

034115

PHOSPHORUS

Lambda User Controlled Infrastructure for European Research

Integrated Project

Strategic objective:
Research Networking Testbeds

Deliverable reference D.5.9

Extended Simulation Environment

Due date of deliverable: 2009-03-31
Actual submission date: 2009-03-31

<Phosphorus-WP5-D.5.9>

Start date of project: Duration:
October 1, 2006 30 Months

Organisation name of lead contractor for this deliverable: IBBT

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 2

Abstract

This deliverable presents four software tools for planning and evaluating the performance of optical Grids. Initially, a module extending the

NS-2 network simulator is presented that evaluates the performance of data consolidation algorithms (in terms of resulting job delays,

success rate, network load, etc.) for given job characteristics (arrival rates, number of datasets required per job, etc.). Differentiated

resilience for anycast services is the focus of another tool. In particular, it targets at comparing routing and server selection algorithms for

resilient networks (e.g., the effect on blocking probabilities for given job arrival and failure rates). The Optical Grid Simulator provides a

more generic simulation framework for optical Grids, allowing the definition of a variety of network and application models and providing

high modularity. Its aim is to evaluate job scheduling and routing algorithms as well as switching paradigms (OCS, OBS and burst-over-

circuit switching). Last, a network design and dimensioning tool is presented, that unlike the rest of the tools is targeted for use during the

network planning/upgrade phase, so as to create optimal designs that minimize the capacity allocated to the optical network while taking

into account optical characteristics (e.g., with impairment-aware regenerator placement).

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 3

List of contributors

RACTI Emmanouel Varvarigos

 Kostas Christodoulopoulos

 Panagiotis Kokkinos

IBBT Jens Buysse

 Mard De Leenheer

 Chris Develder

ULEEDS Taisir El-Gorshi

 Jaafar Elmirghani

AIT Kostas Katrinis

 Anna Tzanakaki

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 4

Table of Contents

0 Executive Summary 7

1 Introduction 8

2 Dimensioning and Fault Tolerance Simulation Studies for Data-Intensive Applications 9

2.1 NS-2 basic characteristics 10

2.2 GridNs module: Grid and Data Consolidation related extensions to NS-2 10

2.3 Implementation details and metrics used 11

2.4 Installing and using the gridNs module 12

3 A Simulator for Examining Differentiated Resilience for Anycast Flows 14

3.1 Simulator Implementation 15

3.1.1 Node 15

3.1.2 Server 15

3.1.3 Link 15

3.1.4 Link state information 15

3.1.5 Anycasting Request 15

3.1.6 Residual Network 16

3.1.7 Results 16

3.1.8 Traffic Generator 16

3.1.9 Routing and Server Selection Algorithms 16

3.2 Simulation Cycle 17

4 Optical Grid simulator 19

4.1 Introduction 19

4.2 Overview 19

4.2.1 Class diagram 20

4.3 Optimization and additional feature 21

4.3.1 Jung library 21

4.3.2 Hybrid switching – Burst over Circuit Switching 21

4.4 Running a simulation 22

5 NeDeTo (Network Design Tool) 24

5.1 Application Workflow 24

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 5

5.2 Optimization Core 28

5.3 Network Design Results Data Structures 29

6 Conclusions 30

7 References 31

7.1 Acronyms 32

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 6

Table of Figures

Figure 1 GridNs module workflow. .. 11
Figure 2 Node simulation cycle.. 19
Figure 3 Class diagram of the discrete event simulator. ... 20
Figure 4 Execution flow of a HybridSender. .. 22
Figure 5 Workflow diagram of the Network Design Tool. .. 26
Figure 6 Snapshot of the Network Design Tool graphical user interface. ... 28

List of tables

Table 1 – Specification of data structures containing the results of the network design/dimensioning process . 29

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 7

0 Executive Summary

This deliverable describes the tools which have been used in the studies conducted in WP5.

First, a tool extending the NS-2 network simulator for the evaluation of new data consolidation techniques is

presented to assess the performance of data consolidation algorithms (in terms of resulting task delays,

success rate, etc.) for given task characteristics (e.g. arrival rates, number of datasets per task, etc.).

Differentiated resilience for anycast services is the focus of another tool. In particular, it targets at comparing

routing and server selection algorithms for resilient networks (e.g., the effect on blocking probabilities for given

job arrival and failure rates). The Optical Grid Simulator provides a more generic simulation framework for

optical Grids, allowing the definition of a variety of network and application models and providing high

modularity. Its aim is to evaluate job scheduling and routing algorithms as well as switching paradigms (OCS,

OBS and burst-over-circuit switching).

Lastly, a network design and dimensioning tool is presented, that unlike the rest of the tools, is targeted for use

during the network planning/growth phase, creating optimal designs and minimizing the capacity allocated to

the optical network, while taking into account optical characteristics (e.g. with impairment-aware regenerator

placement).

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 8

1 Introduction

Simulators are widely used in the software community to mimic the behaviour of theoretically complex models,

which are too difficult to grasp on a conceptual level. By this, we can receive practical feedback when designing

real world systems by studying the considered problem at different levels of abstraction. In the past WP5

deliverables we have used several simulator software distributions, which were briefly described in each

deliverable. In this report we give a comprehensive overview of all of them, and outline their main goals and

characteristics.

Section 2 discusses an extension of the Network Simulator (NS-2), which can be used for the study of data

consolidation techniques that are applied when a job requires more than one datasets for its execution.

In Section 3, a simulator is developed to examine a differentiated resilience scheme that allows anycast flows

to survive any link or server failure.

The next section describes the changes that have been made in the optical grid simulator which was initially

developed in [1].

Finally Section 5 introduces a network planning tool based on MATLAB, built to optimize the design of the

Phosphorus optical network infrastructure with particular attention for the optical characteristics (e.g. taking into

account physical layer impairments).

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 9

2 Dimensioning and Fault Tolerance
Simulation Studies for Data-Intensive
Applications

The Phosphorus project is in large part dedicated to studying network-related aspects of Grid computing, and

thus its focus is on data-intensive applications that are heavily dependent on network resources. In this context,

we identified the crucial concept of Data Consolidation (DC) that applies to applications that need several

pieces of data scattered in a number of Grid resources. The DC problem consists of three interrelated sub-

problems: (i) the selection of the replica of each dataset (i.e., the data repository site from which to obtain the

dataset) that will be used by the job, (ii) the selection of the site where these pieces of data will be gathered and

the job will be executed and (iii) the selection of the paths the datasets will follow to arrive at the data

consolidating site.

We examined the Data Consolidation (DC) operation in a number of Phosphorus deliverables, namely [2] and

[3], by considering network design, resource placement and fault tolerance issues. In [2] we proposed a

number of simple Data Consolidation techniques and examined how they are affected by the network design. In

particular, we investigated the effect of the total number of storage resources and the effect of the placement of

storage resources and datasets in the Grid Network. In [3] we added resilience features to the proposed DC

techniques in order to provide fault-tolerance to the DC operation. Moreover, we proposed new DC techniques

to cope with the increased network load that is generated by introducing the additional resilience features. We

showed that it is possible to perform DC with increased fault-tolerance in an efficient manner.

Data Consolidation (DC) techniques along with the various design, placement and resiliency issues were

studied through simulations, by using and extending the Network Simulator (NS-2) [4). We decided to use NS-2

because it implements and simulates a large number of network-related parameters and characteristics that are

very essential to examine the performance of data-intensive applications. On the other hand, NS-2 does not

implement any grid-related characteristics (e.g., computational and storage resources) and as a result we

implemented these features from scratch. Using NS-2 for our DC related studies, we were able to easily

develop and evaluate the performance of a number of new DC algorithms in various scenarios. We believe that

the large NS-2 user base can benefit from the work we performed and this is the reason we will make our

source code available to the community, using the GPL open source license.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 10

2.1 NS-2 basic characteristics

NS-2 is a discrete event simulator targeting networking research in general. NS-2 provides substantial support

for simulation of TCP, routing and multicast protocols over wired and wireless (local and satellite) networks.

The code implementing the protocol models as well as the simulation engine (for the simulation of event

scheduling, etc.) is C++, while an OTcl (short for MIT Object Tcl) simulation user interface is provided. The user

describes a network topology by writing OTcl scripts, and then the main NS program simulates that topology

with the specified parameters. In addition to the simulation program, NS-2 provides a number of tools for

creating topologies and random traffic patterns. We extended the NS-2 code base to develop new algorithms

and characteristics.

2.2 GridNs module: Grid and Data Consolidation related

extensions to NS-2

In order to add Grid related characteristics to the NS-2 simulator, we implemented the gridNs module. In this

module we also implemented the various Data Consolidation and fault tolerance techniques/algorithms

previously investigated in [2] and [3]. In particular the gridNs module consists of the following files:

 cpp\DC_agent.cc and cpp\DC_agent.h: This C++ class implements a computational and storage Grid

resource.

 cpp\DC_replication_table.cc and cpp\DC_replication_table.h: This C++ class implements the

structure of a resource where datasets are stored.

 cpp\DC_scheduler.cc and cpp\DC_scheduler.h: This C++ class implements the Grid scheduler and

the DC algorithms.

 cpp\task_struct.cc and cpp\task_struct.h: This C++ class implements a Grid job that has both

communication and computation requirements.

 cpp\DC_hdr.h: This C++ class implements the DC specific data packet header.

 cpp\DC_graph.cc and cpp\DC_graph.h: This C++ class implements the topology graph. It is used by

a number of DC algorithms in order to select the DC and the data replicas sites. In this class we used

the Boost library‟s [Boost] Minimum Spanning Tree algorithms.

 cpp\stat_collector_dc.cc and cpp\stat_collector_dc.h: This C++ class is used for collecting

statistics.

 tcl\lib\ns-dc-defaults.tcl: This tcl file contains the default values for a number of variables.

 tcl\lib\ns-dc-lib.tcl: This tcl file contains a number of functions used by the tcl interface in order to

create a Grid topology.

 tcl\example\experiment.tcl: Through this tcl file the parameters and characteristics of an experiment

are set up, such as the Grid topology, the characteristics of the links and the resources, the

requirements (computational and communicational) of the jobs generated and other.

Figure 1 shows the workflow of the gridNs module, both in OTcl and in C++ level.

http://en.wikipedia.org/wiki/OTcl

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 11

Figure 1 GridNs module workflow.

2.3 Implementation details and metrics used

In our implementation we assume a point-to-point (opaque) optical network; the delay for transmitting between

two nodes includes the propagation, queuing and transmission delays at intermediate nodes. Only one

transmission is possible at a time over an optical link, so a queue exists at every node to hold the data waiting

for transmission.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 12

Moreover, at the beginning of the simulation a given number of datasets are generated and two copies of each

dataset are distributed in the network; the first is distributed among the Tier 1 sites and the second is placed at

Tier 0 site (we assumed a hierarchical data resource architecture, which consists of two Tiers). Since the

storage capacity is bounded, there are cases where a site does not have the free storage capacity required to

store a needed dataset. In such a case, one or more of the oldest and unused datasets are deleted until the

new dataset can be stored at the resource.

In all our experiments we keep constant the average total data size S that each job requires:

 VIS L , (1)

where L is the number of datasets a job requests and VI is the average size of each dataset. The job workload

W correlates with the average total data size S, through parameter a, as:

 W a S . (2)

As a increases, the jobs become more CPU-intensive, while as a decreases the jobs have less computation

demands. Also, when a job completes its execution we assume that there is no output data returned to the

originating user.

We have implemented the following metrics to measure the performance of the DC algorithms examined:

 The average job delay, which is the time that elapses between the creation of a job and the time its

execution is completed at a site.

 The average load per job imposed to the network, which is the product of the size of datasets

transferred and the number of hops these datasets traverse.

 The job success ratio: This is the ratio of the number of jobs that where successfully scheduled, over

the total number of jobs generated. When a large number of jobs are queued or under execution, it may

be impossible for the scheduler to find a resource with sufficient free storage space, where a new job‟s

datasets can consolidate. In this case the job cannot be scheduled and is counted as a failure.

 The Data Consolidation (DC) probability, which is the probability that the selected DC site will not have

all the datasets required by a job and as a results Data Consolidation will be applied.

The first metric characterizes the performance of the DC strategy in executing a single job, while the second

and the third express the overhead the DC strategy induces to the network. The fourth metric gives information

on the way the DC site is selected, with respect to the datasets that are located (or not) at this DC site.

2.4 Installing and using the gridNs module

In order to use the gridNS module one must follow the following steps:

1. Install the ns-allinone software package: http://www.isi.edu/nsnam/ . Our module was tested with

version 2.31.

http://www.isi.edu/nsnam/

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 13

2. Install the boost library: http://www.boost.org/ . Our module was tested with version 1.34.

3. Unzip the gridNs package in the ns-allinone/ns/ folder.

4. In the file ns-allinone/ns/common/packet.h add the „PT_DC’ packet type to the packet_t enumerator.

5. In the file ns-allinone/ns/common/packet.h add the „name_[PT_DC]="DC";’ assignment command, in

the constructor of the p_info (packet information) class.

6. Change the ns-allinone/ns/Makefile, so as to include the gridNs files.

7. Compile the NS-2 code, using the commands: „make clean’, „make all’

8. Define the desired Grid topology in the tcl/example/rules.tcl file.

9. Run the experiment using the command:

ns gridNs/examples/experiments.tcl [total_number_of_jobs] [data_size] [data_requested] [a_value]

[l_arr] [scheduling_str] [given_seed] [number_of_nodes_with_cpus]

 where:

- total_number_of_jobs: the number of jobs to be executed

- data_size: the average size of a dataset (exponential random variable)

- data_requested: the data requested per job

- a_value: this parameter defines whether a job is computation or data-intensive l_arr: the job

average creation interarrival (exponential random variable)

- scheduling_str: the Data Consolidation policy used

- given_seed: the seed used

- number_of_nodes_with_cpus: the number of sites having computational and storage

resources.

10. A result file will be created containing the following data: "number_submitted_jobs",

"datasets_requested", "computational_complexity", "data_output_size", "searched_agents",

"datasets_not_found_in_same", "datasets_transfers", "datasets_transfer_hops","data_transfer_size",

"data_transfer_multpl", "datasets_deleted", "executed_jobs", "total_time", "consolidation_time",

"including_queue_time", "including_exec_time", "larger_total_time", " jobs_not_scheduled", "

jobs_larger_than_maxqueue", "transfer_cost".

http://www.boost.org/

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 14

3 A Simulator for Examining Differentiated
Resilience for Anycast Flows

In this section a simulator is developed to examine a differentiated resilience scheme that allows anycast flows

to survive link and server failures. The simulator is developed as a discrete event simulator. The simulator is

written in C programming language as it is extremely flexible, reliable and quick, and moreover, the C language

is designed so that separate modules can be developed independently and afterwards combined altogether

which facilitates subdividing complicated development into smaller and less complex modules. The main

features of the simulator include:

 The simulator is simple and easily comprehensible as it is developed to be as modular as possible by

defining a number of different structures.

 Flexibility in examining different routing algorithms and introducing new traffic classes with different

resilience requirements.

The resilience approach implemented is based on the assumption that an anycasting request can be served by

any suitable replica server. Under this approach, referred to as backup server, routes of both upstream and

downstream connections to a backup server(s) are calculated; if the working server fails, then the backup

server takes responsibility. Differentiation is created by introducing three classes of resilience. Class 1 and

Class 2 connections are recovered through dedicated and shared protection to an alternative server,

respectively. A Class 3 connection assures restoration by using the spare capacity left after recovery of the

other two classes. In the simulation scenario, we compare the performance of the different classes under

different combinations of routing and server selection algorithms. Explicit routing is used for the Label Switched

Paths (LSPs) selection. Dynamic routing is implemented to calculate routes (upstream and downstream

connections) to both the primary and the backup servers. Two routing algorithms are examined: the Constraint

Shortest Path First (CSPF) algorithm [4] and the Least Interference Optimization Algorithm (LIOA) [4]. Three

server selection algorithms are presented: Hop Number Server (HNS), Residual Capacity Server (RCS) and

Hop Number Widest Server (HNSW) [3].

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 15

3.1 Simulator Implementation

In order to design a modular simulator, a number of different structures and functions have been defined. Each

structure is defined in a different C module, but some of them have access to the properties of other structures

to which they are linked. In this section we present the main structures and functions defined in the simulator

and their main parameters.

3.1.1 Node

A node is a structure characterized by its name, ID and its nodal degree and the links connected to it. Each

node is assumed to be used as an ingress and egress node.

3.1.2 Server

Server is another defined structure characterized by its location. A given number of nodes will be randomly

selected (using a given random seed to allow for reproducible experiments) to function as servers. A Server is

assumed to have unlimited resources (e.g. storage, processor etc) which implies that link bandwidth is the only

potential bottleneck for the anycast flows.

3.1.3 Link

A Link is a structure characterised by its ID, length, propagation delay, link capacity, total link flow, residual

capacity and nodes connected to it.

3.1.4 Link state information

Link state information required for server selection and routing includes link capacity, total link flow and the

location of the replica servers. For simplicity, in our simulation scenario it is assumed that all the above

information is known administratively: we do not explicitly model link state information distribution protocols.

3.1.5 Anycasting Request

An anycasting request is a defined structure characterised by its origin node, upstream/downstream bandwidth

requirements and resilience requirements (traffic class). To establish an anycast flow to one of multiple

destinations, a destination is selected according to one of three server selection algorithms mentioned above.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 16

3.1.6 Residual Network

The residual network for a new anycasting request is built with nodes with sufficient resources (e.g. memory,

processor, etc.) and links with a residual capacity exceeding the request bandwidth requirement. Bandwidth

requirements of both upstream and downstream routes are considered, and as such only reachable servers

with enough resources are taken into account in the selection. Such servers are called available servers.

3.1.7 Results

The connection blocking probability is used as the comparison metric. The blocking probability is calculated for

each class individually as the ratio of the number of blocked requests of that class to the total number of

requests of that class. An anycast request is considered to be blocked if no available servers are found. Also

Class 1 and Class 2 anycasting requests are blocked if either the upstream or downstream connections of the

paths to the primary or the backup servers cannot be established. An anycast request of Class 3 is blocked if

either the upstream or downstream connections of the path to the primary server cannot be established. The

obtained results are averaged out over various cases of server locations. Results are collected in a specially

defined structure and stored in an easily processed form.

3.1.8 Traffic Generator

The traffic of each node is simply generated prior to the start of the simulation and stored in a file. When a

simulation is started, a function called read_anycasting_request() is used to fetch the traffic from the files into

the nodes.

For the simulation scenario, we assume the total traffic consists of 10% Class 1, 30% Class 2, and 60% Class

3. As the anycast flow is asymmetrical, bandwidth requirements are assumed to be as follows: The upstream

connections of all traffic classes are assumed to be 1 bandwidth unit. The downstream connections

requirements are assumed to be uniformly distributed in the range of (4-10) units for Class 1 and Class 2.

Requirements of Class 3 are assumed to be uniformly distributed in the range of (0-4) units. The values of

these parameters can be easily changed to run the simulator under a different traffic scenario.

3.1.9 Routing and Server Selection Algorithms

The user can choose to run the simulator under any combination of the server selection algorithms (HNS, RCS

and HNSW) and the routing algorithms (CSPF and LIOA) by executing the select_server() and

routing_algorithm() functions.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 17

3.2 Simulation Cycle

Figure 2 illustrates the simulation cycle of a node. The node fetches an anycasting request from the node traffic

file using the read_anycasting_request() function. According to the network link state information and the

anycasting request bandwidth requirements, the node executes the build_residual_network() function to build

residual network. If no servers are available, the anycasting request is blocked. Otherwise, the node checks the

resilience requirements of the request to provide the required protection level. For Class 1 and Class 2, a

primary and a backup server are selected according to the implemented server selection algorithm using the

select_server() function. Then link disjoint paths are provisioned to the primary and backup servers according

to the implemented routing algorithm by executing the routing_algorithm() function. If the request cannot be

provisioned according to the current network state, existing Class 3 connections can be rerouted to allow the

otherwise blocked requests of Class 1 and Class 2 to be routed. If still the request cannot be rerouted, it is

blocked. Rerouting of existing Class 3 connections is done by executing the build_residual_network(),

select_server() and routing_algorithms() functions. For class 3 only a primary server is selected and a path is

provisioned to it. Failing to provision a path to the primary server results in blocking the connection. Finally the

request blocking probability results are collected.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 18

Anycasting request arrival

(read_anycasting_request())

Select a primary server and a backup server

according to server selection algorithm,

(select_server())

 Able to Provision a path to

primary server and link

disjoint path to backup server

(routing_algorithm())

Block connection

Collect results

(res_add_to())

Block connection

 Able to build residual

network?

(build_residual_network())

Check anycasting request

resilience requirement

Able to build residual

network?

(build_residual_network())

New simulation cycle begins

 Select a primary server according to

server selection algorithm

(select_server())

Able to Provision a path to

primary server

(routing_algorithm())

Will Rerouting of a class 3

connection allow path

provisioning?

(Class3_rerouting())

 Simulation cycle ends

Yes

Yes Yes

Yes

Yes

No

No

No
No

No

Class 1 & Class 2

Class 3

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 19

Figure 2 Node simulation cycle.

4 Optical Grid simulator

4.1 Introduction

The Phosphorus project addresses several key technical issues to enable on-demand, end to end network

services in an optical grid environment. In WP5 innovative architectures and algorithms have been proposed,

which are not, however, easy to test in a real life test bed. Therefore, in [1] we developed a simulator that

implements an optical grid network and a detailed job model that corresponds to a wide range of applications.

In the context of the present deliverable, we have extended the simulator, by implementing an additional key

feature and by optimizing important operations of it, so as to reach a certain performance level.

4.2 Overview

The simulator is written in Java and its base classes make up a discrete-event simulator, which models a

chronological sequence of events, each marking a change in the state of the system. The basic flow of the

simulator is as follows:

1. The various entities (switches, resources, clients …) are initialized.

2. System variables and the main clock are initialized.

3. An initial event is scheduled, i.e. an initial event is put into the event list from which a chain reaction of

other events will occur.

4. While the simulator does not reach its ending condition

a. Set clock to next event time.

b. Execute the next event and remove it from the event queue.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 20

c. Update the entity‟s statistics.

4.2.1 Class diagram

There are no big changes in the overall design of the simulator as outlined in deliverable [1]. Each real world

object in the grid setup (such as a link, a switch, a server) is represented in the simulation framework as an

Entity. Entities in the simulation framework exchange messages (e.g., representing jobs) through so-called

in/out ports. These messages are wrapped into a SimbaseEvent and are passed via the GridInPort of the

receiving entity. The SimbaseSimulator class is responsible of keeping track of every event and executes each

event chronologically.

SimulationInstanceSimbaseSimulator

SimbaseEntity

SimbasePort

SimbaseOutPort SimbaseOutPort

SimbaseEvent

SimbaseMessage

11

1

*

1

1

1

*

1

*
1

1

Time

1 1

Figure 3 Class diagram of the discrete event simulator.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 21

To implement the grid specific functionality, several classes are implemented which are derived from the base

classes described above, such as ClientNode, ResourceNode, Switch. For more information regarding the

architecture of the simulator we refer to [1].

4.3 Optimization and additional feature

4.3.1 Jung library

In the first version of the simulator we implemented our own graph representation structures and graph related

algorithms. For example, we implemented from scratch the Dijkstra algorithm, so as to find the shortest path

from node A to node B. However, this requires a significant programming effort, while several libraries are

available that already implemented such functionality. As a result, in the context of the present deliverable, we

decided to integrate one of these libraries, namely the JUNG [4], in our simulator.

JUNG (Java Universal Network/Graph Framework) is a software library that provides a common and extensible

language for the modelling, analysis, and visualization of data that can be represented as a graph or network.

This library is incorporated in our software in such a way that the user of the simulator does not need to know

how to use it. JUNG also provides a visualization framework that makes it easy to construct tools for the

interactive exploration of network data.

4.3.2 Hybrid switching – Burst over Circuit Switching

The main update from the previous version of the simulator is that it is now able to model the Burst-Over-Circuit

switching technique
1
 [5]. This became possible by the introduction of the HybridSender class, which takes care

of the switching technique used by an entity. This sender is a composition of two other senders: namely an

OCSSender and an OBSSender. First, the HybridSender tries to send the data using the OCSSender, in order

to take advantage of an already established OCSCircuit. If this is not possible, there are two remaining

possibilities, namely:

1. We have reached the beginning of an OCScircuit and the data must be conveyed on this circuit.

2. There are no circuits available and the OBS switching technique should be used to forward the data.

This execution flow can bee seen in Figure 4.

1
 In the Burst-Over-Circuit-Switching model, the circuit switched network technology works as a server layer

providing a virtual topology with light paths to a burst switching client layer. Optical bursts are only switched in the
client layer nodes and transparently flows in light paths through the server layer nodes.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 22

Receive Data

Send using

OCSSender as

part of a previous

circuit

Sending Ok?

Sending finished

Check if this node

is beginning of a

circuit to the data‟s

destination

Is Beginning ?

Send using

OBSSender

Send using

OCSSender

Yes No

Yes No

Figure 4 Execution flow of a HybridSender.

4.4 Running a simulation

Defining a simulation scenario and running it, it is done by writing a Java program, using the classes and

interfaces implemented by our framework.

 First the Simulator and SimulatorInstance objects should be created. The SimulatorInstance receives

as input parameter the location of the configuration file which contains the standard parameters for the

simulation, such as the number of wavelengths per link, the processing power of a resource core, etc.

Individual parameters can be altered by invoking the corresponding setter method on that entity for that

parameter.

simInstance = new GridSimulation("configFiles\\loadCircuits.cfg");

simulator = new GridSimulator();

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 23

 Next, the entities of the simulation have to be constructed.

 Each resource is assigned the broker/scheduler.

 The links between the entities have to be created, defining this way the topology.

 Insert a circuit between two entities (e.g., a client and a resource).

 Finally, the simulation is started and its output is printed out.

switch1 = Grid.Utilities.Util.createHybridSwitch("SWITCH1", simulator);

broker = Grid.Utilities.Util.createHybridServiceNode("BROKER", simulator);

resource1 = Grid.Utilities.Util.createHyridResourceNode("RESOURCE1", simulator);

client1 = Grid.Utilities.Util.createHybridClient("CLIENT1", simulator, broker);

resource1.addServiceNode(broker);

Grid.Utilities.Util.createBiDirectionalLink(client1, switch1);

Grid.Utilities.Util.createBiDirectionalLink(switch1, client1);

Grid.Utilities.Util.createBiDirectionalLink(switch1, broker);

Grid.Utilities.Util.createBiDirectionalLink(switch1, resource1);

Grid.Utilities.Util.createOCSCircuitInHybridNetwork(client1, resource1, simulator);

simInstance.run();

output.printClient(client1);

output.printResource(resource1);

output.printSwitch(switch1);

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 24

5 NeDeTo (Network Design Tool)

Deploying lambda Grids in a cost-efficient and yet effective manner entails among others prior careful planning

of the target optical network infrastructure. The latter is realized through the application of known optimization

methods to the network design/dimensioning problem, with the ultimate goal of deriving a minimum cost

network that satisfies a set of desired constraints, taking into account the physical layer characteristics

(impairments).

Towards optimizing the design of the Phosphorus optical network infrastructure, we have implemented the

Network Design Tool (abbreviated to NeDeTo). Although it is implemented using the MATLAB programming

framework, the tool can be run in the form of a standalone executable in any commodity operating system

(OS), given that a related compiler compatible with the MATLAB framework is used to compile the code with a

specific OS as target. Currently, we have provided for an executable targeted at machines running Microsoft

Windows. In addition, a working MATLAB installation is needed to create .mat input parameter files, as well as

to process the files containing the optimization output results. NeDeTo can be efficiently run on any

contemporary commodity workstation, without stringent or exotic hardware requirements in terms of CPU

frequency, processor architecture, main memory size or hard disk space. Still, the optimization core will greatly

benefit from high-end CPU and memory capabilities, resulting in execution speedup. This is reasonable when

designing medium- to large-scale networks, mainly due to faster processing of the branch-and-bound tree and

due to lower I/O activity between main memory and hard disk for fetching parts of the tree to the working

memory.

5.1 Application Workflow

NeDeTo implements the network design/dimensioning approach presented in [2]. As such, it employs the

respective network cost model and implements the physical impairments model and the specific dimensioning

methods specified in [2].

Figure 5 illustrates the workflow of the design process as perceived by the application user, which follows

naturally from the theoretical specification of the network design approach presented in [2]. The user has first to

specify all information that forms the input to the network design problem that is to be solved by NeDeto. More

precisely, following input is required:

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 25

1. Physical network topology, which is specified by loading a properly formatted (see Appendix for format

specification of the topology file) topology file that among others contains number of switching nodes and

the set of candidate fibre links with per link physical distance. The tool distribution made available includes

topology files modelling the Phosphorus European and Phosphorus extended [2] topologies, as well as

topology files modelling toy networks to be used for correctness testing.

2. Assigning values to optical parameters e.g. bit rate. The application expects a file with optical parameter

value assignments bundled in a MATLAB data file, named after “p1.mat” and located in the same directory

as the main executable. The tool distribution supplied includes a “p1.mat” file that is per default used to

assign values to the optical parameters of the network that is to be planned.

3. Specifying a set of connection requests between node pairs of the input topology. The designed network,

among other constraints, will be capable of fulfilling these connection requests. The input traffic matrix,

contained in a properly formatted file (see Appendix for format specification of the traffic matrix file), is

loaded by the user through the GUI interface of the tool. The tool distribution made available includes traffic

files for the Phosphorus European and Phosphorus extended topologies, as well as traffic files modelling

that are to be used with the toy network topologies provided.

4. Specifying technology and routing parameters, namely number of wavelengths/fibre, maximum number of

fibres allowed per physical link and number of alternative paths to be considered by the k-shortest path

algorithm.

5. Specify the cost parameter values, as mandated by the cost model extensively presented in [2].

After all input data have been loaded/specified, the design method to be used to optimize the total cost in the

optical WDM network needs to be selected among three alternatives (all presented in [2]):

 Network design/dimensioning without use of regenerators (“Basic” method)

 Network design/dimensioning with length-based regenerator placement

 Network design/dimensioning with impairment-aware regenerator placement

The completion of all the above steps yields a well-defined instance of the network design/dimensioning

problem that is solved by the NeDeTo tool to optimality, as soon as the user initiates the optimization process.

The results of the optimization process are written to .mat MATLAB data files, whose structure is extensively

specified later in this section. In addition, utilization of resources in the designed network is depicted using three

graphs:

1. Graph illustrating the utilization of alternative paths by each connection request, among the k alternative

paths that can be taken by the k-shortest path algorithm used.

2. Graph illustrating number of fibres installed per physical link in the designed network.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 26

3. Graph illustrating number of activated wavelengths per physical link in the designed network.

While the illustration of these data does not convey a lot about the efficacy of the design method used, we

found these graphs very useful in understanding the behaviour of the various design approaches, depending on

the particularities of the problem input. In any case, the availability of various evaluation metrics data contained

in the results .mat files allows the user to create custom code to create custom graphs that will serve the

purpose of illustrating the results of interest to serve the research goal that is to be met through the use of our

Network Design Tool.

Figure 5 Workflow diagram of the Network Design Tool.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 27

Figure 6 depicts a snapshot of the NeDeTo GUI presented to the user after initialization of the tool executable.

Based on the above specification of the application workflow, the semantics of the user interface should be

straightforward, with the sole exception of the following widgets that increase functionality:

 “Use Fix Fibre Costs Only” checkbox: the user may set this flag to true (i.e. tick the respective box), if

the installation costs that are proportional to link distance are to be ignored. This functionality is

provided for solving network planning problems, whereby fibre has already been laid down (e.g. dark

fibre) and as such only fibre termination costs (fixed costs) have to be considered.

 “Use Ranges” checkbox: the user may set this flag to do a parametric study of network planning (with

or without joint regeneration placement) with regards to ranging cost factors, instead of using a single

value for each cost factor used. Checking the “Use Ranges” enables the “* Samples” textboxes

(“#Trenching Cost Samples”, etc.), as well as the second textbox for specifying the cost value of each

cost factor. The value range to be used for each cost factor, e.g. for the cost of fibre/distance, is

specified as follows: starting at the cost value specified by the left cost textbox (0,125 for fibre/km in

Figure 6), advance the respective cost value up to the maximum value as specified by the right textbox

(0,5 for fibre/km in Figure 6) in equidistant steps such that the total number of tested cost values for the

this cost factor to equal the number of samples specified in the respective “* Samples” textbox (2 for

fibre/km in Figure 6). There is also the option of using a range for a subset of the cost factors, while

using a single cost value for the rest of the cost factors by setting the minimum and maximum cost to

the same value (in the latter case the value of samples is ignored). The total number of ILP problems

that will be used, if the range option is used, will be equal to the product of the number of samples per

cost factor.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 28

Figure 6 Snapshot of the Network Design Tool graphical user interface.

5.2 Optimization Core

As already stated in the previous subsection, the Network Design Tool implements the Integer Linear

Programming (ILP) methods presented in [2]. The optimization core part of the tool uses first all problem input

supplied by the user to provide for a formulation of the network design problem that is to be solved, in the form

of a mathematical program. Depending on the design method selected, the tool may include the pre-processing

step of adding regenerators in the process of creating the ILP formulation. As soon as the vectors and arrays

forming the (linear) objective function‟s coefficients and the constraints of the problem are formed, the integer

program is solved by calling the GNU Linear Programming Kit (GLPK [8]) solver. The latter derives first a

solution to the LP relaxation of the input ILP and then applies branch-and-cut techniques to specify the integral

optimal solution, which is passed back to the NeDeTo optimization core. The optimal integral solution is

processed to extract the network design semantics of the optimization result. Among others, the topology of the

optimal-cost network is derived, the paths and wavelengths (light paths) used to route the input traffic requests,

the switching nodes and ports where OEO regeneration occurs, etc. The optimization core finishes by writing

the network design results into data files (more on their format specification in the next subsection) and returns

control to the main application.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 29

5.3 Network Design Results Data Structures

The results of the network design process are returned in a .mat MATLAB data file, in a structured format

instead of raw data representation. The results file is written in the same folder with the Network Design Tool

executable. Depending on the specific network design/dimensioning method selected, the name of the results

file is:

 “results.mat”, if dimensioning without regeneration is used

 “results_oeo_exact.mat”, if dimensioning with impairment-aware regenerator placement is used and

 “results_oeo_length.mat”, if dimensioning with length-based regenerator placement is used and

Table 1 lists the data structures used to report the results of the network design process, together with a

description of the type and semantics of each data structure. These structures can be further processed by

custom written code to derive further statistics that stem from the fundamental results, such as number of

regenerators, percentage of impaired paths, etc.

Table 1 – Specification of data structures containing the results of the network design/dimensioning process

Data Structure Name Data Structure Type Semantic

acceptable_paths 2-dimensional array

Each row corresponds to a path installed
to serve a traffic request. The path is
represented in node format, i.e. each
column corresponds to the switching node
ID covered by the path. The last column
of each row contains a unique integer ID
of the corresponding path. Note that paths
exhibiting Bit Error Rate (BER) below a
given threshold appear as all-zero row
entries in this array.

optimalCost MATLAB Structure

Each structure fields holds a fraction of
the total optimal cost, categorized as
follows:
optimalCost.ductCost: cost due to
trenching
optimalCost.fiberCost: cost of installed
fiber and fiber-related equipment
optimalCost.lambdaCost: cost of
activating wavelengths (termination
equipment)
optimalCost.switchCost: cost of switching
equipment
optimalCost.regenCost: cost of deployed
regenerators

paths 2-dimensional array
Same semantics with the
„acceptable_paths” array, with the sole
difference that no BER checking is

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 30

applied in this array, i.e. all paths are
listed independent of path BER.

paths_BER 2-dimensional array

Each row entry comprises two columns,
where the first column is the analytically
calculated BER of the installed path and
the second column is the unique integer
ID of the path

statistics MATLAB structure

Links of the initial topology used in the
designed network, as well as resource
utilization statistics; specifically fibers per
link installed, wavelengths per link
activated and usage of alternative paths.
In case a design method employing
regeneration is used, the number of
regenerators deployed is also reported in
this structure.

6 Conclusions

We presented several software tools that were developed and used for the evaluation of algorithms and

technologies proposed in previous WP5 deliverables, focusing on dimensioning and fault tolerance issues for

Grids. Different approaches have been followed for the development of these tools, which were based on the

focus of the simulations. For the evaluation of data consolidation techniques that are applied when a job

requires more than one dataset for its execution, we extended Network Simulator (NS-2). This way it was

possible to focus more on the proposed algorithms than the underlying network architecture or technology. On

the other hand, in order to evaluate differentiated resilience in optical WDM networks for anycast services we

created a software tool from scratch. In the present deliverable we also presented the extensions that have

been made to the simulator described initially in [1]. The main extension involves the introduction of a class,

which makes it possible to switch traffic using the Burst-over-Circuit-Switching paradigm. We also presented a

software tool targeted for use during the network planning/growth phase. This tool was built using the MATLAB

environment, offering efficient development and fast execution. This tool is used for creating optimal designs

and for minimizing the capacity allocated to the optical network, while taking into account optical characteristics

(e.g. with impairment-aware regenerator placement).

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 31

7 References

[1] Grid Simulation Environment. s.l. : Phosphorus, 2008.

[2] Grid Network Design. s.l. : Phosphorus, 2008.

[3] Resilient Grid Networks. s.l. : Phosphorus, 2008.

[4] NS. [Online] http://www.isi.edu/nsdam/.

[5] A Framework for QoS-based Routing in the Internet. Crawley, R.N (n.d). s.l. : Phosphorus, 2009, Vol.

Resilient Grid Networks.

[6] Traffic engineering: the Least Interference Optimization Algorithm. B.A. Bagula, M. B. Paris : IEEE

International Conference on Communications ICC, 2004.

[7] JUNG. [Online] http://jung.sourceforge.net/.

[8] Cost-effective Burst-Over-Circuit-Switching in a hybrid optical network. Jens Buysse, Marc De Leenheer,

Chris Develder, Bart Dhoedt, Piet Demeester. Valencia : s.n., 2009. International Conference on

Networking and Services . p. 6.

[9] GLPK: GNU Lineari Programming Kit. [Online] http://www.gnu.org/software/glpk/.

[10] Boost. [Online] http://www.boost.org.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 32

7.1 Acronyms

BER Bit Error Rate

GLPK GNU Linear Programming Kit

GUI Graphical User Interface

ILP Integer Linear Programming

OEO Optical-Electronic-Optical

OS Operating System

WDM Wavelength Division Multiplexing

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 33

Appendix A Network Design Tool Input File Formats

A.1 Network Topology Input File Format

A NeDeTo topology file starts with a line summarizing the network graph, namely number of nodes and number

of links (the trailing “1” is a placeholder for future use):

<number of nodes><TAB><number of physical links><TAB>1<newline>

<newline>

<newline>*

The term “<newline>*” stands for either zero or any number of new line characters. The next N lines specify the

coordinates of each node in the two dimensional space for rendering purposes, where N is the number of

nodes. The format of this line is as follows (note that the topology parser expects exactly N of such lines for a

topology with N nodes):

<X-coordinate><TAB><Y-coordinate><TAB><Node Population>1<TAB>20<TAB>20<TAB>20<TAB><newline>

<newline>

<newline>*

The “node population” corresponds to the population that the node serves and is reserved for future automatic

creation of traffic matrices based on demographics. Currently, this parameter is unused, but it is required for

correct operation of the parser. The same is true with the last four trailing constant integer values. The next E

lines specify the physical links of the topology and their physical distance (in kilometres), where E is the total

number of links in the topology. The format of this line is as follows (note that the topology parser expects

exactly E of such lines for a topology with E links):

<src-node><TAB><dst-node><TAB><link-distance><TAB>20<newline>

<newline>

<newline>*

Again here, the last integer constant is reserved for experimental use, but still is needed for the correct

operation of the parser. The same is true for the following last lines of a topology file:

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 34

1<newline>

<newline>

<newline>*

10

<newline>

<newline>*

Combining all the above line specification, the format of a complete topology file renders as follows:

<number of nodes><TAB><number of physical links><TAB>1<newline>

<newline>

<newline>*

<X-coordinate><TAB><Y-coordinate><TAB><Node Population>1<TAB>20<TAB>20<TAB>20<TAB><newline>

<newline>

<newline>*

<src-node><TAB><dst-node><TAB><link-distance><TAB>20<newline>

<newline>

<newline>*

1<newline>

<newline>

<newline>*

10

<newline>

<newline>*

****************END_OF_FILE_.PHYS****************

Examples of topology files are bundled together with the tool distribution released and can be used together

with the above specification for the creation of new topologies. Note that any line that starts with the reserved

character combination “//” is considered as a comment line and thus the entire line is ignored by the parser.

D5.6 - Extended Simulation Environment

Project: Phosphorus
Deliverable Number: <D.5.9>
Date of Issue: 2009-03-31
EC Contract No.: 034115
Document Code: <Phosphorus-WP5-D.5.9>

 35

A.2 Traffic Matrix Input File Format

A NeDeTo traffic file starts with a line specifying the number of nodes of the corresponding network topology:

<number of nodes><newline>

<newline>

<newline>*

The next N lines, where N is the number of nodes of the network topology, correspond to a NxN matrix, where
an entry X at position (i,j) specifies that X wavelengths are requested from node i to node j (it is straightforward
that the main diagonal will have strictly zero entries):

<nr-wavelengths-1,1><TAB><nr-wavelengths-1,2><TAB>...<nr-wavelengths-1,N><newline>

<nr-wavelengths-2,1><TAB><nr-wavelengths-2,2><TAB>...<nr-wavelengths-2,N><newline>

.

.

.

<nr-wavelengths-N,1><TAB><nr-wavelengths-N,2><TAB>...<nr-wavelengths-N,N><newline>

<newline>

<newline>*

****************END_OF_FILE_.TRAFF****************

Examples of traffic files are bundled together with the tool distribution released and can be used together with

the above specification for the creation of new input traffic matrices. Note that any line that starts with the

reserved character combination “//” is considered as a comment line and thus the entire line is ignored by the

parser.

