 P.M. and
12:00 P.M. have a slightly higher frequency when
compared to the other two investigated periods (these
results are in agreement with the results presented in
Fig. 27).

9.2.2 Self-Similarity

Self-similarity deals with burstiness, and is a measure
of the degree to which a process includes periods of
increased activity and periods of little or no activity.
Self-similarity implies correlation across different
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Table 3 Number and percentage of jobs per VO

VO Atlas Biomed Dteam Lhcb Magic

Number of jobs 12548 3126 1315 4395 1929
Percentage 49 12 5 17 7

Table 4 Mean and SD of the CPU execution time (in seconds)

VO Total Atlas Biomed Dteam Lhcb Magic

Mean 15,321 16,139 24,656 13 8,511 2,736
SD 29,801 30,146 25,964 25 21,236 546

Table 5 Mean and SD of the WN execution time (in seconds)

VO Total Atlas Biomed Dteam Lhcb Magic

Mean 15,400 16,150 24,682 17 8,532 2,749
SD 29,850 30,163 25,978 27 21,258 567
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time scales, in the sense that what happens at the
present time is correlated to what happened in the
recent and also in the more distant past.

One way for checking if a process is self-similar is
the rescaled range method (or R/S) originally used by
Hurst. It produces a log-log plot of the R/S statistic
versus the number of points of the aggregated series.
This plot should be a straight line with the slope being
an estimation of the Hurst exponent. We computed
the Hurst parameter (H) of the inter-arrival times
using a variety of methods (aggregate variance, R/S,
periodogram, absolute moments, variance of resid-
uals, Abry–Veitch estimator, Whittle estimator; [18]).
For the above methods we also obtained the correla-
tion coefficient, which gives us a reliability factor for
the H estimate (values higher than 0.9 should be
sufficient). The higher correlation coefficient (99.31%)
was computed using the R/S method, indicating that
this was in our case the most reliable method for
estimating the Hurst parameter. Using that method, the
Hurst parameter of the job arrival process at our local
cluster was found to be H=0.684 (Fig. 30). The

Poisson process, which is not self-similar as indicated
by its memoryless property, has H=0.5. When 0.5≤
H≤1, as is true in our case, the process has positively
correlated consecutive steps. Thus, we conclude that
the job arrival process in our local cluster exhibits self-
similarity/long-range dependence.

9.2.3 CE Queuing Times

We present results regarding the CE queuing times of
the jobs, defined as the time between the acceptance
of the job by the local resource management system
(LRMS) and the time it starts execution on a WN.
When a job is accepted by the CE gatekeeper, it is
forwarded to a local scheduler (LRMS) that ensures
the low queuing times of the accepted jobs. Our
system in particular uses a MAUI-PBS LRMS whose
configuration employs a separate queue for each VO
and reserves one time slot for the Dteam.

Figure 31 shows the empirical cdfs of the kallisto
CE queuing times and the EGEE CE register and
queuing times (presented in Section 5.2.3). The
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results of Fig. 31 indicate that a job stays in a kallisto
CE queue for less than 2 s with large probability
(∼0.7). There are also, however, a few jobs that stay
in their queue for a long time period due to
congestion, general or specific problems of our
system. The mean and the standard deviation of the
waiting time for all the VOs together and separately
for each VO are shown in Table 6. We can observe
that Dteam experiences the lower average delay,
while Biomed the highest. This is because of the
local queues priority policies and the fact that
Dteam’s jobs require the smallest CPU times (Table 4),
while Biomed’s jobs are CPU-intensive and thus
exhibit the highest delays.

The difference between kallisto CE queuing and
EGEE CE register and queuing time corresponds to
the time required by the CE gatekeeper to accept and
match the job to a local UID and forward it to the
LRMS. This period is included in the empirical cdf
reported in previous sections that reported measure-
ments for the overall EGEE infrastructure (i.e., at the
Grid level), while in the kallisto measurements (i.e., at
the cluster level) we start measuring the queuing time
at the time the job enters the LRMS.

9.2.4 Job Worker Node Execution Time

The job WN execution time is the actual execution
time of a job including the I/O time. When users
submit their jobs they also provide an estimate of the
job run time, but this is usually a very loose
overestimate of the job run time. In Fig. 32 we give
the cdf of the “actual” kallisto WN execution times
and the EGEE WN execution times (presented in
Section 5.2.3). The difference between the EGEE and
kallisto WN execution times can be explained by the
different number of VOs that these measurements
correspond to (the results presented in Section 5.2.3
correspond to the whole EGEE infrastructure that
served 75 VOs, while the kallisto cluster served only

11 VOs during the period of our observations).
Moreover, the most active VO in the case of kallisto
was VO Atlas, which was the third most active in the
case of the whole EGEE measurements.

10 Modeling Jobs at the Cluster Level (Kallisto)

10.1 Modeling the Job Arrival Process

We considered and evaluated four different models
for the job arrival process at the cluster level:

(a) Non-Homogeneous Poisson Process (NHPP)
model

Taking into account the variations of the job arrival
rate with respect to the days of a week (Fig. 26) and
the hours of day (Fig. 27) we initially investigated if
the job arrival process can be modeled as a non-
homogeneous Poisson process (NHPP). Using the
results of Fig. 27, we defined a stepwise function for
l(t), obtained by averaging over all days in our
observation period the number of job arrivals ob-
served during each 1 hour interval of a day.
(b) Hyper Exponential model

We considered two cases: (1) a two-phase (H2) and
(2) a three-phase hyper-exponential distribution (H3).
To find suitable parameters [three parameters in case
(1) and five parameters in case (2)] we used the EMpht
program [15] to obtain the following parameters:

& Case (1) p1=0.37, l1=1.37×10
−3 s−1, l2=

4.65×10−2 s−1, and l3=1.46×10
−5 s−1, and

& Case (2) p1=0.444, p2=0.457, l1=5.38×
10−2 s−1, l2=9.07×10

−2 s−1, l3=5.12×
10−3 s−1

Table 6 Mean and SD of the kallisto CE queuing times (in
seconds)

VO Total Atlas Biomed Dteam Lhcb Magic

Mean 5,503 3,412 9,731 236 2,450 867
SD 19,851 13,809 19,774 19,851 11,223 4,625
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(c) Markov Modulated Poisson Process (MMPP)
model

We investigated two MMPP models: (1) a three-
state MMPP (3MMPP) and (2) a four-state MMPP
(4MMPP). To find suitable parameters [four parame-
ters in case (1) and nine parameters in case (2)] we
used the program found in (http://www.liacs.nl/~hli/
gwm/index.htm) to obtain the following MMPP
parameters that best fit our measurements.

& Case (1) 3MMPP: σ12=6×10
−3 s−1, l1=98×

10−3 s−1, σ21=0.45×10
−3 s−1, l2=4.1×

10−3 s−1

& Case (2) 4MMPP: σ12=3.2×10
−3 s−1, σ13=

4.3×10−3 s−1, l1=139×10
−3 s−1, σ21=0.1×

10−3 s−1, σ23=0.2×10
−3 s−1, l2 =0.9×

10−3 s−1, σ31=0.45×10
−3 s−1, σ32=0.55×

10−3 s−1 and l3=11.9×10
−3 s−1.

(d) Pareto-Exponential model
We have chosen to also examine a truncated Pareto

distribution model with Xmax=10,800 s since we
know that the job inter-arrival times are upper-
bounded by 3 h (the times of the Dteam periodic
submissions of site functional tests). For the other
parameters we conducted a number of trials and
concluded in the following values for our case: mean
l=18 arrivals per second for busy periods, mean
duration 1/μ=22.5 s of the busy periods, a=0.48 and
Xmin=32 s.

Figure 33 shows the cdf of the inter-arrival times as
presented in Section 9.2.1 and the cdfs we obtained
from the traces of the four proposed models. Figure 34
shows the probability–probability (P–P) graphs of the
better performing H3, 3MMPP and Pareto-exponential
models versus the actual measurements.

From the above graphs we can conclude that the
proposed Pareto-exponential model generates traces
that are very close, according to the P–P plot, to those
observed in our cluster. H3 and 3MMPP models
simulate also satisfactorily the job arrival process.
However, the Pareto-exponential model is simpler,
more concise and more intuitive than the other
proposed models, since it is based on a smaller
number of parameters, and seems to correspond to
actual VO behavior.

As expected, by increasing the number of phases in
the hyper-exponential process the accuracy of that
model also improves. This is, however, only due to
fact that by adding complexity (more states) to the
hyper-exponential model, we can approximate any
process. Similarly, by increasing the states in the
MMPP process we obtain better accuracy. However,
this is a “mechanical” and not an intuitive way to
model the inter-arrival process.

We have also computed the Hurst parameter for the
four models. Only the Pareto-exponential and the
MMPP models experience long-range dependence
(H=0.58 for the Pareto-exponential, H=0.62 for
2MMPP and H=0.64 for 3MMPP with confidence

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

sec (log)

c
d

f

observed
Pareto-Expo
H2
H3
NHPP
MMPP2
MMPP3

Fig. 33 Empirical cdf and the cdfs of the proposed models for
kallisto inter-arrival times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

cdf-observed

c
d

f-
s
im

u
la

ti
o

n

Pareto-Expo

H3

MMPP3

Fig. 34 P–P functions of the proposed models

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

c
d

f

H3

H4

sec (log)

observed

Fig. 35 Empirical cdf and the cdfs of the proposed models for
the kallisto WN execution times

Statistical analysis and modeling of jobs in a Grid environment 99

http://www.liacs.nl/~hli/gwm/index.htm
http://www.liacs.nl/~hli/gwm/index.htm


levels higher than 99%), while the models (a) and (b)
have a Hurst parameter of 0.5. Given that the MMPP
model requires a large number of parameters, the
Pareto-exponential model seems to be more appropri-
ate for modeling the job arrival process at a Grid
node, since it also fits very well the real traffic in our
observations and exhibits long-range dependence as
indicated by the calculated Hurst parameter.

10.2 Modeling the Job WN Execution Times

The worker node execution times, presented in
Section 9.2.3 (Fig. 32), exhibit peaks at certain
values. Execution times differ in their nature from
the inter-arrival times since they do not depend on the
human factor, and thus it is difficult to find a physical
explanation for their behavior. Therefore, our criteria
for modeling WN execution times are more relaxed.
We investigated how a hyper-exponential process
can fit the observed behavior. More specifically,
we considered two cases: (1) a three-phase (H3) and
(2) a four-phase (H4) hyper-exponential distribution.
We chose to use these values for the number of
phases driven by the observation that Fig. 32 is of a
stepwise form with three noticeable steps. We used
again the EMpht utility to obtain the corresponding
parameters:

& Case (1) p1=0.3290, p2=0.2805, l1=1.0731×
10−2 s−1, l2=2.65×10

−4 s−1, and l3=2.1×
10−5 s−1, and

& Case (1) p1=0.3270, p2=0.2805, p3=0.14, l1=
1.0531×10−2 s−1, l2=2.65×10

−4 s−1, l3=2.4×
10−5 s−1, and l4=1.8×10

−5 s−1

Figure 35 shows the empirical cdf of the job WN
execution time as presented in Section 9.2.3 and the
cdfs we obtained from the traces of the two hyper-
exponential processes.

By comparing the results presented in this section
and the corresponding fitting accuracy at the EGEE
Grid level (Section 6.5) we can conclude that a three-
phase hyper-exponential distribution is in both cases
adequate to model the WN execution times, while the
increase from three to four phases improves slightly
the modeling accuracy. As stated above, the differ-
ence between the EGEE and kallisto cases is the result
of the different number and content of VOs that these
measurements correspond to.

11 Conclusions

A thorough analysis of the job arrival process and the
time durations jobs spend at different states in the
EGEE/LCG environment was presented. The job
inter-arrival times at the Grid level were found to
match very well with a rounded exponential distribu-
tion. We defined four delay components of the total
job delay, and proposed and validated probabilistic
models for each component separately. We also
evaluated the efficiency of the Grid environment and
calculated that we would obtain similar performance
if we submitted the same workload to a super-cluster
having 34% of the total average number of CPUs
participating in the EGEE/LCG infrastructure.

We also presented a comprehensive and thorough
traffic analysis of our local Grid cluster. At the cluster
level the job arrival process exhibits long-range
dependence as indicated by the Hurst parameter
calculated. We proposed several models for the job
arrival process at the cluster level. The custom
“Pareto-exponential” model is simple, intuitive, and
matches well with the actual measurements. This
model incorporates exponential job inter-arrival times
during busy periods of exponential duration
(corresponding to a single VO’s job submissions).
The times between VO busy periods are distributed
according to a truncated Pareto distribution. Finally, a
three-state hyper-exponential process was found to be
sufficient for modeling the job execution times.
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