

034115

PHOSPHORUS

Lambda User Controlled Infrastructure for European Research

Integrated Project

Strategic objective:
Research Networking Testbeds

Deliverable reference number: D.4.3.2

ForCES Token Based Switch

Due date of deliverable: 30-09-2008
Actual submission date: 30-09-2008

Document code: <Phosphorus-WP4-D.4.3.2>

Start date of project: Duration:
October 1, 2006 30 Months

Organisation name of lead contractor for this deliverable:
University of Amsterdam

Project co -funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 2

Abstract

This document describes the software architecture design and implementation of the ForCES Token Based
Switch, which is a gateway router in a Token Based Networking. The Token Based Networking allows binding
of applications’ traffic from end-nodes (e.g., IP packets in a campus network) to end-to-end lightpaths (e.g.,
GMPLS circuits). In other words, the Token Based Networking architecture establishes authorised paths over
multiple network domains on behalf of the end-nodes applications. The Token Based Switch is a programmable
hardware and software system that processes IP packets at high speeds (multi-gigabits/sec). We designed and
built our gateway router that operates at IP layer (TBS-IP) by using specialised hardware (network processors)
programmable by higher-level software through a standard protocol: ForCES. ForCES is a new protocol
designed by IETF, nearing the point of being RFC, which separates the Forwarding and the Control planes in a
traffic processing system. ForCES provides a scalable way to configure and manage the Forwarding Plane
using a standard protocol.

The current document provides complete information on the TBS-IP software and hardware modules, their
expected functionalities and core structure needed to be used in the Phosphorus test-bed when enhancing a
traditional GMPLS end-node with capabilities of sharing the lightpaths to multiple end-hosts and their
applications in a secure manner.

The document introduces a new approach in regard to network security, the Token concept in the Token Based
Networking architecture, and describes how the ForCES protocol was used to implement a flexible, scalable
and configurable Token Based Switch (TBS-IP) for secure networking over multiple domains. For instance, the
document discusses the modelling of the required hardware functionalities into ForCES Logical Function Blocks
(LFBs) according to the ForCES protocol.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 31/10/08
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 3

Table of Contents

0 Executive Summary 7

1 Token Based Networking 8

1.1 TBN architecture 9

1.2 TBN in multi-domains 10

1.3 Token usage in IPv4 11

2 ForCES Framework 13

2.1 ForCES Model 14

2.2 ForCES Protocol 15

2.2.1 ForCES Protocol Details 16

2.3 ForCEG Specification 17

2.4 ForCEG Architecture 19

3 ForCES Token Based Switch Architecture 21

3.1 TBS-IP architectural/design requirements 21

3.2 TBS-IP operation in TBN 22

3.3 ForCES TBS-IP system architecture 26

4 ForCES Token Based Switch Implementation 27

4.1 Requirements 27

4.2 Software item architectural design 28

4.3 Interface design 28

4.4 Interface specification: TBS-IP/TB 29

4.5 Interface specification: TBS-IP/TS 30

4.6 Interface specification: TBS-IP/TS-TB 31

4.7 Interface specification: TBS-IP/TS-GMPLS 32

4.8 Interface specification: TBS-IP to outside world (AAA server) 32

4.9 ForCES protocol in a TBS-IP router 33

4.9.1 Functionalities from ForCES required for CE-FE interface in TBS-IP 33

4.9.2 Modeling of applications in ForCES 33

4.9.3 XML Model of TBS based on ForCES Model 34

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 4

4.10 Software item detailed design 34

4.11 ForCEG high-level interface to the outside world 34

4.12 ForCEG – plugins 36

4.12.1 Message-parser 37

4.12.2 Token Validation Service (TVS) plugin 38

4.12.3 Global Reservation Id threading (GRI-thread) 40

4.12.4 GMPLS (Gmp) plugin 42

4.12.5 Advance Power Management (APM) plugin 42

4.13 FFPF software on network processors: FIX2850 42

4.13.1 FE-LFB in NPU: mapping of LFBs on hardware cores 43

4.13.2 FE-LFB in NPU: mapping of processing hierarchy 43

4.14 LFB attributes 45

4.15 FE-IXP 46

4.15.1 FE 47

4.15.2 µeManager 47

4.15.3 Init_chip 48

4.15.4 Init_software 48

4.15.5 µEngines => XScale interface 48

4.15.6 XScale => µEngines interface 49

4.15.7 Mapping of high-level identifiers into low-level hardware 49

5 Conclusions and summary 51

6 References 53

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 5

List of Figures

Figure 1.1 Connecting applications through the optical paths. ...8

Figure 1.2 TBN architecture..9

Figure 1.3 TBN in multi-domain networks. .. 11

Figure 1.4 Creating a token. .. 12

Figure 2.1: ForCeS Network Element .. 14

Figure 2.2: FE Internally. ... 15

Figure 2.3 ForCEG Protocol Stack .. 18

Figure 2.4. “Target” Concept ... 18

Figure 2.5 ForCEG Architecture .. 19

Figure 3.1. Providing end-to-end lightpaths over multidomain networks using TBS-IP systems interconnected
into an AAA framework. ... 24

Figure 3.2. Providing end-to-end lightpaths over multidomain networks using a mix of TBS-IP with GMPLS
systems. ... 25

Figure 3.3. TBS-IP system architecture. .. 26

Figure 4.1. Interfaces used in the TBS-IP system ... 29

Figure 4.2. TBS-IP/TB Interface .. 30

Figure 4.3. Two FEs (ForCES-IXP) slaves connected to the CE master (ForCEG). .. 30

Figure 4.4. TBS-IP/TS Interface .. 31

Figure 4.5. TBS-IP/TS-TB Interface .. 31

Figure 4.6 TBS-IP/TS-GMPLS Interface. .. 32

Figure 4.7 Interface TBS-IP to outside world (AAA server) ... 32

Figure 4.8 Example of XML based AuthZ ticket format. .. 35

Figure 4.9 Work flow in TBS-IP switch. ... 37

Figure 4.10 Workflow in TVS module. ... 39

Figure 4.11 Workflow in GRI-thread module. .. 41

Figure 4.12 Workflow in fast data-path. ... 44

Figure 4.13 Code examples in decisional connectors. .. 44

Figure 4.14 IXP .. 47

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 6

List of Tables

Table 4.1 – Example of LFB Mapping ... 43

Table 4.2 Connection graph example .. 45

Table 4.3 LFB Attributes .. 45

Table 4.4 AuthTable Example ... 46

Table 4.5 Authorization Table .. 50

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 7

0 Executive Summary

The document introduces the Token Based Networking architecture, and describes how the ForCES protocol
was used to implement a flexible, scalable and configurable Token Based Switch (TBS-IP) for secure
networking over multiple domains.

Section 1 introduces a new practical approach in regard to secure network access control: the Token Based
Networking concept.

Section 2 briefly introduces the ForCES protocol as well as it describes the architecture of ForCEG, a ForCES
Gateway component enhanced with WebService capabilities in a TBS-IP system.

Sections 3 describes the architecture of the ForCES Token Based Switch that implements the Token Based
Networking concepts and uses the ForCES protocol to provide a flexible, scalable, and configurable Switch for
establishing secure data paths between applications on end-hosts in a IP campus network over a multi-domain
circuits based network.

Finally, section 4 discusses the implementation of the ForCES Token Based Switch (TBS-IP) in both hardware,
and software and the modelling of the hardware into ForCES Logical Function Blocks (LFBs).

A set of appendixes provide further details about XML Token and Authorization Ticket formats used in the
authorisation process and the XML schema of the ForCES LFBs that were implemented to program the low-
level hardware processing units (network processors).

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 8

1 Token Based Networking

Token Based Networking (TBN) is a new concept for a network that handles packets according to a specific
tag, built-in the packet, called token. TBN uses tokens built from small encrypted pieces of data (e.g., a few
bytes). By its mean, a token allows for applying different access/enforcement/filtering rules/criteria when
processing packets that carry the tokens.

Tokens are a simpler way to authorise resource usage than certificates due to their concept: a policy
enforcement point authorise the resource usage (e.g., a packet takes a certain path) only if the built-in token
matches a cryptographic result applied to the packet using a set of keys provided beforehand by an authority at
the moment of the path reservation. Tokens can bind to different semantics (in particular, it can be associated
with the group of users and share its use when accessing designed resources), and they decouple the time of
authorisation decision from the time of use (e.g., enable the use of resource for 10~hours from now or from
tomorrow at 5 o'clock). Moreover, Tokens are a simple way of controlling access to authorised/reserved
network resources that separates reservation/policy decision and access stages.

On the one hand, in the context of access control for high speed networks, one may see the tokens as a “glue”
between upper layer authorisation infrastructure, which uses policies to describe the resource usage, and the
lower layer enforcement points of the data plane.

On the other hand, in the context of applications interconnected over the networks, we see the tokens as a glue
between the application’s traffic (sockets) and the network resources (lightpaths). In other words, a token binds
applications’ IP packets and circuits, as illustrated in Figure 1.1.

Figure 1.1 Connecting applications through the opti cal paths.

Token
Based
Switch

lightpaths

campus net

IP packets

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 9

1.1 TBN architecture

Figure 1.2 shows the architecture used for setting up a lightpath using token based networking. In a nutshell,
the process is as follows:

1. On behalf of a subset of its users, ISPA generates a Link Access Request (LAR) message to use a

particular link (from the available links of its peering point) for a certain period of time. The details of

LAR generation based on user requests are covered in the deliverable D4.1-Chapter3;

2. The LAR is sent to the AAA server of peering point A ;

3. The AAA server fetches a policy from the policy repository that validates the request;

4. Next, a key (TokenKey) is generated and sent to ISPA and peering point A. This token key will be next

used for both for generating tokens at the ISP or user side and verifying tokens at each network link

gateway. ISPA may use the key to create a token for each packet that should use the requested

lightpath. The token will be inserted in the packets which are then forwarded to the peering point. The

entity responsible for token injection is known as the token builder (TB). On the other side, peering

point A uses the same TokenKey as ISPA to check the incoming token-labelled packets;

5. For each received packet, peering point A computes a local token and checks it against the embedded

packet token to check the packet authenticity/validity/authorisation for the requested lightpath. The

packet is authenticated when both tokens match. An authenticated packet is then forwarded to its

corresponding fibre-optic link (5);

6. All other packets are transmitted on a ‘default’ link that is connected to the transit network (6).

Figure 1.2 TBN architecture.

The entity responsible for token checking and packet switching is known as the token based switch. When

a packet arrives at the token switch, we must find the appropriate key to use for computing the token

locally. Some fields in the packet tell which key to use. For instance, we may associate a key with an IP

App
1

App
2

Token

Based
Switch

NSP/AAA
Server

Link Admission
Request to other

To Transit

Link Stakeholder1

Link Stakeholder2

Peering Point A

Link Access Request

Campus net

(ISP A)

2

4

5
1

3

6

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 10

source and destination pair, so all traffic between two machines is handled with the same key. However,

other forms of aggregation are possible. For instance, we may handle all traffic between two networks with

the same key, or all machines participating in a Grid experiment, etc. In general, we allow the key to be

selected by means of an aggregation identifier, embedded in the packet. The aggregation identifier is

inserted in the packet together with the token by the ISP to signal the key to use.

1.2 TBN in multi-domains

The TBN architecture offers to the user applications an authenticated access control mechanism to the
reserved high-speed links (lightpaths) across multi-domain hybrid networks. For example, in Figure 1.3, we
show a scenario with three domains and a setup for several possible lightpaths. The procedure to establish a
lightpath consists of two phases that are decoupled in time: (1) a high-level set-up phase (obtaining tokens from
an AAA web-service), and (2) a reserved path access including authenticity and authorisation checks (per-
packet token checks at network edges within a multi-domain end-to-end connection).

The first phase allows individual users, or group of users (e.g., a research institution), or even user applications,
to request privileged end-to-end connection across multi-domain networks by contacting, at service plane, an
inter-domain or local ISP network provisioning service. Next, the network provisioning service would check
whether the requested end-to-end path is available and return a positive result to the requestor containing the
“unique” global reservation identifier (GRI) and autorisation key (Key).

The second phase determines how TBN authenticates network traffic (TCP connections, UDP transmissions, or
other protocols) and how it checks the traffic for authorisation on behalf of their applications. The second phase
is also responsible for preventing non-authorised use of lightpaths in a multi-domain network. Two network
components are involved in the data plane: the token builder (TB) and the token based switch (TBS-IP).
Although there are many components involved in the high-level processing (service and control planes) such as
NSP/AAA, we designed and implemented the Token Validation Service (TVS) component that validates the
TokenKey/GRI requests from higher level (NSP/AAA) and pushes the provisioning requests into the low-level
hardware (PEP).

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 11

GRI, Key

Tokenised
traffic

NSP
AAA

ForCEG

TVS

NSP
AAA

User/Apps

ForCES-IXP

TBS-IP
(Domain 3)

TBS-IP
(Domain 2)

ForCES-IXPForCES-IXP

TBS-IP
(Domain 1)

NSP
AAA

request

TB

default default default

GRI, Key

PEP

PEP PEP

ForCEG

TVS

ForCEG

TVS

GRI, Key GRI, Key GRI, Key

TB

User/Apps
Requestor

GRI, Key

Tokenised
traffic

NSP
AAA

ForCEG

TVS

NSP
AAA

User/Apps

ForCES-IXP

TBS-IP
(Domain 3)

TBS-IP
(Domain 2)

ForCES-IXPForCES-IXP

TBS-IP
(Domain 1)

NSP
AAA

request

TB

default default default

GRI, Key

PEP

PEP PEP

ForCEG

TVS

ForCEG

TVS

GRI, Key GRI, Key GRI, Key

TB

User/Apps
Requestor

Figure 1.3 TBN in multi-domain networks.

1.3 Token usage in IPv4

Compared to other access control mechanisms (such as certificates), a token is a general type of trusted and
cryptographically protected proof of authorisation with flexible usage policies. A token created for an IP packet
is essentially the result of applying an HMAC algorithm over a number of packet fields as illustrated in Figure
1.4 and explained below. An HMAC algorithm is a key-dependentway to create a one-way hash (see
RFC2401). Currently, in our implementation we opted for a strong proof of authorisation by means of HMAC-
SHA1.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 12

Figure 1.4 Creating a token.

To evaluate the TBS principles, we developed a prototype that stores the token in each packet’s IP option field
(as defined in RFC 791). An IP option can be of variable length and its field will be ignored by normal routers.
Although some routers have a slower processing path for the IP option packets than simple IP packets
(because higher level headers will be at different positions in the packet), we noticed that our TBS system
works well in high speed, important and pricey sites (e.g., ISPs, grid nodes interconnection points) where all
systems and also routers are updated to the state-of-the-art hardware.

Figure 1.4 illustrates the process of token creation and insertion in the IP option field. In our prototype, the
HMAC-SHA1 algorithm generates the unique token (20 bytes) that will be injected into the packet’s IP option
field. As an IP option field has a header of two bytes, and network hardware systems commonly work most
efficiently on chunks of four or eight bytes, we reserve 24 bytes for the IP option field. In order to ensure the
token uniqueness for packets, we need to include fields that are different in every packet. Therefore, a part of
the packet data will be included together with the packet header in the HMAC calculation. We mention that
some of the first 64 bytes of an Ethernet frame are masked in order to make the token independent of the IP
header fields which change when a token is inserted (e.g., header length, total length, IP checksum) or when
the packet crosses intermediate routers (e.g., TTL). The mask also provides flexibility for packet authentication,
so that one could use the (sub)network instead of end node addresses, or limit the token coverage to the
destination IP address only (e.g., by selectively masking the IP source address).

IP_packet: IP_hdr Payload Data

Mask:

Hdr_len tot_len Hdr_chks

Data to
encrypt

Token key

 (20bytes)
HMAC-

64 bytes

IP_hdr Data IP_options

28 bytes

Token
(20 bytes)

IPv4_packet:

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 13

2 ForCES Framework

The emergence of off-the-shelf network processor devices that implement the fast path or forwarding plane in
network devices such as routers, along with the appearance of a new generation of third party signalling,
routing, and other router control plane software, has created the need for standard mechanisms to allow these
components to be combined into functional wholes. ForCES [1] aims to define a framework and associated
mechanisms for standardizing the exchange of information between the logically separate functionality of the
control plane, including entities such as routing protocols, admission control, and signalling, and the forwarding
plane, where per-packet activities such as packet forwarding, queuing, and header editing occur. By defining a
set of standard mechanisms for control and forwarding separation, ForCES will enable rapid innovation in both
the control and forwarding planes.

A standard separation mechanism allows the control and forwarding planes to innovate in parallel while
maintaining interoperability. The IETF ForCES protocol design team has been working on a merger of three
protocol proposals. A first version of the common protocol draft was released in June 2004.

ForCES aims to define a framework and associated protocol(s) to standardize information exchange between
the control and forwarding plane. Having standard mechanisms allows Control plane Elements (CEs) and
Forwarding plane Elements (FEs) to become physically separated standard components. This physical
separation accrues several benefits to the ForCES architecture most of all interoparablity between individual
vendors. This interoperability translates into increased design choices and flexibility for the system vendors.
Overall, ForCES will enable rapid innovation in both the control and forwarding planes while maintaining
interoperability. Scalability is also easily provided by this architecture in that additional forwarding or control
capacity can be easily added to existing network elements.

Currently, the work of the ForCES WG have published three RFCs, Linux Netlink as an IP Services Protocol
(RFC 3549), Requirements for Separation of IP Control and Forwarding (RFC 3654), Forwarding and Control
Element Separation (ForCES) Framework (RFC 3746), and also have three current drafts ForCES Forwarding
Element Model, ForCES Protocol Specification, and ForCES MIB undergoing review.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 14

2.1 ForCES Model

The ForCES model is an abstraction of the actual Forwarding Plane, using distinct logical functional blocks
(LFBs), which are interconnected in a directed graph, and receive, process, modify, and transmit packets along
with metadata.

Forwarding Elements (FEs) are logical entities in the forwarding plane that implement the ForCES protocol.
Fes, expose their capabilities and state to their assigned Control Element (CE) using a standardized model. A
key design choice of the modelling is to avoid an extensive and hence complex modelling of the FE and instead
use a coarse model combined with runtime error reporting.

CEs are logical entities that implement the ForCES protocol in the control plane and use it to instruct one or
more FEs how to process packets.

A ForCES Network Element is comprised of at least one CE and at least one FE.

Figure 2.1: ForCeS Network Element

The modeling is based on Logical Function Blocks (LFBs), which are blocks encapsulating fine-grained
operations of the forwarding plane. Each LFB is responsible for completing only a single, specific task, such as
reducing the TTL field of an IPv4 packet [[4]]. FEs may have a static LFB topology for which only the state of
some LFBs can be changed using the ForCES protocol, or a dynamic topology that allows the linkage between
LFBs to be logically reorganized dynamically, hence allowing new functions to be created. Note that the LFB-
based model is independent of the actual implementation of the FE; it only provides a view of its capabilities
and state that can be acted upon using the ForCES protocol. The model can be described with XML, but the
protocol uses a more compact representation on the wire between the CE and FE.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 15

Figure 2.2: FE Internally.

The modeling language used by the WG is XML. XML was chosen as the specification language because it has
the advantage of being both human and machine readable with widely available tools support.

The ForCES FE model includes both a capability and a state model.

The FE/LFB capability model describes the capabilities and capacities of an FE/LFB by specifying the variation
in functions supported and any limitations. Capacity describes the limits of specific components (example
would be a table size limit).

The state model describes the current state of the FE/LFB, that is, the instantaneous values or operational
behavior of the FE/LFB.

Only modelling of the forwarding plane is within the scope of the ForCES working group. Also, FEs can only be
controlled by a single active CE, hence different services that require state changes in LFBs belonging to the
same FE have to go over the same CE.

2.2 ForCES Protocol

Forwarding and Control Element Separation (ForCES) defines an architectural framework and associated
protocols to standardize information exchange between the control plane and the forwarding plane in a ForCES
Network Element (ForCES NE). ForCES protocol is to standardize the information exchange between Control
Elements (CEs) and Forwarding Elements (FEs) while the ForCES FE model presents a formal way to define

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 16

FE (LFBs) using XML. The LFBs within the FE are accordingly controlled in a standardized way by the ForCES
protocol.

The protocol is split into a higher layer transport-independent protocol layer (PL), and a lower layer called
Transport Mapping Layer (TML) that performs the mapping to specific transport layers, such as TCP, UDP,
Ethernet, etc. At the current stage, the design team has defined the PL layer with message types and
necessary TLVs (Type Length Value) to perform and maintain the association between Control Entities (CEs)
and Forwarding Entities (FEs), to send configuration messages to the FE, to query FE information, and to
subscribe to FE events. In parallel, the ForCES model team has come up with a comprehensive state and
capability model for FEs, including a first definition of common logical functional blocks (LFBs) that can be
manipulated over the ForCES protocol.

Having standard mechanisms allows CEs and FEs to become logically, and potentially physically, separated
standard components. ForCES focuses on the communication and model necessary to separate control-plane
functionality such as routing protocols, signalling protocols, and admission control, from data-forwarding-plane
per-packet activities, such as packet forwarding, queuing, and header editing [[1]], [[4]], [[5]].

Simultaneously, another IETF standard regarding Network Configuration is currently been researched, named
Netconf. Netconf and ForCES have similar aims but use a different model. As stated in [[1]], the reasons for
separating the control from the forwarding plane is to provide increased scalability and to allow the two planes
to evolve independently, promoting innovation, and extending the scope of applications.

2.2.1 ForCES Protocol Details

2.2.1.1 ForCES Protocol Phases

The ForCES interface between CE and FE is configured during a pre-association phase. The actual ForCES
protocol takes place in the post-association phase.

In this phase, the FE and CE components communicate with each other using the ForCES protocol (PL over
TML) as defined in this document.

There are three sub-phases:

1. Association Setup Stage.

The FE attempts to join the NE. The FE may be rejected or accepted. Once granted access into
the NE, capabilities exchange happens with the CE querying the FE. Once the CE has the FE
capability information, the CE can offer an initial configuration (possibly to restore state) and can
query certain components within either an LFB or the FE itself.

2. Established Stage.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 17

In this stage, the FE is continuously updated or queried. The FE may also send asynchronous
event notifications to the CE or synchronous heartbeat notifications if programmed to do so. This
stage continues until a termination occurs, either due to loss of connectivity or due to a termination
initiated by either the CE or the FE.

3. Association Lost Stage

In this state, both or either the CE or FE declare the other side is no longer associated. The
disconnection could be initiated by either party for administrative purposes but may also be driven
by operational reasons such as loss of connectivity.

2.2.1.2 ForCES Protocol Mechanisms

ForCES provides several mechanisms:

• Transaction capabilities and Atomicity of transactions.

• Two phase commits.

• Batching/parallelization.

• High availability and failover as well as command pipelines.

• Scalability.

• Heartbeat messaging.

2.3 ForCEG Specification

While the current scope of ForCES is the communication between one CE and one FE in a local area network,
and the configuration of the FE by the CE, ForCEG [10] extends the availability of ForCES by providing a Web
Service Interface, which facilitates the coexistence of Control Elements using a central Control Logic, and
manages the state of the forwarding plane elements by staying aware of the current state of all the FEs.

The protocol stack that the ForCEG is based on is shown in Figure 2.3. ForCES protocol messages are
exchanged over TCP. Web Services use XML, which is encapsulated in SOAP messages. The Control
Element sends a Web Service request to the ForCEG, which attempts to translate the request into a ForCES
message. When an FE wants to send a message to a CE, the ForCEG attempts to translate the ForCES
message into a Web Service response that the CE will recognize.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 18

Figure 2.3 ForCEG Protocol Stack

In addition to translation from XML messages to ForCES messages and back, the ForCEG has a consistency-
checking functionality: As it is placed between the Control Element and the hardware, it is the checking point of
all exchanged messages. Messages from some CEs may disrupt the normal functionality of other CEs. The
ForCEG monitors such messages and either informs the CEs as to which functionality is about to be changed,
or disallows the message.

The ForCEG can recognize which LFBs the CE needs to modify. A CE “targets” a higher-layer function,
provides the necessary attributes according to the “target” field, and then inserts an operation (such as SET or
GET). The ForCEG is then able to construct the necessary ForCES messages to be sent to the appropriate
LFBs.

Figure 2.4 depicts the “Target” concept. The ForCES FE Start/Termination Point is a necessary component for
the ForCES protocol as it is the source and the destination of ForCES messages. As the QoS software module
needs to setup classifier rules, it “targets” a QoS-related function, provides the necessary classification rules,
and issues a SET command. A translator module inside the ForCEG will translate the attributes of the
message, and a ForCES CE Start/Termination Point will transmit the ForCES message to the.

Figure 2.4. “Target” Concept

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 19

2.4 ForCEG Architecture

The ForCEG architecture and its major architectural components is depicted in Figure 2.5.

Figure 2.5 ForCEG Architecture

The Web Services Server hosts the interfaces between the CE and the remainder of the ForCEG. It is
responsible for sending and receiving messages from different CEs. All interfaces between CEs and the Web
Services Server are through Web Services.

The Message Parser is a central module that has two functions, depending on the flow of a message. If the
message arrived from the CE then the Message Parser receives the XML message from the Web Service
Server, parses it, and instructs the Command Control Logic (CCL) to check the validity of the message. When it
receives a positive response (i.e., a message will not create any conflict with LFB configuration), it forwards the
message to the ForCES Translator. If the message arrived from the FE then the Message Parser receives the
XML message from the ForCES Translator and instructs the Subscribed Events & Pending Responses (SEPR)
module to identify the CE(s) that should receive the response message(s). Once the CE(s) has been identified,
the Message Parser sends the message(s) to the appropriate CE(s) through the Web-Service Server.

The CCL module is responsible for performing coordination functions to prevent contradictory commands from
different processes. It is responsible for examining each command issued by each CE and making sure that a
new message does not affect the current functionality of existing CEs in any way. It takes the data it requires
from the “Current FE & LFBs’ state” module.

The ForCES Translator module has two functions, depending on the flow of a message. If the message arrived
from the CE then the ForCES Translator receives an XML message from the Message Parser and translates
the message into a ForCES protocol message that is based on the higher-layer function the CE wants to
configure. It obtains the correlation data from the “Current FE & LFB’s state” module. If the message arrived
from the FE then the ForCES Translator receives a ForCES message from the FCSTP and translates the
ForCES message into XML. First the ForCES translator reads the ForCES message and determines the
ForCES message type (i.e. packet redirection from an FE to an CE, notification message), in order to add an
XML tag which will be identified by the Parser, and then the ForCES Translator inserts the packet into the XML
message. Depending on the message type, the treatment of the packet varies. If the message is a packet

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 20

redirection, the packet is encapsulated into an array of bytes in the XML message, whereas in the case of a
notification message, the notification is processed and transmitted as string values.

The FCSTP module has two functions depending on the flow of a message. If the message has arrived from
the CE then the FCSTP receives a ForCES protocol message from the Translator. The FSCTP is responsible
for sending the message to the appropriate FEs by checking the specific field in the ForCES protocol message.
If the message has arrived from the FEs then the FCSTP sends the ForCES message directly to the ForCES
Translator. In addition to the message-based functions, the FSCTP has functions regarding the ForCES
protocol: it is responsible to create, maintain and destroy associations with FEs.

The SEPR module contains information as to which CE any response arriving from the FE should be re-
directed to. CEs may also subscribe themselves to specific events. The event notification messages that arrive
at the FCSTP are redirected to the required CEs based on information it holds about which CE has subscribed
to which event(s).

The CFLS module holds information about all of the associated FEs and their LFBs. It also needs to have all
configurations of the LFBs. This data is used by both the ForCES Translator and by the Command Control
Logic.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 21

3 ForCES Token Based Switch Architecture

The section provides an overview of the ForCES TBS-IP architecture and design considerations and then
describes the token-based policy enforcement (TBS) mechanism used in the TBN implementation. TBS on
TBN is being developed by UvA as a solution of adding in-band policy enforcement function to on-demand
network resources provisioning [6]– [7].

3.1 TBS-IP architectural/design requirements

The TBS architecture offers to user applications a flexible access control approach/solution to the reserved
high-speed links (lightpaths) across multi-domain hybrid networks. The procedure consists of two phases that
are decoupled in time: (1) a resource reservation and activation/set-up phase (resulted in obtaining reservation
ID and security context for the reservation from the domain controller of domain AAA service), and (2) the
reserved datapath access achieved with low-level authorisation checks (per-packet token checks at network
edges within a multi-domain end-to-end connection). In other words, the first phase allows individual users or
group of users (e.g., a research institution), or even user applications, to request privileged end-to-end
connection across multi-domain networks by contacting relevant authority. e.g. their own ISP or local NRPS.
The second phase determines how TBS authenticates network traffic (TCP connections, UDP transmissions, or
other protocols on top of IP protocol) and how it checks the traffic for authorisation on behalf of their
applications. The second phase is also responsible for preventing malicious use of lightpaths in a multi-domain
network. From the technical point of view, one component is involved in the control plane, the Token Validation
Service (TVS), and two network components are involved in the dataplane: the token builder (TB) and the
token switch (TS).

The following goals had been identified:

• Implementing the token over IP principles inside the data path software modules, token builder (TB)
and token switch (TS), developed on a network processor hardware architecture. The software
modules are remote configurable through ForCES standard interface that stands for FORwarding and
Control Element Separation;

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 22

• Ensuring design modularity in order to have a single TBS-IP system that works on multiple application
scenarios and hence, different low-level requirements, chosen at loading time through the ForCES
control path. For example, TBS-IP/TB is a Token Builder configuration, TBS-IP/TS is a Token Switch
configuration, or TBS-IP/TS-GMPLS is a Token Switch with gateway to GMPLS domains;

• Allowing interconnection to 3rd party systems such as Dragon-VLSR used in GMPLS and therefore, it
provides token features over the GMPLS paths (TBS-IP/TS-GMPLS);

• Ensuring fully system configurability using secure Webservice as a high-level interface to an authority
(Domain Controller or AAA servers).

Summarising, the request is to create a software system that is modular, configurable for different application
scenarios, and using standard communications and special hardware for packet processing at high speeds
(network processors).

In the next section, Figure 3.3 shows schematically one Token Based Switch system at IP layer (TBS-IP) that
uses a network processor hardware platform (IXP2850 dual-NPU). An IXP2850 network processor has one
general purpose CPU (XScale) for control of the entire architecture composed of parallel specialised cores for
traffic processing called microengines (µEngines).

3.2 TBS-IP operation in TBN

The generic TBN architecture uses the token-based signalling at the reservation or path building stage and
token based access control when accessing the reserved path. Both stages use different types of tokens that
share common GRI as identification of the reserved path/resource. In the token based switch over IP (TBS-IP)
we opt for in-band signalling for reasons of flexibility resulting from the per-packet granularity. Specifically, we
insert tokens into each IP packet as a proof of authorisation. Tokens are a simple way to authorise resource
usage which may convey different semantics, or security context. For instance, we may specify that only
packets with the appropriate token are allowed to use a pre-established network connection in a specific time-
frame and embed these tokens in the packets of an application distributed over many IP addresses [6]. An
advantage of such approach is that time of reservation is decoupled from the time of access or use.

Token Based Switch (TBS) is a low-level system for traffic routing at high speeds (multi gigabits/sec) based on
packet authentication. TBS can be used with high-performance computing and grid applications that require
high bandwidth links between grid nodes to bypass the regular Internet for authorised packets by establishing
shortcuts on network links with policy constraints.

TBS is fast and safe and uses the latest network processor generation (Intel IXP2850). TBS is feasible at
multigigabit link rates. In addition, it has the following goals: (1) path selection with in-band admission control
(specific tokens gives access to shortcut links), (2) external control for negotiating access conditions (e.g., to
determine which tokens give access to which links), and (3) secured access control.

Figure 3.1 and Figure 3.2 illustrate a few use cases for a TBS-IP router usage in multi-domain networks.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 23

A TBS-IP system works as follows: the client (e.g., user/application requestor in Figure 3.1) contacts an AAA
server separate from the datapath (e.g., by using using separate or dedicated channel) to obtain authorisation
for the use of network resources (for instance, the optical shortcut B). Then, the AAA server checks the credit of
the client and also the availability of the requested network resources. When both conditions are positive, the
AAA server generates an authorisation ticket (AuthZ ticket) that contains as proof of authorisation the following
items: a unique Global Reservation Identifier (GRI), a key (TokenKey), and a description of the required
lightpath across the network. The AAA server sends the AuthZ ticket to every policy enforcement point (PEP)
through their TVS along the required path and also back to the client. Next, when the user is ready to use the
resources, the user client pushes the proof of such authorisation to the service equipment such as the Token
Validation Service in a token builder module (TVS/TB) on the network device. TVS/TB module checks the
validity of the AuthZ ticket and generates a proper token for each data packet that goes out of the client’s
system. This token travels together with data across the networks. Every PEP across a multi-domain network
(TBS-IP domain1, TBS-IP domain2, etc.) has specific hardware that checks the built-in token from each
received data packet against a local AuthZ ticket. When the PEP’s check is positive, then data packet takes an
authorised path. Otherwise, it takes a default path such as slow routed networks. In other words, the proof of
authorisation (token) drives the data over the networks in order to reach the destination within the required
specifications (bandwidth, delay, etc.) by making use of specific network resources such as lightpath shortcuts
(e.g., route (B) in Figure 3.1).

Figure 3.2 shows another context where TBS-IP systems work together with TBS-GMPLS. In this scheme we
suppose to have some GMPLS lightpaths within the end-to-end connection that uses normally IP packets.

A Token Based Switch (TBS) is hardware and software system that receives authorisation requests for certain
IP packet flows from a high-level authority (NSP/AAA servers) and allows for intensive packet processing
(encryption operations) at high speeds (multigigabits/sec). This system is going to be plugged into an AAA
framework for high speeds lightpaths selections especially when the traffic crosses multi-domain networks. In
order to achieve the above mentioned requirements, we need to design and develop a modular system that
separate the control path by data path in a manner that also provides standard and secured communications to
different levels of components. In this respect, we use SOAP/XML for high-level and ForCES for the low-level
communications.

Summarising, each TBS-IP system plugged in multi-domain networks (as shown in Figure 3.1) provides packet
routing based on a global reservation identifier (GRI). This GRI is a value unique per end-to-end lightpath and
eventually issued per application (not a host, as an application might use multiple physical hosts). There is no
need for direct signalling between TBS-IP and GMPLS systems because the signals (open/close path) are
handled by the high-level authority (NSP/AAA) which knows specific interfaces to both TBS-IP and GMPLS
systems.

Project: Phosphorus
Deliverable Number: D.4.1
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.1> 24

GRI, Key

IP_hdr, IPsec_AH, Data

IPsec pkt.

AAA

PDP

ForCEG

TVS

AAA

PDP

User/Apps

ForCES-IXP

TBS-IP
(Domain 3)

TBS-IP
(Domain 2)

ForCES-IXP ForCES-IXP

TBS-IP
(Domain 1)

AAA

PDP

request

TB/TVS

request

default default default

GRI, Key

PEP

PEP PEP

ForCEG

TVS

ForCEG

TVS

A

B

User/Apps
Requestor

TB/TVS

Figure 3.1. Providing end-to-end lightpaths over m ultidomain networks using TBS-IP systems interconne cted into an AAA framework.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.1
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.1> 25

GRI, Key

IP_hdr, IPsec_AH, Data

IPsec pkt.

AAA

PDP

AAA

PDP

ForCEG-IXP

TBS-IP
(Domain 1)

AAA

PDP

request

DRAGON
VLSR

request

default

GRI, Key

RSVP-TE
OSPF

AAA

PDP

ForCEG-IXP

default

DRAGON
VLSR

DRAGON
VLSR

RSVP-TE
OSPF DRAGON

CSA

PEP PEP

TVS

ForCEG

AAA

PDP

TVS

ForCEG-IXP

default

PEP

ForCEG

User/Apps
Requestor

TB/TVS

IPsec pkt.

DRAGON
CSA

TVS

ForCEG

DRAGON
VLSR

TBS-IP
(Domain 2)

TBS-GMPLS
(Domain 3)

TBS-GMPLS
(Domain 4)

TBS-IP
(Domain 5)

RSVP-TE
OSPF

User/Apps
Requestor

TB/TVS

Figure 3.2. Providing end-to-end lightpaths over mu ltidomain networks using a mix of TBS-IP with GMPLS systems.

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 26

3.3 ForCES TBS-IP system architecture

As shown in Figure 3.3, a host PC runs a webservice for the outside world interface (AAA server). The host PC
connects to the specialised hardware for packet processing, IXDP2850, through a standard interface: ForCES
[5]. The IXDP2850’s control core (XScale) runs embedded linux that supports the control path of the ForCES
interface, and each µEngine runs a custom packet processing task that implements specific forwarding
elements like packet receiver, token builder, token switch, packet transmitter.

Figure 3.3. TBS-IP system architecture.

WebService

ForCEG

ForCES-IXP

Embedded Linux

halMev2 – Intel µEngines Library

Task1 Task2 TaskN

ForCES-IXP

Embedded Linux

halMev2 – Intel µEngines Library

Task1 Task2 TaskN

Egress NPU Ingress NPU

TBS-IP
AAA

host PC

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 27

4 ForCES Token Based Switch
Implementation

4.1 Requirements

Designing a Token Based Switch architecture following the ForCES standard guidelines we identified the
following requirements:

• Modularity – provides flexibility in adding new features;
• Safety – prevents a rogue user to use privileged resources such as ligtpaths;
• Configurable – allows for various test-bed scenarios;
• Hiding low-level implementation details;
• Uses hardware specifically designed for network processing at high speeds (Network Processors) and also

benefits of hardware supported encryption.

The TBS system has the followings states:

• Self-Initialisation: hardware components (NPUs, memory, registers, etc.) and software components (O.S.
loading, drivers loading, description tables, buffers);

• A host connects to the TBS system remotely;
• The host browses for the capabilities (features) within the current TBS system;
• The host configures the connected TBS in a required state (e.g., Token Builder, Token Switch);
• The host starts the system;
• The host updates in run-time the required parameters in the TBS system: adds new authorised TokenKeys,

removes ‘expired’ TokenKeys from the AuthorisationTable;
• The host fetches periodically some of the debugging information (e.g., authorised packets, unauthorised

packets);

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 28

4.2 Software item architectural design

This section describes what software modules are needed and how they are used.

As illustrated in Figure 4.1, the system is composed of the following software modules, described in a bottom-
up approach (low-level, data-path, to high-level, control path):

• FIX2850, having the following sub-modules:

o Rx;

o Tx;

o TB (TokenBuilder);

o TS (TokenSwitch);

• ForCES-IXP, having the following sub-modules:

o Init_HW, Init_SW, ueManager;

o FE-IXP server (over TCP);

• GMPLS gateway;

• ForCEG-WebService interface to the outside-world.

4.3 Interface design

Figure 4.1 also highlights the interfaces used in the TBS-IP system:

1) outside world via WebServices;
2) CE-CE using a simple communication over TCP;
3) CE-FE using ForCES standard over TCP;
4) FE-LFBs (control – data path specific implementation for IXP network processors).

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 29

Figure 4.1. Interfaces used in the TBS-IP system

Although Figure 4.1 shows all the interfaces the TBS-IP system might use, we identify practically only the
following four configuration schemes for different usage of TBS-IP:

1) TBS-IP/TB (Token Builder);
2) TBS-IP/TS (Token Switch);
3) TBS-IP/TS-TB (Token Switch and Builder);
4) TBS-IP/TS-GMPLS (Token Switch Gateway to GMPLS);

Each configuration is described simultaneously in the following sections on both levels: control and data paths.

4.4 Interface specification: TBS-IP/TB

TBS-IP/TB illustrates the Token Builder application. It is usually located at both ends of an end-to-end light-
path. In other words, each user needs to have such a system that annotates the packets of authorised user
applications with “tokens”.

In our dual-NPU implementation, we share the effective packet processing task for building and inserting the
token (TB) between those two NPUs in order to benefit of all hardware encryption units available (2 units per
NPU). The system works as follows: the received packets are stored into a shared packet buffer and made
available for the next processing tasks (TB1 and Tx) so as to load balance between these two tasks as shown

(1) WebServices

Outside
world

CE (ForCEG
)

FE1
 (ForCES-IXP)

LFB1
(Rx)

LFB2
(TB1) LFB4

(Tx)

LFB3
(TS1)

FE2
 (ForCES-IXP)

LFB1
(Rx)

LFB2
(TB2) LFB4

(Tx)

LFB3
(TS2)

(3) CE-FEs

(4) FE-LFBs

CE
 (GMPLS gateway)

(2) CE-CE

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 30

in Figure 4.2, (1). One half of the received packets is further processed by the TB1 task (2) and the other half is
simple forwarded out to the second NPU (egress) by the Tx module (3). The Egress receiver does the same job
as the one in Ingress, except that the load-balance is done by checking whether the packet has been already
processed by the TB1 in the first NPU or not. The processed packets are forwarded out of the system via Tx
module, and the other packets are en-queued to the TB2 for processing.

Figure 4.2. TBS-IP/TB Interface

The control path of this TBS-IP/TB application is shown in Figure 4.3. It illustrates the ForCES connections from
CE (ForCEG running on a hostPC) to those two FEs (FE-IXP on Ingress and Egress NPUs).

Figure 4.3. Two FEs (ForCES-IXP) slaves connected t o the CE master (ForCEG).

4.5 Interface specification: TBS-IP/TS

TBS-IP/TS describes the Token Switch application and is illustrated in Figure 4.4. TBS-IP/TS is located at
every domain border across a multi-domain light-path. This application decides which packets should take a
certain ‘short-cut’ (part of the established light-path) or should be forwarded out to the routed network (Internet).

Same as in TBS-IP/TB application, we need to make use of the dual-NPU features and hence, we share the
effective packet processing task for checking the token (TS) between those two NPUs.

The control path of TBS-IP/TS application is same as the one used in TBS-IP/TB as shown in Figure 4.3.

Rx Tx
_C

TB1

Ingress NPU

Rx Tx
_C

TB2

Egress NPU

 1

 2

 3

ForCES-IXP

Ingress

ForCES-IXP

Egress

ForCEG

FE1 FE2

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 31

Figure 4.4. TBS-IP/TS Interface

4.6 Interface specification: TBS-IP/TS-TB

TBS-IP/TS-TB describes a combination of the above mentioned two applications: Token Builder and Token
Switch. It can be located in every domain border across a multi-domain light-path by replacing the simple
Token Switch application when the next domain requires a different key/identifier than the current domain. This
application, like the simple Token Switch, decides which packets should take a certain ‘short-cut’ (part of the
established light-path) or should be forwarded out to the routed network (Internet). In addition to the
TokenSwitch, the TBS-IP/TS-TB application also rebuilds the token of every outgoing packet to the authorised
ports.

Figure 4.5. TBS-IP/TS-TB Interface

Same as in TBS-IP/TB application, we make use of the dual-NPU features and hence, we share the effective
packet processing task for checking the token (TS) and for building a new token between those two NPUs. We
chosen to map the TS, TB modules onto those two NPUs as shown in Figure 4.5 because of the following facts
gained from a demo system built previously: the most computation required by the TS module consists of
encryption, while TB also uses lots of memory operations for token insertion in the IP packet. Therefore, the
chosen mapping (TS-TB pairs on each NPU) fits better than an eventually TS-TS / TB-TB mapping.

The control path of TBS-IP/TS-TB application is same as the one used in the previous two applications as
shown in Figure 4.3.

Rx Tx
_C

TS1

Ingress

Rx Tx
_C

TS2

Egress

TB1

TB2

Unauthorised pkts.

Rx Tx
_C

TS1

Ingress

Rx Tx
_C

TS2

Egress

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 32

4.7 Interface specification: TBS-IP/TS-GMPLS

Figure 4.6 TBS-IP/TS-GMPLS Interface.

TBS-IP/TS-GMPLS is another application that has special requirements for routed packets across two domains
that use different technologies (one uses tokens over IP, while the other one might use tokens over GMPLS). In
this case, we use for the data-path the same mapping as in TBS-IP/TS application, but for control path we need
to connect to the control path of the GMPLS system that is called Dragon-CSA framework. Therefore, as shown
in Figure 4.6, the ForCES architecture uses one CE interface that consists of the connection to the CSA
system.

4.8 Interface specification: TBS-IP to outside world (A AA

server)

Figure 4.7 shows the interface between the outside world (AAA server) and the ForCEG.

Figure 4.7 Interface TBS-IP to outside world (AAA s erver)

ForCEG

AAA

“AuthZ-Ticket”: an XML message over
SOAP/TLS communication

ForCES-IXP

Ingress

ForCES-IXP

Egress

ForCEG GMPLS gateway

Dragon
CSA

FE1
FE2

CE1

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 33

4.9 ForCES protocol in a TBS-IP router

4.9.1 Functionalities from ForCES required for CE-FE inte rface in TBS-IP

We model the interface between Control Element (CE) and multiple Forwarding Elements (FEs) using ForCES
standard, as follows:

• Association phase:

– CE interconnects to FE(s);

– CE asks for capabilities to the FE(s);

– FE(s) answers: (e.g., TS, TB);

– CE requests to one FE to become TB, etc.;

– FE then instructs HW to map the TB application;

• Configuration phase:

– Add/Remove tuple, Changing in LFB attributes (e.g., Connector changes);

• Events: diagnostic messages from low-level reported to higher level;

• Query: reading of specific attributes of LFBs such as packet counters: pkts_count,

processed_pkts_count

4.9.2 Modeling of applications in ForCES

We model the required function blocks for TBS-IP applications using ForCES standard, as follows:

• FEs: ingress, egress;

• LFBs: Rx, Tx, TB, TS, Tx_CSIX, Rx_CSIX;

• Attributes:

o TUPLE (GRI, TokenKey, GRI_NextDomain, TokenKey_NextDomain, Port1, Port2,
IPPacketMask, IPSource, IPDestination, PortSource, PortDestination, Status);

o LOCATION (e.g., LFB.Rx located on hw_core 0);

o Connector(val,val);

o Pkt_count that is available in LFB(Rx, Tx, Tx_CSIX, Rx_CSIX);

o Processed_pkt_count available in LFBs(TS, TB);

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 34

4.9.3 XML Model of TBS based on ForCES Model

Based on the ForCES Model draft which provides an XML schema for creating LFBs, there are only for distinct
LFBs (Rx, Tx, TB and TS) because the Rx and Rx_CSIX have the same model, as Tx and Tx_CSIX. The
actual XML can be found in Appendix C .

Each LFB has a Packet Processed counter and TS has an additional counter Bad Token Counter for each
Tuple. The ForCEG will be able to register for an event based on the Bad Token Counter. If the Bad Token
Counter exceeds a specific threshold, which will be set by the ForCEG, then the TS will send a message
containing the GRI and the number of Bad Tokens.

4.10 Software item detailed design

The following software modules are described in this section:
• ForCEG high-level interface to the outside-world;

• ForCEG – plugins:

o Message-parser;

o TVS (Token Validation Service);

o Gmp (GMPLS gateway);

o APM (Advanced Power Management);

• FIX2850, having the following sub-modules:

o Rx_Gig;

o Tx_CSIX;

o Rx_CSIX;

o Tx_Gig;

o TB (TokenBuilder);

o TS (TokenSwitch);

• FE-IXP, having the following sub-modules:

o FE (ForCES FE module implemented on IXP);

o Init_HW, Init_SW, ueManager;

o FE-IXP server (over TCP).

4.11 ForCEG high-level interface to the outside world

Figure 4.12 illustrates an example of Authorisation ticket AuthZ ticket as expressed in XML format.

Note that some of the AuthzTicket fields are not mandatory and hence, we provide specific mechanisms to

derive local meanings from a global identifier. For instance, if AuthZ ticket has no specific field as “TokenKey”,

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 35

we chose to derive the TokenKey from a mandatory field SessionID also known as a global reservation

identifier (GRI). Thus, TokenKey = Encryption(GRI, secret), where the secret is a shared TVS specific phrase.

However, GRI could be much bigger than that of the encryption algorithm required. For instance, using HMAC-

SHA1 encryption algorithm, we use for deriving of the TokenKey only the first 20Bytes of the GRI.

Figure 4.8 Example of XML based AuthZ ticket format .

As also illustrated in Figure 4.9.(1), the Authorisation ticket is an XML message received by the ForCEG-
Webservice module through a local WebService container (e.g., Apache Tomcat or Sun Application Server
JWSDP). Next, this message is passed to the ForCEG software package. ForCEG will send the XML message
to the “Message-parser” module for processing, as shown in Figure 4.9.(2).

<AuthzTicket xmlns="http://www.aaauthreach.org/ns/# AAA"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
xsi:schemaLocation="http://www.aaauthreach.org/ns/# AAA
E:\Projects\Phosphorus\Workspace\AuthZ\azticket-eha lep.xsd" Issuer="urn:ph:trusted:tickauth:pdp"
TicketID="cba06d1a9df148cf4200ef8f3e4fd2b3" Session ID="00112233445566778899AABBCCDDEEFF00">
 <Decisions><Decision ResourceID=" http://resource s.test-bed.phosphorus.eu/ForCES1"
result="Permit"/>
 </Decisions>
 <Resources>
 <Resource ResourceID="http://resources.test-b ed.phosphorus.eu/ForCES1">
 <LRI purpose="MyDomain">001122334455667788 99AABBCCDDEEFF00</LRI>
 <Key>AAAABBBBCCCCDDDDEEEE</Key>
 <Ports>
 <Port1>6</Port1>
 <Port2>8</Port2>
 </Ports>
 <ApplicationFlow>
 <IPpacketMask>A1A2A3A4A5A6A7A8A9B1B2 B3B4B5B6B7B8B9C1C2</IPpacketMask>
 <IPsource>192.168.1.10</IPsource>
 <IPdestination>"192.168.1.100"</IPde stination>
 <PortSource>123456</PortSource>
 <PortDestination>654321</PortDestina tion>
 </ApplicationFlow>
 </Resource>
 <Resource ResourceID="http://resources.test-b ed.phosphorus.eu/ForCES2">
 <LRI purpose="NextDomain">AA11223344556677 8899AABBCCDDEEFF00</LRI>
 <Key>AAAABBBBCCCCDDDDEEEE</Key>
 <Ports>
 <Port1>6</Port1>
 <Port2>8</Port2>
 </Ports>
 <ApplicationFlow>
 <IPpacketMask>A1A2A3A4A5A6A7A8A9B1B2B3 B4B5B6B7B8B9C1C2</IPpacketMask>
 <IPsource>192.168.1.10</IPsource>
 <IPdestination>"192.168.1.100"</IPdest ination>
 <PortSource>123456</PortSource>
 <PortDestination>654321</PortDestinati on>
 </ApplicationFlow>
 </Resource>
 </Resources>
 <Conditions NotBefore="2006-06-08T12:59:29.912Z" NotOnOrAfter="2006-06-09T12:59:29.912Z">
</Conditions>
</AuthzTicket>

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 36

When Message-parser identifies a received XML stream as AuthZ ticket, it parses and calls the
SetEntryTVStable() or DeleteEntryTVStable() with parsed parameters to the TVS (Token Validation Service)
plugin.

4.12 ForCEG – plugins

ForCEG is a software package written in Java that implements several functionalities such as WebService
interface to outside world, ForCES interface down to hardware (network processors), and other specific
functionalities (e.g., validation services for the XML stream received from outside world, connection to 3rd party
system that is not ForCES compliant). As new functionality was required, outside of the scope of ForCEG,
these specific functionalities were designed and developed as plugins. As illustrated in Figure 4.9, we have the
following plugins:

• Message-parser (See Figure 4.9.(2));

• TVS (Token Validation Service, as in Figure 4.9.(3));

• Gmp (GMPLS gateway, as in Figure 4.9.(5));

• APM (Advanced Power Management, as in Figure 4.9.(6));

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 37

Figure 4.9 Work flow in TBS-IP switch.

When the system starts up, the Command Logic (Figure 4.9.(7)) loads a system configuration file that
specifies in which mode the TBS-IP router is going to run: (1) TB-IP/TB, (2) TBS-IP/TS, (3) TBS-IP/TS-TB, or
(4) TBS-IP/TSGMP. By default, the TBS router requires the following plugins: Message Parser, TVS, and
APM. Moreover, in case of the last option, the Command Logic also starts the gmp plugin such as to establish
a connection between TBS-IP router and GMPLS systems (by connecting the ForCEG to CSA).

Each of plugins is part of the same Java package: ForCEG. The plugins are described in the following sections.

4.12.1 Message-parser

Message-parser (see Figure 4.9.(2)) is a gateway module that allows future extensions to the ForCEG with
other plugins. Message-parser receives SOAP/XML messages; it parses the header of the message in order to
classify it. For instance, if the message has a command “Add” and the body has an AuthZ ticket, then it extracts

TBS-IP message (SOAP): “Commands” + ”AuthZ ticket”

AAA

Gmp plugin

[1]GRI-thread | tuple | Start | Stop
Message
Parser TVS

SetEntryTVStable();
DeleteEntryTVStable();

ForCEG

Command
Logic

ForCES-CE

WebService container
(e.g., Apache Tomcat, Sun Application Server-JWSDP)

ForCEG
WebService

XML message: ”AuthZ ticket”

[2]GRI-thread | tuple | Start | Stop

[N]GRI-thread | tuple | Start | Stop

CSA

GetActive
Tickets[]

Send Commands

 1

 2 3 4

 5

 7

 a

 b d

System.config

APM plugin Remote
PM unit

 6

 c

TBS-IP
PEP

ForCES-FEs

TBS-IP message

(1) TBS-IP/TB
(2) TBS-IP/TS
(3) TBS-IP/TS-TB
(4) TBS-IP/TSGMP

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 38

the useful fields from the ticket (e.g., GRI, StartTime, StopTime), and it calls “SetEntryTVSTable” to a TVS
plugin, as shown in Figure 4.9.(a).

4.12.2 Token Validation Service (TVS) plugin

API:
Function Called by module
Boolean SetEntryTVSTable(struct TUPLE, date StartTime, date StopTime); Message-parser
Boolean SetEntryTVSTable(struct TUPLE); Message-parser
Boolean RemoveEntryTVSTable(struct TUPLE); Message-parser
Boolean AddPath(struct TUPLE); GRI-thread
Boolean RemovePath(struct TUPLE); GRI-thread
List(GRI) GetActiveGRI(); Gmp

The TVS plugin (the module shown Figure 4.9.(3)) is integrated within the ForCEG package and implements
the following functionalities, as also illustrated in Figure 4.10:

• Wait for new commands (1):

o if a ticket came with a “Remove” command, then it searches through the GRI-thread list, issues
the RemovePath command if it was an active GRI (such as the hardware also removes the
active path), and then it removes itself (2).

o If a ticket came with an “Add” command, checks for NotValidBefore and NotValidAfter fields
(3):

� If it has no validation fields, then it is directly executes AddPath command without
creating any thread (4);

� When it has a validation field (specifies a future period of working time), TVS creates a
new “GRI-thread” and it initialises the GRI-thread (5) with the following info:
NotValidBefore, NotValidAfter, the TUPLE (LRI, Keys, AuthPort), and a reference to
the parent module (TVS plugin). The reference is used for callbacks to parent;

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 39

Figure 4.10 Workflow in TVS module.

• Sends commands to ForCEG on behalf of the GRI-thread (see Figure 4.9.[b]):
o BOOL ReturnVal = AddPath(struct TUPLE);
o This function also puts the GRI-thread on an “Active GRI” list.
o BOOL ReturnVal = RemovePath(struct TUPLE);
o This function removes the “GRI-thread” from the “Active GRI” list. It also executes the following

checks for the power management module:
� Computes the “FirstWakeUp” time (is the earliest time in future when a passive GRI-

thread will send an AddPath command to hardware);
� If (FirstWakeUp > PM_Threshold) then TVS sends “STOP_HW” command to the APM

module, where PM_Threshold is the minimum time (e.g., 1 hour) while the hardware
should be turned off for power saving reasons. As shown in Figure 4.9.[d], TVS sends
commands to the APM module and receives the hardware status (ON/OFF) through
the same interface (d).

o Object AttributeVal = ReadLFBAttribute(string LFBname, string AttributeName);
o The return object contains all values of the queried attribute. Used for checking of packet

counters from Rx, Tx modules for statistic or debugging purposes.

• Process diagnostic messages received from lower levels (events from an LFB running on hardware):
o SubscribeEvent(string LFBname, string AttributeName, int iCondition, int iThreshold);

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 40

o callback ProcessDiagnostic(string LFBname, string AttributeName, int iValue);

• Implements a power management function:
o When TVS receives a notification signal from a passive GRI-thread, it checks if

HW_STATUS==OFF then sends “START_HW” command to the APM module;

4.12.3 Global Reservation Id threading (GRI-thread)

A GRI-thread (Figure 4.9.(4)) is a class that runs in a separate thread container and it is instantiated by the TVS
plugin. A GRI-thread has the following functionalities, as also illustrated in Figure 4.11:

1. Wait until (ValidNotBefore – PM_StartUp), where PM_StartUp is a time needed by the power

management unit to prepare the hardware (e.g., PM_StartUp=5min);
2. Send a notification signal to the TVS module that this GRI needs the hardware ready (within

PM_StartUp time),
3. Sleep for (PM_StartUp), where PM_StartUp is the effective time needed to wake up the

hardware;
4. Send AddPath(tuple) command to its parent (TVS plugin);
5. Wait until ValidNotAfter;
6. Send RemovePath(tuple) command to its parent;
7. Wait till proper acknowledge received when RemovePath() returns and then exit the process

(kills itself);

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 41

Figure 4.11 Workflow in GRI-thread module.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 42

4.12.4 GMPLS (Gmp) plugin

API:
Function Called by module
Boolean StartKeepAlive(); TVS
Boolean StopKeepAlive(); TVS

Gmp plugin (Figure 4.9.(5)) connects ForCEG to a 3rd party system: a GMPLS router. The GMPLS router runs
a VLSR-client software called CSA. We design and implement an interface between ForCEG and CSA as a
CE-CE interface (master-to-master).

The Gmp plugin has the following goals:

1. connects ForCEG to CSA at the start-up of ForCEG in case of loading of TBS-IP/TSGMP configuration;
2. disconnects ForCEG from CSA when ForCEG closes;
3. sends periodic messages to CSA: one message per path update (an entry in the AuthTable), or one

message contains a batch of all active paths;
a. When Timer ticks 10sec then search for active GRIs,
b. take their iDs and build a message for CSA,
c. and send the update message to CSA.

4.12.5 Advance Power Management (APM) plugin

API:
Function Called by module
Boolean StartHW(); TVS
Boolean StopHW(); TVS
Boolean GetHWStatus(): TVS

APM plugin (Figure 4.9.(6)) is a software module that interconnects ForCEG to a hardware unit (e.g., APC
MasterSwitch) that controls remotely the power socket relays in use by the network processors, routers, etc.
The module interconnects to the hardware unit over SNMP protocol.

4.13 FFPF software on network processors: FIX2850

FIX2850 [43] is a software project written in MicroC (ANSI-C language adapted specifically for parallel µEngine
programming). It consists of multiple modules, each mapped on one µEngine. We need to build a flexible
architecture that (re-)configures the installed LFBs onto the µEngines.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 43

4.13.1 FE-LFB in NPU: mapping of LFBs on hardware cores

At loading time, the control code on XScale performs the LFB mapping onto available hardware cores
(µEngines). Some LFBs are mapped, by design, on chosen µEngines, as follows:

• RX_Gig – running on µEngine0 of the IngressNPU;

• Tx_CSIX – running on µEngine7 of the IngressNPU;

• Rx_CSIX – running on µEngine0 of the EgressNPU;

• Tx_Gig – running on µEngine7 of the EgressNPU;

The custom application modules (TB, TS) can be mapped on any other available µEngine (e.g., µEngine1,
µEngine2).

When FE is requested to map a certain application (e.g., TS, or TB), it locally instructs the NPU hardware how
to map the required application. In other words, it takes the ForCES model of FEObject Location(LFB), as
follows:

LFB(“Rx”)->Attribute(“Location”)->Value(0);

LFB(“TS1”)->Attribute(“Location”)->Value(1);

The LFB mapping onto µEngines is then described in the hardware by means of a description table (DT), as in
the following example:

Table 4.1 – Example of LFB Mapping
Ingress NPU Egress NPU

LFB Location
(µEngine)

LFB Location
(µEngine)

RX 0 RX_csix 0
TX_csix 7 TX 7
TS1 1 TS2 1
TB1 2 TB2 2

4.13.2 FE-LFB in NPU: mapping of processing hierarchy

The LFB graph connection (processing hierarchy) is programmable by means of using specific “routing” code at
the end of each packet processing dataflow within an LFB. This routing code decides where the current
processed packet should go for further processing.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 44

Figure 4.12 shows an example of graph interconnection when using one TB module per NPU. Therefore, the
incoming traffic is first split in two (load balancing between those 2 NPUs): one half goes to the ingress TB1
and the other half goes to the egress TB2 via the local TX_csix module.

Figure 4.12 Workflow in fast data-path.

The routing code for each LFB in the given example in Figure 6.15 is illustrated in Figure 6.16 and then
described as follows:

Figure 4.13 Code examples in decisional connectors.

The forwarding packet feature is expressed by the following line code: enqueue(LFBiD). The flexibility of re-
mapping of LFBs is given by the routing code itself. However, when using Intel IXP network processors,
changing the routing code requires re-compilation of the entire LFB code. In order to make a dynamic re-
mapping of LFBs (assuming that all the required LFBs are available and loaded) we use the LFBiD parameters.
In other words, we model one LFBs connection in a dependency form:

“LFBiD-src -> connector -> LFBiD-dest”. Where the connector is one of the condition branch that when it is true
activates the specific connector.

When FE is requested to map a certain application (e.g., TS, or TB), then it locally instructs the NPU hardware
how to map the required processing hierarchy. In other words, it sets the ForCES attribute “Connector” on each
LFB, as in the following example:

LFB(“Rx”)->Attribute(“Connector”)->[Value(0)], Value(1)];

LFB(“Rx”)->Attribute(“Connector”)->[Value(1), Value(7)];

LFB(“TB1”)->Attribute(“Connector”)->[Value(1), Value(7)];

TB1

RX TX
csix

To
next
NPU

Routing
code

RX
csix

if (pkt.index % 2)
 enqueue(TB1);
else
 enqueue(Tx);

RX
if (pkt has valid token)
 pkt.port = authorized_port;
else
 pkt.port = default_port;
enqueue(Tx);

TB1
send all pkts
to CSIX bus.

TX_csix
if (pkt has assigned port)
 enqueue(Tx);
else
 enqueue(TB2);

RX_csix

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 45

A connection graph would be described by a table as follows:

Table 4.2 Connection graph example

In
gr

es
s_

T
B

 LFB_src connector LFB_dest
0 (RX) 0 1 (TB1)
0 1 7 (Tx)
1 (TB1) 0 7
1 1 7

E
gr

es
s_

T
B

 0 0 7
0 1 1
…
…
…

This connection graph table will be loaded at start-up by a boot loader code from a shared Description Table
(DT) into local registry on each µEngine. DT is filled in by the control code (FE-IXP) running on the XScale
control processor.

4.14 LFB attributes

Each LFB has some attributes such as packet counters, diagnostic states, AuthTable. Each item uses certain
data types such as DWORD for counters, BYTE for states, array of struct TUPLE for AuthTable. The LFB
attributes should be addressable in a logic form such as:

FE(Ingress)->LFB(Rx)->Attribute(Pkts_count);

FE(Ingress)->LFB(TS1)->Attribute(TUPLE);

Example of attributes:

Table 4.3 LFB Attributes

LFB Attribute Property Type
Rx Packet_Count

Connector
Read-Write
Read-Write

Integer
Array (u8, u8)

Tx Packet_Count
Connector

Read-Write
Read-Write

Integer
Array (u8, u8)

Rx_CSIX Packet_Count
Connector

Read-Write
Read-Write

Integer
Array (u8, u8)

Tx_CSIX Packet_Count
Connector

Read-Write
Read-Write

Integer
Array (u8, u8)

TB Proc_Packet_Count
Connector
Tuple

Read-Write
Read-Write
Read-Write

Integer
Array (u8, u8)
Array of TUPLE

TS Proc_Packet_Count
Connector

Read-Write
Read-Write

Integer
Array (u8, u8)

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 46

Tuple
Bad_Token_Count

Read-Write
Read-Write

Array of TUPLE
Integer

An example of complex LFB attributes is an AuthTable used by any TB or TS LFB. Each entry of the AuthTable
is a TUPLE structure, defined as follows:

struct TUPLE

{
 char[20] LRI;
 char[20] LRI_NextDomain;
 char[20] TokenKey;
 char[20] TokenKey_NextDomain;
 u8 Port1;
 u8 Port2;
 char[20] IPpacketMask;
 char[6] IPsource;
 char[6] IPdestination;
 char[4] PortSource;
 char[4] PortDestination;
 char Status;
};

Summarising, an AuthTable looks as follows.

Table 4.4 AuthTable Example
Entry 0 1 2 3
LRI
LRI_NextDomain
TokenKey
TokenKey_NextDomain
Port1
Port2
IPpacketMask
IPsource
IPdestination
PortSource
PortDestination
Status

4.15 FE-IXP

FE-IXP is a cross-platform module that implements the first two layers of the ForCES (ForCES communication
on top of TCP and ForCES modelling). FE-IXP runs as a deamon in userspace of the embedded linux OS.on
an NPU hardware. It implements the ForCES standard in a FE that controls all LFBs within the current NPU
and connects to the master CE located on a remote host. It mainly consists of the following layers:

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 47

- TCP server communication module with external host;

- ForCES model in FE<-> LFBs;

- Low-level connection (hardware abstraction layer – HAL) that is implemented in an external module:

µeManager.

Figure 4.14 IXP

4.15.1 FE

FE is a module that implements ForCES protocol for FE (Forwarding Element), and is implemented in C++ and
cross-compiled for ARM target (XScale control processor from IXP). Each IXP runs one FE that connects to its
CE (Control Element) parent: ForCEG.

4.15.2 µeManager

µeManager governs the µEngines: it partitions the available DRAM memory, it assigns the memory to LFBs
and it maps the LFBs onto µEngines by filling up the descriptor table (DT). µeManager also has to perform
some hardware initialization such as MSF Unit. We choose for implementation as a userspace process running
on the XScale processor of each IXP2850 NPU. This gives us more flexibility in what we can really do. We are
not limited in memory allocation, execution of other process (like initialization scripts, compilers), network
access etc. However, all control registers we need to interact with µEngines are available through /dev/mem
device which gives direct access to physical memory space (with help of some external libraries for IXPs such
as uengine and IXA_SDK). Since most of developers use Intel IXA_SDK for writing µEngine code, we can use
this IXA library for uploading of the object code.

API:
Function Called by module
Bool LFB_MapOnHw(string LFBname, int HW_CoreID); FE
Bool LFB_MapHierarchy(int HW_CoreID_src, int HW_CoreID_dest,int

condition);
FE

Bool LFB_AddPath(struct TUPLE); FE
Bool LFB_RemovePath(struct TUPLE); FE
Bool LFB_GetValue(string LFBName, string AttributeName); FE

FE-IXP

µeManager

IXP

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 48

One important issue is the interaction with micro-code. Once the application is uploaded onto both NPUs, it
needs to synchronize its start-up each other. This is accomplished by a “Start” signal generated by the host’s
CE and received (almost) simultaneously on both NPUs from the unique host.

4.15.3 Init_chip

It configures the IXP2800 MSF's SPI-4.2, CSIX and flow control paths, and on the egress NPU, additionally
configures the IXF1110 MAC.

ue_ixp_init.[c,h] – implements the HW initialization of each sub-component:

npu_reset(); npu_init_pre_clocks(); npu_init_clocks(); npu_enable_rx_tx(); npu_train_links();

ixf1110_init();

4.15.4 Init_software

It mainly performs the following operations:
• allocates the buffers (PBuf, IBufs for each µEngine, etc.);
• initialises the inter-communication paths (XScale <-> µEngines);
• loads the datapath code onto µEngines;
• starts the hardware units (µEngines);

4.15.5 µEngines => XScale interface

µEngine generates an interrupt for XScale.

Updating data from µEngine to XScale:

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 49

4.15.6 XScale => µEngines interface

The interface uses shared memory to send messages on demand with the help of signals. It uses Interthread
signal: XScale sends the Interthread_ME signal to a certain thread in a certain µEngine.

For instance, when XScale receives a request to add/remove a path, it first updates the shared memory
(SDRAM, or SRAM) and then sends a signal to the µEngine that runs the specific LFB (e.g., TS, or TB).

4.15.7 Mapping of high-level identifiers into low-level ha rdware

As described before, the authorisation table (AuthTable) contains some large fields such as LRI, IPpacketMask,
etc. However, given the hardware constrains in memory, we need to provide to the µEngines only the strict
fields needed in runtime. Therefore, the TUPLE is going to be mapped into MINI_TUPLE, as follows:

µEngines:
Packet comes in & token is valid:
 If (Status is 0) then {Status++; sends-to-XScale “Status”;}
 Else {Status++; if (Status reaches MAX) then {Status=1; sends-to-XScale “Status”;} }
If update signal received from XScale: Perform the requested operation such as update a
certain status.
OBS. MAX gives the dead-time between µEngines –to- XScale messages.

XScale:
When Timer1=10secs:
 Check every Status[] from the list and for each Status not 0 => sends up the GMPLS
update message;
When Timer2=3secs:
 Check every Status ? Status_old:
 If Status = = Status_old: sends a time-out message to µEngines to clear the Status;
 If Status <> Status_old: Status_old=Status.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 50

The Authorization table is composed of MINI_TUPLE entries and it resides in the slowest memory (and the
smallest): LocalMem, or SRAM.

Table 4.5 Authorization Table

The mapping of one TUPLE into MINI_TUPLE is done at each AddPath() call. It consists of computing a small
identifier iD as follows:

iD = Hash64(IPpacketMask over the IPsource, IPdestination, PortSource, PortDestination);

The other fields remain same: TokenKey, TokenKey_NextDomain, Port1, Port2.
We have chosen to use Hash64 because it is hardware supported and a fast function to provide (cvasi)unique
identifier over a large set of data. Note that the same hash function will be performed in datapath for each
incoming packet in order to find the unique iD for a searching in the AuthTable in order to retrieve the proper
entry.

Entry iD
[4Bytes]

TokenKey
[20Bytes]

TokenKey_NextDomain
[20Bytes]

Port1
[4Bytes]

Port2
[4Bytes]

Status
[4Bytes]

0 …
1 …
2 …

typedef struct _TUPLE
{
 u_int8_t LRI[20];
 u_int8_t LRI_NextDomain[20];
 u_int8_t TokenKey[20];
 u_int8_t TokenKey_NextDomain[20];
 u_int8_t Port1;
 u_int8_t Port2;
 u_int8_t IPpacketMask[20];
 u_int8_t IPsource[4];
 u_int8_t IPdestination[4];
 u_int8_t PortSource[2];
 u_int8_t PortDestination[2];
 u_int8_t Status;
}TUPLE;

typedef struct _MINI_TUPLE
{
 u_int32_t iD;
 u_int32_t TokenKey[5];
 u_int32_t TokenKeyNextDomain[5];
 u_int32_t Port1;
 u_int32_t Port2;
 u_int32_t Status;
}MINI_TUPLE;

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 51

5 Conclusions and summary

The report described the development of a ForCES Token Based Switch (TBS-IP). The ForCES Token Based
Switch implements the token concept of the Token Based Networking architecture and uses the ForCES
communication standard to program specialised hardware for network traffic processing.

The report initialy introduced the Token Based Networking (TBN) architecture. The TBN architecture is used to
establish lightpaths over multiple network domains. Lightpaths are setup on behalf of authorised applications
that need to bypass transit networks. On the one hand, TBN uses a secure signature of pieces of an IP packet
as a token that is placed inside the packet to recognise and authenticate traffic. The applications traffic is first
tokenised by the TokenBuilder (TB) of a local domain (e.g., a campus network), after which it is enforced by the
TokenSwitch (TS) at each inter-domain controller along the end-to-end path. On the other hand, TBN makes
use of a separate service and control plane. The control plane consists of a AAA server in the push sequence
as explained by the Authorisation Authentication Accounting (AAA) framework (RFC 2904). The AAA server
acts as an authority that is responsible for the reservation and provisioning of the end-to-end paths, possibly
spanning multiple network domains.

The report also showed the usage of the ForCES protocol to implement our TBS-IP system. The ForCES
protocol separates the Forwarding and Control Path by providing an open protocol for communication and
control.

In order to make the Token Based Switch more configurable, a ForCES Gateway (ForCEG) architecture was
used as an alternative interface for configuring the TBS-IP using specific XML commands instead of using the
ForCES protocol directly over Web Services. These XML commands are appropriate to the 3rd party AAA
authorisation systems (e.g., GAAA-TK) and they are internally translated into ForCES protocol messages. Web
Services provide an open interface over the web, where multiple applications can use them (e.g., other network
provisioning systems from different domains).

The report described the implementation of a Token Based Switch over IP, the API’s used for inter-
communication, and the modelling of the architecture into ForCES LFBs model. Also it provided an overview
about the development on the Intel IXP network processors and their usage to build a performant TBS-IP
system that works at multi-gigabit speeds.

The next step for the ForCES Token Based Switch is to be compatible with the GAAA Toolkit created and
specified in [11], allowing the ForCES Token Based Switch to be accessible by all other GAAA Toolkit enabled

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 52

implementations. For example, using GAAA-TK authorisation interface, it will also be possible to seamless
interconnect a network domain with TBS-IP technology to a G2MPLS or ARGON domain.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 53

6 References

[1]. Horzmud Khosravi, and Todd A. Anderson, "Requirements for Separation of IP Control and Forwarding",

IETF RFC 3654, November 2003.

[2]. Avri Doria, Fiffi Hellstrand, Kenneth Sundell, and Tom Worster, “General Switch Management Protocol

(GSMP) V3”, IETF RFC 3292, June 2002.

[3]. David Durham, Jim Boyle, Ron Cohen, Shai Herzog, Raju Rajan, and Arun Sastry, “The COPS (Common

Open Policy Service) Protocol”, IETF RFC 2748, January 2000.

[4]. Avri Doria, Robert Haas, Jamal Hadi Salim, Hormuzd Khosravi, Weiming Wang, “ForCES Protocol

Specification”, IETF draft, work in progress, March 2008, <draft-ietf-forces-protocol-14.txt>.

[5]. Joel Halpern, Elen Deleganes, Jamal Hadi Salim, "ForCES Forwarding Element Model", IETF draft, work

in progress, July 2008, <draft-ietf-forces-model-12.txt>.

[6]. "The Token Based Switch: Per-Packet Access Authorisation to Optical Shortcuts", by Mihai-Lucian

Cristea, Leon Gommans, Li Xu, and Herbert Bos, in Proceedings of IFIP Networking, Atlanta, GA, USA,

May 2007.

[7]. "Applications drive secure lightpath creation across heterogeneous domains", by Leon Gommans, Freek

Dijkstra, Cees de Laat, Arie Taal, Alfred Wan, Inder Monga, Franco Travostino, in IEEE Communications

Magazine 44(3), March 2006.

[8]. “New to SOA and Web Services”,

<http://www-106.ibm.com/developerworks/webservices/newto/websvc.html>.

[9]. David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris Ferris, David

Orchard, “Web Services Architecture”, W3C Working Group, < http://www.w3.org/TR/ws-arch/>, February

2004.

[10]. Evangelos Haleplidis, Robert Haas, Spyros Denazis, Odysseas Koufopavlou, IWAN2005, France, A

Web Service-and ForCES-based Programmable Router Architecture, November 2005.

[11]. IST-034115 Phosphorus Deliverable D.4.3.1 “GAAA toolkit pluggable components and XACML policy

profile for ONRP”.

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 54

Appendix A Acronyms

AAA Authentication, Authorisation, Accounting

AuthZ Authorization

CE ForCES Control Element

CCL Command Control Logic

CFLS Current FE & LFB State

COPS Common Open Policy Service Protocol Overview

DRAGON Dynamic Resource Allocation over GMPLS Optical Networks

EGEE Enabling Grids for E-sciencE (European Grid Project)

FCSTP ForCES CE Start/Termination Point

FE ForCES Forwarding Element

ForCES Forwarding and Control Element Separation

FT ForCES Translator

GAAAPI Generic Authentication/Authorisation Applicat ion Programming Interface

GMPLS Generalized MPLS (MultiProtocol Label Switching)

GRI Global Reservation Identifier

LFB Logical Function Block

MAC Mandatory Access Control

MP Message Parser

PEP Policy Enforcement Point

QoS Quality of Service

SAML Security Assertion Markup Language

SNMP Simple Network Management Protocol

SEPR Suscribed Events and Pending Responses

STS WS-Trust Secure Token Service

TBN Token Based Networking

TBS Token Based Switch

TBS-IP TBS over IP traffic

TB Token Builder

TS Token Switch

TVS Token Validation Service

VLSR Virtual Label Switching Routing

XML eXtensible Markup Language

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 55

Appendix B XML Ticket and Token Examples

B.1 AuthzTicket example

The listing below provide an example with the Resource element as required for TBS programming generated
with the GAAAPI package. The listing also contains comments that explain a suggested mapping to SAML2.0
Authorisation assertion elements, which demonstrates that even for basic AuthZ session data, few extension
elements are required for extended security context expression.

<AAA:AuthzTicket xmlns:AAA="http://www.aaauthreach. org/ns/#AAA" Issuer="urn:cnl:trust:tickauth:pep"
TicketID="cba06d1a9df148cf4200ef8f3e4fd2b3" Session ID=" f8f3e4fd2b3 df148cf4200">
 <AAA:Decisions><AAA:Decision ResourceID="http://r esources.collaboratory.nl/Philips_XPS1"
result="Permit"/>
 </AAA:Decisions>
 <!-- SAML mapping: <AuthorizationDecisionStatemen t Decision="*" PolicyRef="*" Resource="*"> -->
<AAA:Resources><AAA:Resource ResourceID="http://www .aaaarch.org/TBS/ForceG">
 <AAA:LRI purpose="String">text</AAA:LRI>
 <AAA:TokenKey>String</AAA:TokenKey>
 <AAA:Ports>
 <AAA:port1>String</AAA:port1>
 <AAA:port2>String</AAA:port2>
 </AAA:Ports>
 <AAA:ApplicationFlow>
 <AAA:IPpacketMask>String</AAA:IPpacketMask>
 <AAA:IPsource>String</AAA:IPsource>
 <AAA:IPdestination>String</AAA:IPdestination>
 <AAA:PortSource>String</AAA:PortSource>
 <AAA:PortDestination>String</AAA:PortDestinatio n>
 </AAA:ApplicationFlow>
</AAA:Resource></AAA:Resources>
 <AAA:Actions>
 <AAA:Action>cnl:actions:CtrlInstr</AAA:Action> <!-- SAML mapping: <Action> -->
 <AAA:Action>cnl:actions:CtrlExper</AAA:Action>
 </AAA:Actions>
 <AAA:Subject Id="subject">
 <AAA:SubjectID>WHO740@users.collaboratory.nl</A AA:SubjectID>
 <!-- SAML mapping: <Subject>/<NameIdentifier> - ->
 <AAA:SubjectConfirmationData>
 IGhA11vwa8YQomTgB9Ege9JRNnld84AggaDkOb5WW4 U=</AAA:SubjectConfirmationData>
 <!-- SAML mapping: EXTENDED <SubjectConfirmati onData/> -->
 <AAA:Role>analyst</AAA:Role>
 <!-- SAML mapping:
 <Evidence>/<Assertion>/<AttributeState ment>/<Assertion>/<Attribute>/<AttributeValue> -->
 <AAA:SubjectContext>CNL2-XPS1-2005-02-02</AAA:S ubjectContext>
 <!-- SAML mapping:
 <Evidence>/<Assertion>/<AttributeStatement >/<Assertion>/<Attribute>/<AttributeValue> -->

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 56

 </AAA:Subject>
 <AAA:Delegation MaxDelegationDepth="3" restrictio n="subjects">
 <!-- SAML mapping: LIMITED <AudienceRestrictionC ondition> (SAML1.1),
 or <ProxyRes triction>/<Audience> (SAML2.0) -->
 <AAA:DelegationSubjects>
 <AAA:SubjectID>team-member-2</AAA:SubjectID>
 <AAA:SubjectID>team-member-1</AAA:SubjectID>
 </AAA:DelegationSubjects>
 </AAA:Delegation>
 <AAA:Conditions NotBefore="2006-06-08T12:59:29.91 2Z"
 NotOnOrAfter="2006-06-09T1 2:59:29.912Z" renewal="no">
 <!-- SAML mapping: <Conditions NotBefore="*" NotO nOrAfter="*"> -->
 <AAA:ConditionAuthzSession PolicyRef="PolicyRef -GAAA-RBAC-test001" SessionID="JobXPS1-2006-001">
 <!-- SAML mapping: EXTENDED <SAMLConditionAuthz Session PolicyRef="*" SessionID="*"> -->
 <AAA:SessionData>put-session-data-Ctx-here</A AA:SessionData>
 <!-- SAML mapping: EXTENDED <SessionData/> - ->
 </AAA:ConditionAuthzSession>
 </AAA:Conditions>
 <AAA:Obligations>
 <AAA:Obligation>put-policy-obligation(2)-here</ AAA:Obligation>
 <!-- SAML mapping: EXTENDED <Advice>/<PolicyOb ligation> -->
 <AAA:Obligation>put-policy-obligation(1)-here</ AAA:Obligation>
 </AAA:Obligations>
</AAA:AuthzTicket>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/x mldsig#">
 <ds:SignedInfo> ... </ds:SignedInfo>
 <ds:SignatureValue>e4E27kNwEXoVdnXIBpGVjpaBGVY71N ypos...</ds:SignatureValue>
</ds:Signature>

Figure B.1. Example of XML based AuthZ ticket format used for TVS programming. (Note. Comments refer to the

suggested SAML2.0 mapping)

B.2 XML Token example

XML token is used to provide a reference to already reserved/authorised resource at the access/usage stage of
the reserved service or resource. Typically token use is supported by the detailed reservation information
stored/cached at the resource.

XML token format uses a special “TVS/TBN” profile of the more general AuthzToken format. Example of the full
TVS XML token is shown below:

<AAA:AuthzToken xmlns:AAA="http://www.aaauthreach.o rg/ns/#AAA"
 Issuer="urn:aaa:gaaapi:token:TVS"
 SessionId="a9bcf23e70dc0a0cd992bd24e37404c9 e1709afb"
 TokenId="d1384ab54bd464d95549ee65cb172eb7">
 <AAA:TokenValue>ebd93120d4337bc3b959b2053e25ca5 271a1c17e</AAA:TokenValue>
 <AAA:Conditions NotBefore="2007-08-12T16:00:29. 593Z" NotOnOrAfter="2007-08-13T16:00:29.593Z"/>
</AAA:AuthzToken>

where the element <TokenValue> and attributes SessionId and TokenId are mandatory, and the element
<Conditions> and attributes Issuer, NotBefore, NotOnOrAfter are optional.

Minimum token format is illustrated in the following example:

<AAA:AuthzToken xmlns:AAA="http://www.aaauthreach.o rg/ns/#AAA"
 SessionId="a9bcf23e70dc0a0cd992bd24e37404c9 e1709afb"
 TokenId="d1384ab54bd464d95549ee65cb172eb7">
 <AAA:TokenValue>ebd93120d4337bc3b959b2053e25ca 5271a1c17e</AAA:TokenValue>

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 57

</AAA:AuthzToken>

Attributes “Issuer” allow for distinguishing different AuthzToken profiles. The TVS profile is identified by the
URN "urn:aaa:gaaapi:token:TVS".

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 58

Appendix C ForCES model in TBS-IP

The XML for the LFB’s of the ForCES based TBS can be found in the ForCES model draft [[5]].

C.1 Schema of RX LFB

<?xml version="1.0" encoding="UTF-8"?>
<LFBLibrary xmlns="http://ietf.org/forces/1.0/lfbmo del" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://ietf.org/forces/1.0/lfbm odel:\Projects\Phosphorus\FORCES~1\LFBschemas.xsd"
provides="RxLFB">
 dataTypeDefs>
 <dataTypeDef>
 name>Ports</name>
 synopsis>Values that can be applied to Inco ming and Outoging Port for Condition
Forwarding</synopsis>
 atomic>
 <baseType>u8</baseType>
 <rangeRestriction>
 allowedRange max="0" min="9"></allowedR ange>
 </rangeRestriction>
 /atomic>
 </dataTypeDef>
 <dataTypeDef>
 name>Connector</name>
 synopsis>A Conditional connector between an incoming port and outgoing port</synopsis>
 struct>
 <element elementID="1">
 name>IncomingPort</name>
 synopsis>The Incoming Port/MicroEngine< /synopsis>
 typeRef>Ports</typeRef>
 </element>
 <element elementID="2">
 name>Condition</name>
 synopsis>The condition upon which from 1 will go to 2</synopsis>
 typeRef>u8</typeRef>
 </element>
 <element elementID="3">
 name>OutgoingPort</name>
 synopsis>The Outgoing Port/MicroEngine< /synopsis>
 typeRef>Ports</typeRef>
 </element>
 /struct>
 </dataTypeDef>
 /dataTypeDefs>
 LFBClassDefs>
 <LFBClassDef LFBClassID="3">

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 59

 name>RxLFB</name>
 synopsis>The port Rx LFB for the FE - TVS</ synopsis>
 version>1.0</version>
 attributes>
 <attribute elementID="1" access="read-write ">
 name>Condition_Fwd</name>
 synopsis>An array with condition forwar ding</synopsis>
 typeRef>Connector</typeRef>
 </attribute>
 <attribute elementID="2" access="read-reset ">
 name>Packet_Count</name>
 synopsis>The number of packets that are coming into the IXP</synopsis>
 typeRef>uint32</typeRef>
 </attribute>
 /attributes>
 </LFBClassDef>
 /LFBClassDefs>
</LFBLibrary>

C.2 Schema of Tx LFB

<?xml version="1.0" encoding="UTF-8"?>
<LFBLibrary xmlns="http://ietf.org/forces/1.0/lfbmo del" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://ietf.org/forces/1.0/lfbm odel:\Projects\Phosphorus\FORCES~1\LFBschemas.xsd"
provides="TxLFB">
<LFBClassDefs>
 LFBClassDef LFBClassID="4">
 <name>TxLFB</name>
 <synopsis>The port Tx LFB for the FE - TVS</syn opsis>
 <version>1.0</version>
 <attributes>
 attribute elementID="1" access="read-reset" >
 <name>Packet_Count</name>
 <synopsis>The number of packets that are go ing out of the IXP</synopsis>
 <typeRef>uint32</typeRef>
 /attribute>
 </attributes>
 /LFBClassDef>
</LFBClassDefs>
</LFBLibrary>

C.3 Schema of TB LFB

<?xml version="1.0" encoding="UTF-8"?>
<LFBLibrary xmlns="http://ietf.org/forces/1.0/lfbmo del" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://ietf.org/forces/1.0/lfbm odel:\Projects\Phosphorus\FORCES~1\LFBschemas.xsd"
provides="TBLFB">
<dataTypeDefs>
 dataTypeDef>
 <name>Tuple</name>
 <synopsis>A Tuple from the TVS Ticket</synopsis >
<!-- LRI, TokenKey, NewLRI, NewTokenKey, Port1, Por t2, IPPacketMask, IPSource, IPDestination,
PortSource, PortDestination, Status -->
 <struct>
 element elementID="1">
 <name>LRI</name>
 <synopsis>Local Reference Identifier</synop sis>
 <typeRef>byte[20]</typeRef>
 /element>

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 60

 element elementID="2">
 <name>TokenKey</name>
 <synopsis>A key used for building the encry pted token</synopsis>
 <typeRef>byte[20]</typeRef>
 /element>
 element elementID="3">
 <name>NewLRI</name>
 <synopsis>A Local Reference Identifier for the next domain</synopsis>
 <typeRef>byte[20]</typeRef>
 /element>
 element elementID="4">
 <name>NewTokenKey</name>
 <synopsis> A key used by the next domain</s ynopsis>
 <typeRef>byte[20]</typeRef>
 /element>
 element elementID="5">
 <name>Port1</name>
 <synopsis>Port 1 Number</synopsis>
 <typeRef>u8</typeRef>
 /element>
 element elementID="6">
 <name>Port2</name>
 <synopsis>Port 2 Number</synopsis>
 <typeRef>u8</typeRef>
 /element>
 element elementID="7">
 <name>IPPacketMask</name>
 <synopsis>IPPacketMask</synopsis>
 <typeRef>byte[20]</typeRef>
 /element>
 element elementID="8">
 <name>IPSource</name>
 <synopsis>IPSource</synopsis>
 <typeRef>byte[4]</typeRef>
 /element>
 element elementID="9">
 <name>IPDestination</name>
 <synopsis>IPDestination</synopsis>
 <typeRef>byte[4]</typeRef>
 /element>
 element elementID="10">
 <name>PortSource</name>
 <synopsis>Port Source</synopsis>
 <typeRef>byte[2]</typeRef>
 /element>
 element elementID="11">
 <name>PortDestination</name>
 <synopsis>Port Destination</synopsis>
 <typeRef>byte[2]</typeRef>
 /element>
 element elementID="12">
 <name>Status</name>
 <synopsis>A Status</synopsis>
 <typeRef>string</typeRef>
 /element>
 </struct>
 /dataTypeDef>
 dataTypeDef>
 <name>ActiveTuples</name>
 <synopsis>An Array with the Active Tuples</syno psis>
 <array type="variable-size">
 typeRef>ActiveTupleCount</typeRef>
 </array>
 /dataTypeDef>
 <dataTypeDef>
 name>Ports</name>
 synopsis>Values that can be applied to Inco ming and Outoging Port for a Connector</synopsis>
 atomic>
 <baseType>u8</baseType>

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 61

 <rangeRestriction>
 allowedRange max="0" min="255"></allowe dRange>
 </rangeRestriction>
 /atomic>
 </dataTypeDef>
 <dataTypeDef>
 name>Connector</name>
 synopsis>A Conditional Connector between an incoming port and outgoing port</synopsis>
 struct>
 <element elementID="1">
 name>IncomingPort</name>
 synopsis>The Incoming Port/MicroEngine< /synopsis>
 typeRef>Ports</typeRef>
 </element>
 <element elementID="2">
 name>Condition</name>
 synopsis>The condition upon which from 1 will go to 2</synopsis>
 typeRef>u8</typeRef>
 </element>
 <element elementID="3">
 name>OutgoingPort</name>
 synopsis>The Outgoing Port/MicroEngine< /synopsis>
 typeRef>Ports</typeRef>
 </element>
 /struct>
 </dataTypeDef>
 <dataTypeDef>
 name>ActiveTupleCount</name>
 synopsis>An Active Tuples with it's counter s</synopsis>
 struct>
 <element elementID="1">
 name>ActiveTuplesEntry</name>
 synopsis>An Active Tuples Entry</synops is>
 typeRef>Tuple</typeRef>
 </element>
 <element elementID="2">
 name>Token_Count</name>
 synopsis>The number of tokens that are coming into the TB</synopsis>
 typeRef>uint32</typeRef>
 </element>
 <element elementID="3">
 name>Bad_Token_Count</name>
 synopsis>The number of bad tokens that have been checked</synopsis>
 typeRef>uint32</typeRef>
 </element>
 /struct>
 </dataTypeDef>
</dataTypeDefs>
<LFBClassDefs>
 LFBClassDef LFBClassID="5">
 <name>TBLfb</name>
 <synopsis>Token Builder LFB</synopsis>
 <version>1.0</version>
 <attributes>
 attribute elementID="1" access="read-write" >
 <name>Tuples</name>
 <synopsis>The tuples inside the TB</synopsi s>
 <typeRef>ActiveTuples</typeRef>
 /attribute>
 <attribute elementID="2" access="read-write ">
 name>Condition_Fwd</name>
 synopsis>An array with condition forwar ding</synopsis>
 typeRef>Connector</typeRef>
 </attribute>
 <attribute elementID="3" access="read-reset ">
 name>Packet_Count</name>
 synopsis>The number of packets that are coming into the TB module</synopsis>
 typeRef>uint32</typeRef>
 </attribute>

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 62

 </attributes>
 /LFBClassDef>
</LFBClassDefs>
</LFBLibrary>

C.4 Schema of TS LFB

<?xml version="1.0" encoding="UTF-8"?>
<LFBLibrary xmlns="http://ietf.org/forces/1.0/lfbmo del" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://ietf.org/forces/1.0/lfbm odel:\Projects\Phosphorus\FORCES~1\LFBschemas.xsd"
provides="TSLFB">
 dataTypeDefs>
 <dataTypeDef>
 name>Tuple</name>
 synopsis>A Tuple from the TVS Ticket</synop sis>
 !-- LRI, TokenKey, NewLRI, NewTokenKey, Por t1, Port2, IPPacketMask, IPSource, IPDestination,
PortSource, PortDestination, Status -->
 struct>
 <element elementID="1">
 name>LRI</name>
 synopsis>Local Reference Identifier</sy nopsis>
 typeRef>byte[20]</typeRef>
 </element>
 <element elementID="2">
 name>TokenKey</name>
 synopsis>A key used for building the en crypted token</synopsis>
 typeRef>byte[20]</typeRef>
 </element>
 <element elementID="3">
 name>NewLRI</name>
 synopsis>A Local Reference Identifier f or the next domain</synopsis>
 typeRef>byte[20]</typeRef>
 </element>
 <element elementID="4">
 name>NewTokenKey</name>
 synopsis>A key used by the next domain< /synopsis>
 typeRef>byte[20]</typeRef>
 </element>
 <element elementID="5">
 name>Port1</name>
 synopsis>Port 1 Number</synopsis>
 typeRef>u8</typeRef>
 </element>
 <element elementID="6">
 name>Port2</name>
 synopsis>Port 2 Number</synopsis>
 typeRef>u8</typeRef>
 </element>
 <element elementID="7">
 name>IPPacketMask</name>
 synopsis>IPPacketMask</synopsis>
 typeRef>byte[20]</typeRef>
 </element>
 <element elementID="8">
 name>IPSource</name>
 synopsis>IPSource</synopsis>
 typeRef>byte[4]</typeRef>
 </element>
 <element elementID="9">
 name>IPDestination</name>
 synopsis>IPDestination</synopsis>
 typeRef>byte[4]</typeRef>
 </element>
 <element elementID="10">

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 63

 name>PortSource</name>
 synopsis>Port Source</synopsis>
 typeRef>byte[2]</typeRef>
 </element>
 <element elementID="11">
 name>PortDestination</name>
 synopsis>Port Destination</synopsis>
 typeRef>byte[2]</typeRef>
 </element>
 <element elementID="12">
 name>Status</name>
 synopsis>A Status</synopsis>
 typeRef>string</typeRef>
 </element>
 /struct>
 </dataTypeDef>
 <dataTypeDef>
 name>ActiveTuples</name>
 synopsis>An Array with the Active Tuples an d their counters</synopsis>
 array type="variable-size">
 <typeRef>ActiveTupleCount</typeRef>
 /array>
 </dataTypeDef>
 <dataTypeDef>
 name>ActiveTupleCount</name>
 synopsis>An Active Tuples with it's counter s</synopsis>
 struct>
 <element elementID="1">
 name>ActiveTuplesEntry</name>
 synopsis>An Active Tuples Entry</synops is>
 typeRef>Tuple</typeRef>
 </element>
 <element elementID="2">
 name>Token_Count</name>
 synopsis>The number of tokens that are coming into the TS</synopsis>
 typeRef>uint32</typeRef>
 </element>
 <element elementID="3">
 name>Bad_Token_Count</name>
 synopsis>The number of bad tokens that have been checked</synopsis>
 typeRef>uint32</typeRef>
 </element>
 /struct>
 </dataTypeDef>
 <dataTypeDef>
 name>Ports</name>
 synopsis>Values that can be applied to Inco ming and Outoging Port for a Connector</synopsis>
 atomic>
 <baseType>u8</baseType>
 <rangeRestriction>
 allowedRange max="0" min="255"></allowe dRange>
 </rangeRestriction>
 /atomic>
 </dataTypeDef>
 <dataTypeDef>
 name>Connector</name>
 synopsis>A Conditional Connector between an incoming port and outgoing port</synopsis>
 struct>
 <element elementID="1">
 name>IncomingPort</name>
 synopsis>The Incoming Port/MicroEngine< /synopsis>
 typeRef>Ports</typeRef>
 </element>
 <element elementID="2">
 name>Condition</name>
 synopsis>The condition upon which from 1 will go to 2</synopsis>
 typeRef>u8</typeRef>
 </element>
 <element elementID="3">

ForCES Token Based Switch

Project: Phosphorus
Deliverable Number: D.4.3.2
Date of Issue: 30/09/2008
EC Contract No.: 034115
Document Code: <Phosporus-WP4-D.4.3.2> 64

 name>OutgoingPort</name>
 synopsis>The Outgoing Port/MicroEngine< /synopsis>
 typeRef>Ports</typeRef>
 </element>
 /struct>
 </dataTypeDef>
 /dataTypeDefs>
 LFBClassDefs>
 <LFBClassDef LFBClassID="5">
 name>TSLfb</name>
 synopsis>Token Switch LFB</synopsis>
 version>1.0</version>
 attributes>
 <attribute elementID="1" access="read-write ">
 name>Tuples</name>
 synopsis>The tuples inside the TB</syno psis>
 typeRef>ActiveTuples</typeRef>
 </attribute>
 <attribute elementID="2" access="read-write ">
 name>Condition_Fwd</name>
 synopsis>An array with condition forwar ding</synopsis>
 typeRef>Connector</typeRef>
 </attribute>
 /attributes>
 events baseID="1">
 <event eventID="1">
 name>BadCountSurpassed</name>
 synopsis>If the Bad Count is surpassed the LFB will send a message to the CE</synopsis>
 eventTarget>
 <eventField>Tuples</eventField>
 <eventSubscript>_TupleEntry_</eventSubs cript>
 <eventField>BadTokenCount</eventField>
 /eventTarget>
 eventCreated>
 <eventGreaterThan>255</eventGreaterThan >
 /eventCreated>
 eventReports>
 <eventReport>
 eventField>Tuples</eventField>
 eventSubscript>_TupleEntry_</eventS ubscript>
 eventField>ActiveTuplesArray</event Field>
 eventField>LRI</eventField>
 </eventReport>
 /eventReports>
 </event>
 /events>
 </LFBClassDef>
 /LFBClassDefs>
</LFBLibrary>

