

034115

PHOSPHORUS

Lambda User Controlled Infrastructure for European Research

Integrated Project

Strategic objective:
Research Networking Testbeds

Deliverable reference number: D.2.3

Grid-GMPLS high-level system design

Due date of deliverable: 2008-03-31
Actual submission date: 2008-03-31

Document code: Phosphorus-WP2-D2.3

Start date of project: Duration:
October 1, 2006 30 Months

Organisation name of lead contractor for this deliverable: Nextworks (NXW)

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)
Dissemination Level

PU Public ����
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

2

Abstract

This document reports the software architecture of the main network elements of the Grid-enabled GMPLS Control Plane.

Functional entities are specified in terms of interfaces, both internal to a G2MPLS network element and external (i.e. towards other peering

network elements).

Moreover, for each components of a G2MPLS network element, a detailed breakdown of functionalities, data model, finite state machines

and exported APIs is provided in terms of code/pseudo-code excerpts, in order to assemble a generalized but possibly detailed guide for

the G2MPLS software developers.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

3

List of Contributors

Giacomo Bernini NXW

Gino Carrozzo NXW

Nicola Ciulli NXW

Giodi Giorgi NXW

Francesco Salvestrini NXW

Adam Kaliszan PSNC

Damian Parniewicz PSNC

Artur Juszczyk PSNC

Eduard Escalona UESSEX

Reza Nejabati UESSEX

Adetola Orepdope UESSEX

Oliver Wäldrich FHG-SCAI

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

4

Table of Contents

0 Executive Summary 13

1 Objectives and Scope 14

2 Terminology 17

3 High-level system design of G2MPLS network elements 18

3.1 G2MPLS Edge Controller 22

3.1.1 Main functionalities 22

3.1.2 External interfaces 23

3.1.3 Internal interfaces 24

3.2 G2MPLS Core Controller 26

3.2.1 Main functionalities 26

3.2.2 External interfaces 26

3.2.3 Internal interfaces 27

3.3 G2MPLS Border Controller 30

3.3.1 Main functionalities 30

3.3.2 External interfaces 30

3.3.3 Internal interfaces 31

3.4 G.UNI Gateway (G.UNI-GW) 34

3.4.1 Main functionalities 34

3.4.2 External interfaces 34

3.4.3 Internal interfaces 35

3.5 G.E-NNI Gateway (G.ENNI-GW) 36

4 Transport Network Resource Controller (TNRC) 37

4.1 TNRC basics 37

4.2 TNRC data model 38

4.2.1 TNRC_Master instance 39

4.2.2 TNRC_AP instance 41

4.2.3 Eqpt instance 42

4.2.4 Board instance 43

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

5

4.2.5 Port instance 45

4.2.6 Resource instance 46

4.2.7 Plugin Container (Pcontainer) instance 48

4.2.8 Plugin instance 48

4.2.9 ApiQueue instance 51

4.2.10 Action instance 51

4.2.11 XC instance 53

4.3 TNRC Abstract Part 55

4.3.1 TNRC Abstract Part configuration API 55

4.3.2 TNRC Abstract Part external API 57

4.3.3 TNRC Abstract Part action specific API 59

4.4 TNRC Specific Part 60

4.4.1 TNRC Specific Part API 60

4.5 TNRC Action FSM 60

4.5.1 Example transitions 66

5 Link Resource Manager (LRM) 69

5.1 LRM basics 69

5.2 LRM Data Model 69

5.2.1 LRM instance 70

5.2.2 SCN Interface instance 71

5.2.3 Control Channel instance 71

5.2.4 Adjacency instance 72

5.2.5 TE-Link instance 72

5.2.6 Data-Link instance 74

5.3 LRM configuration API 75

5.4 LRM external API 77

6 SCN Gateway (SCNGW) 79

6.1 SCNGW basics 79

6.2 SCNGW client 81

6.3 SCNGW server 84

6.3.1 SCNGW server data structures 84

6.3.2 SCNGW server external API 87

7 G2.RSVP-TE 89

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

6

7.1 G².RSVP-TE data model 90

7.1.1 G².RSVPTE instance 91

7.1.2 Session instance 92

7.1.3 LSP instance 93

7.1.4 Interface instance 97

7.2 G².RSVP-TE internal API 98

7.3 G².RSVP-TE external API 101

7.4 G².RSVP-TE LSP FSM 103

7.4.1 Example transitions 111

7.5 G².RSVP-TE parsing and formatting 112

8 Call Controllers 117

8.1 CC shared objects and functions (xCC) 117

8.1.1 xCC data model 118

8.1.2 xCC (CCC/NCC) External API 120

8.1.3 xCC Signalling Interfaces 124

8.2 G².NCC – The Grid-GMPLS Network Call Controller 128

8.2.1 G².NCC basics 128

8.2.2 G².NCC software overview 128

8.2.3 G².NCC data model 130

8.2.4 G².NCC Call FSM 132

8.3 G².CCC – The Grid-GMPLS Client Call Controller 139

8.3.1 G².CCC basics 139

8.3.2 G².CCC software overview 139

8.3.3 G².CCC data model 141

8.3.4 G².CCC Call FSM 142

9 Recovery Controller (RC) 147

9.1 Recovery Controller basics 147

9.2 Recovery Controller software overview 148

9.3 Recovery Controller data model 149

9.4 RC Recovery Bundle FSM 151

9.5 Recovery Controller External APIs 158

10 G2MPLS Path Computation Engine Routing Algorithm (G2.PCE-RA) 162

10.1 G2.PCE-RA basics 162

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

7

10.2 Topology view in G2.PCE-RA 164

10.3 G2.PCE-RA data model 166

10.3.1 G2.PCE-RA instance 167

10.3.2 GNS calls 168

10.3.3 Connections 169

10.3.4 Topology 169

10.3.5 Nodes 170

10.3.6 TNAs 176

10.3.7 TE Links 176

10.4 G2.PCE-RA internal API 179

10.4.1 Topology update in G2.PCE-RA 179

10.4.2 Computation of routes in G2.PCE-RA 186

10.5 G2.PCE-RA external API 190

10.5.1 Topology API 190

10.5.2 Computation API 196

11 G.UNI-GW Adapter Design Specification 199

11.1 G.UNI-GW Adapter Transactions 199

11.1.1 WSAG – WS-G.UNI Adapter – G.UNI-C RSVP PC (Signalling) 200

11.2 G.UNI-GW adapter Implementation 206

11.2.1 File descriptions 207

11.3 Example 207

12 G.UNI and G.E-NNI RSVP-TE 208

13 G².OSPF-TE (I-NNI, E-NNI and UNI-N/C) 209

14 Software structure 210

14.1 Configuration process 210

14.1.1 The configuration process from the user perspective 210

14.1.2 The configuration process from the developer perspective 212

14.2 Process start-up and monitoring 212

14.3 Inter-process communication 214

14.3.1 omniORB 215

14.3.2 Quagga daemons and threads 216

14.3.3 omniORB integration in Phosphorus 216

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

8

14.4 G²MPLS base Python modules 218

14.5 Software daemons 220

14.5.1 lrmd 220

14.5.2 scngwd 220

14.5.3 tnrcd 221

14.5.4 ospfd 222

14.5.5 g2rsvpted 222

14.5.6 gunirsvpd 222

14.5.7 gennirsvpd 223

14.5.8 g2nccd 223

14.5.9 g2pcerad 223

14.5.10 lib 223

14.5.11 pyg2mpls 224

15 References 225

16 Acronyms 226

Appendix A Common types 230

A.1 Identifiers 230

A.2 Label identifier 231

A.3 TE-Link and Data Link 231

A.4 TNA identifier 231

A.5 Call, Recovery Bundle and LSP identifiers 232

A.6 GMPLS extensions 233

A.7 Grid extensions 236

A.7.1 Signalling-specific 236

A.7.2 Routing-specific 240

A.8 GNS call parameters 245

A.9 Recovery parameters 246

A.10 LSP parameters 246

A.11 ERO 247

A.12 LRM specific 247

A.13 TNRC specific 248

A.14 G2.PCE-RA specific 248

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

9

Appendix B Automatic FSM skeleton generation 251

B.1 Configuration file 251

B.2 Template file 252

B.3 Generated code 255

Appendix C TNRC Specific Part for ADVA FSP 3000RE-II 266

C.1 API Data structures 266

C.2 Summary of TNRC_SP LSC ADVA API functions 267

C.3 Detailed specification of TNRC_SP LSC ADVA API functions 267

C.4 ADVA FSP 3000RE-II device 275

C.4.1 Overview 275

C.4.2 Implementation details 278

C.4.3 TL1 commands 285

C.4.4 TL1 autonomous messages 290

C.4.5 Error codes 291

Appendix D TNRC Specific Part for Calient DiamondWave FiberConnect 297

D.1 Calient TNRC_SP Software Design 297

D.1.1 Data structures 297

D.1.2 Detailed specification of TNRC_SP FSC API functions 298

D.2 Calient TNRC_SP Software Implementation 305

D.2.1 TNRC_SP use-case scenarios 305

D.2.2 TNRC_SP_Calient Generic Descriptions 316

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

10

List of Figures

Figure 3-1: Generic functional decomposition of G²MPLS controllers. ..18
Figure 3-2: G²MPLS network elements. ...20
Figure 3-3: The G2MPLS Network Control Plane with gateway functional elements...21
Figure 3-4: Internal components of the G2MPLS Edge Controller...25
Figure 3-5: Internal components of the G2MPLS Core Controller. ..29
Figure 3-6: Internal components of the G2MPLS Border Controller. ...33
Figure 3-7: G.UNI Gateway (G.UNI-GW) breakdown into main components. ...35
Figure 4-1: TNRC data model...39
Figure 4-2: TNRC actions finite state machine...65
Figure 4-3: TNRC action FSM: example transitions in case of successfully make cross-connection..................67
Figure 4-4: action FSM: example transitions in case of successfully destroy cross-connection..........................68
Figure 5-1: LRM Data Model. ...70
Figure 6-1: SCNGW module structure..80
Figure 7-1: The base G².RSVP-TE data model..90
Figure 7-2: G2MPLS LSP finite state machine ...110
Figure 7-3: Example of G2MPLS LSP signalling setup...112
Figure 7-4: parsing and formatting sketch. ...113
Figure 8-1: The base xCC data model ..119
Figure 8-2: G².NCC threads structure ...130
Figure 8-3: G².NCC data model...131
Figure 8-4: G².NCC Call FSM..138
Figure 8-5: G².CCC threads structure ...140
Figure 8-6: G².CCC data model...141
Figure 8-7: G².CCC Call FSM..146
Figure 9-1: RC threads structure ...149
Figure 9-2: RC data model ..150
Figure 9-3: Recovery Bundle FSM ..157
Figure 10-1: The G2.PCE-RA component break-down...163
Figure 10-2: Mixed topology with three domains, inter and intra-domain te-links and Grid sites.......................164
Figure 10-3: G2.PCE-RA representation of the previous mixed topology. ...165
Figure 10-4: The base G2.PCE-RA data model..166
Figure 10-5: G2.PCE-RA constrained Dijkstra pseudo-code. ...186
Figure 10-6: Actions on a callRoute(). ..188
Figure 10-7: Actions on a computeDisjointRoute()...189
Figure 10-8: Actions on a computeMaxDisjointRoutes(). ...190
Figure 11-1: The GUNI-GW breakdown and transactions localization. ...200
Figure 11-2: GUNI-GW operation flow. ..206
Figure 14-1: Phosphorus G2MPLS code structure. ...211
Figure 16-1: Test FSM..265
Figure 16-2: ADVA FSP 3000RE-II device...276
Figure 16-3: ADVA FSP 3000RE-II architecture. ...277
Figure 16-4: ADVA FSP 3000RE-II eROADM connections configuration (AID are “bay-shelve-slot-port”).......278
Figure 16-5: TNRC SP ADVA sequence diagram for XC creation and fault notification.280
Figure 16-6: TNRC SP ADVA sequence diagram for information retrieve (get_resource_list,
get_resource_detail, get_label_list). ...281

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

11

Figure 16-7: TNRC SP ADVA make xc finite state machine (‘Destroy xc’ is entry point to destroy xc finite state
machine). ..282
Figure 16-8: TNRC SP ADVA destroy xc finite state machine (‘Unreserve xc’ is entry point to unreserve xc finite
state machine). ...283
Figure 16-9: TNRC SP ADVA reserve xc finite state machine (‘Unreserve xc’ is entry point to unreserve xc finite
state machine). ...284
Figure 16-10: TNRC SP ADVA unreserve xc finite state. ..285
Figure 16-11: Uses Case Diagram for the TNRC_SP..307
Figure 16-12: Process and threads sequential diagram...317
Figure 16-13: State Diagram for Make XC. ..318
Figure 16-14: State Diagram for Destroy XC..319
Figure 16-15: State Diagram for Reserve Resources. ...319
Figure 16-16: State Diagram for Un-reserve Resources..320

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

12

List of Tables

Table 3-1: G2MPLS Edge Controller external interfaces. ...23
Table 3-2: G2MPLS Edge Controller internal interfaces. ..24
Table 3-3: G2MPLS Core Controller external interfaces...27
Table 3-4: G2MPLS Core Controller internal interfaces..28
Table 3-5: G2MPLS Border Controller external interfaces..31
Table 3-6: G2MPLS Border Controller internal interfaces. ...32
Table 3-7: G.UNI Gateway external interfaces...34
Table 3-8: G.UNI Gateway internal interfaces..35
Table 4-1: TNRC breakdown in sub-modules. ...38
Table 4-2: TNRC Action FSM: states. ..63
Table 4-3: TNRC Action FSM: events and root events. ...64
Table 6-1: SCNGW breakdown into two sub-modules...80
Table 7-1: Mapping between internal and external G².RSVP-TE API..103
Table 7-2: G².RSVP-TE LSP FSM: states..108
Table 7-3: G2RSVP-TE LSP FSM: root events..109
Table 8-1: G².NCC Call FSM: states ..136
Table 8-2: G².NCC Call FSM: root events ..137
Table 8-3: G².CCC Call FSM: states ..144
Table 8-4: G².CCC Call FSM: root events ..145
Table 9-1: RC Recovery Bundle FSM: states...154
Table 9-2: RC Recovery Bundle FSM: root events ..156
Table 14-1: SCNGW breakdown in sub-modules. ...221
Table 14-2: TNRC breakdown in sub-modules. ...222

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

13

0 Executive Summary

This document reports the high-level software architecture of the main network elements of the Grid-enabled
GMPLS Control Plane. The final purpose is to provide a reference on the G2MPLS software modules, their
expected functionalities and core structure for the main use by Phosphorus developers.

The actual scope of the document is stated in section 1, which provides the guiding information on how to read
and use the whole document.

Section 2 introduces into the used terminology and refers to the acronyms list in section 16.

Section 3 describes the actual and implemented high-level software design of the G²MPLS controllers (Edge,
Core and Border Controllers); the rest of the document goes beyond it in order to offer a needed insight on the
developed software, according to the overall scope of the deliverable.

Sections 4 to 13 reports on the software design of each single component in the G²MPLS stack: the TNRC, the
LRM, the SCNGW, the G².RSVP-TE, the G².OSPF-TE the Call Controllers (CCC and NCC), the Recovery
Controller, the G².PCE-RA, the G.UNI and G.E-NNI RSVPs, the G.UNI and G.E-NNI OSPFs, and the G.UNI
GW.

Finally, section 14 discusses the software structure of the phosphorus-g2mpls open source code, including
some software-architectural details on the stack.

A set of appendixes introduces further details that could have been cumbersome if aggregated in previous
sections. Appendix A reports software details on the G²MPLS data model. Appendix B describes the software
utilities to automate and streamline the generation of protocol Finite State Machines starting from human-
readable specifications. Finally, appendixes C and D reports the software design of the TNRC SPs for the
reference equipment to be controlled by G²MPLS in the Phosphorus project (ADVA FSP 3000RE-II and the
Calient DiamondWave FiberConnect, respectively).

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

14

1 Objectives and Scope

Foreword: this deliverable just refers to architectural and functional concepts of GMPLS and G²MPLS, but it
does not explain them in depth. For a support on the basics, please refer to the architectural and protocol-
specific documents already delivered by WP2 (D2.1, D2.2, D2.7 and, for some matters, D2.6). Furthermore, in
order to keep the document focused on its scope, all the references to standards (by IETF, ITU-T and OIF), be
them either normative or informational, are not listed again here, but are pointed to their corresponding listing in
D2.1, D2.2 and D2.7.

This document reports the high-level software design of the Grid-enabled GMPLS Control Plane stack.
However, this document has been originally planned at the end of the first round of development process (i.e.
before any integration and testing) and is intended to contain much more than just a high-level software design.
Indeed, this document is a detailed report about the G²MPLS software developed in the first 18 months of the
Phosphorus project. With this scope, it includes:

� a level of information that is comparable to an a posteriori high-level software design (i.e. already
implemented and preliminarily tested), not adopting the formalism (e.g. UML) needed when the design
is a priori, and have to drive subsequent developments. For a greater efficiency, this form of design
was produced during the developments themselves, thus not decoupling the system design phase (and
teams) from the development counterparts. In other words, the reported design already includes the
upgrades and fixes that occur when it goes through the real development process.

� An insight in the developed software, with varying levels of detail (according to the needs of each
particular piece of software). The view might range from a high-level functional description up to the
discussion of specific algorithms (e.g. for the PCE).

� In general, any sort of information that could make this deliverable a solid reference document about
the G²MPLS software in the future, both for who contributed to the developments, and who will be
using and modifying the Open Source Software released after it.

For the latter reason (need to be a quick and effective reference for the code), the style and mood of this
document is less tutorial and verbose than that adopted in the architectural deliverables (D2.1, D2.2, D2.7 and
D2.6).

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

15

Details that go beyond the listed specifications will derive from the completion of the development activities and
the release of the G2MPLS prototypes. In fact, this document is intended as a basic general reference that will
integrate the official G2MPLS architectural documents (D2.1 and D2.6) and provide some detailed descriptions
of the G2MPLS prototypes that will be delivered by WP2. Further details will be provided by the planned
prototype deliverables, D2.5 and D2.10.

The network elements are characterized based on their roles in the G2MPLS network, their functionalities and
the interfaces they expose, both externally (toward other network elements) and internally (between their
different functional entities). For this reason, there is not a single G²MPLS stack software architecture, but a
number of them, one for each G²MPLS node configuration and role in the network (see section 3). The
proposed and implemented software structure is composed of functionally complete and independent modules,
which allows flexible integration, gradual development and could potentially be extended with modules by other
developers.

However, the functional modules and components (protocol daemons, inter-process communication, utilities,
etc.) of all these architecture converge into a common set, which make up the so-called G²MPLS stack. In other
words, the G²MPLS is not a running set of processes and threads, but the collection of the software pieces that,
properly installed and configured, allow to create and run specific G²MPLS Controllers (Edge, Core and Border,
as specified in D2.1).

An additional note concerns the subjects (modules) of the reported software design (sections 4 to 13). As a
matter of fact, the scope and content of the developed software and, consequently, of this document, go much
beyond what planned for WP2 in the Phosphorus Description of Work. That planning assumed to start from an
existing Open Source GMPLS stack; however, at the start of the developments no stack was matching the
Phosphorus functional requirements. This condition was among the technical risks analyzed during the project
setup, and a backup plan was already available, and promptly implemented: contributing extra effort to WP2
and developing the needed components to set an adequate starting point for the G² developments.

Building a house from scratch has some relevant benefits, ultimately. The backup plan has led to a GMPLS
stack fully owned and mastered by the developers of the G² extensions. Furthermore, this stack was equipped
with all the needed modules and utilities that allow to fulfil to a large extent the ASON and GMPLS architectural
requirements.

Thus, some of the elements (protocol controllers) can be easily identified as the name, functions and
architectural placements are perfectly aligned with the ASON architecture; examples are the LRM, the
G.RSVP-TE, the G.OSPF-TE. However, other elements have no counterparts in the ASON or GMPLS
specifications, since they are basic and founding software modules that derive from high-level requirements set
by ASON or GMPLS (e.g. the SCN Gateway is implied by the requirement that the Transport Network and the
Signalling Communication Network are decoupled in GMPLS).

For this very reason, these modules had to be documented in a sufficiently detailed way, in order to provide a
usable and effective tool to approach the complexity of the G²MPLS stack.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

16

Finally, this deliverable is not a closed document. The G²MPLS software stack will evolve in the next months:
some activities are still going on (i.e. A2.2.4 – integration with the NSP/NRPSes and A2.2.3 – Integration with
AAI1), and the system testing activities (A2.1.7) might introduce relevant upgrades. A new version of D2.3 might
be produced, in order to incorporate the significant evolutions in the software after the official issue date (M18).

1 See the G².CCC and G².NCC Call FSMs at Section 8 for the software hooks dedicated to the interaction with the Phosphorus AAI.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

17

2 Terminology

No specific terminology is introduced by this document, which refers to Deliverable D2.1, D2.2, D2.6 and D2.7
for any specific terms used.

One note about a terminology issue: the Grid-capable Optical User Network Interface has been termed in
previous WP2 deliverables as “G.OUNI”, in accordance with the terminology used in related OGF-GHPN
documents. Since, during the course of time, OGF-GHPN has upgrade this term to a more general “G.UNI”, the
WP2 documents has started following this new naming accordingly. Thus, in the whole set of past and future
WP2 deliverables, the terms G.OUNI and G.UNI are used to refer, indifferently, to the Grid-capable User
Network Interface (with or without, respectively, a specific focus on the exported optical services). In other
words, the two terms refer to equivalent User-Network Interfaces, for what concerns the grid and network
services exported.

A full list of the abbreviations used in this document is provided in Section 16.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

18

3 High-level system design of G 2MPLS
network elements

The generic functional decomposition of the stack components of the G²MPLS Network Control Plane (valid for
the G²MPLS Edge, Core and Border Controllers, see below) is reported in Figure 3-1.

G2MPLS LSP
Controller (G2-LC)

G2MPLS Routing
Controller (G2-RC)

TE-link Manager
(TELM)

Transport Resource
Controller (TRC)

Discovery Agent
(DA)

Mgmt.
Protocol

Controller

GNS Transaction
and G2MPLS Call
Network Controller

(G2-NCC)

NBI

Transport Plane

G.I-NNI

Grid & network
topology

peer’s
resources

topology

coordination

label state

GNS transaction & call coordination

G2-LSP request

topology queries

label
requests

LSP action

GNS transaction & call requests

SBI

GNS transaction & call requests

XC
requests

link info

GNS Service
Discovery Agent

(G-SDA)

Routing
Protocol

Controller

G.OUNISignalling
Protocol

Controller

G.E-NNISignalling
Protocol

Controller

G.E-NNIRouting
Protocol

Controller

G.OUNIRouting
Protocol

Controller

G.I-NNILink Mgmt.
Protocol

Controller

GNS caps

G.OUNILink Mgmt.
Protocol

Controller

G.I-NNISignalling
Protocol

Controller

peer’s GNS caps

Figure 3-1: Generic functional decomposition of G²MPLS controllers.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

19

The software implementation of these components has been carried out starting from the v0.99.7 routing suite
[QUAGGA-DOC], as explained in section 14.

Different types of network elements are identified in a G2MPLS domain, depending on the role and
functionalities they provide. Three of the elements are network-side, the fourth is a functional “G² cluster” at the
customer premises:

• G2MPLS Edge Controllers, which operate at the edge of the G2MPLS domain and interface to the
Control Plane user2.

• G2MPLS Core Controllers, which implements the functionalities of an internal node of the domain like
an LSR in a GMPLS network.

• G2MPLS Border Controllers, which operate on the domain boundary and interface the G2MPLS with
other domains of the same or different technology and control/provisioning architecture (e.g. NSP-
NRPSes, AutoBAHN).

• G²MPLS UNI-C: this node is the client-side counterpart of the G²MPLS Edge Controller and is made up
of a composition of the Edge Controller modules, plus two specialized ones (the G.UNI-GW and the
Client Call Controller). Differently for the network-side G²MPLS controllers, these modules could also be
delocalized at different hardware platforms (e.g. the G.UNI-GW in one box, and the CCC in one other,
with the rest of the UNI-C protocols). For this reason, this section does not propose or impose a specific
software architecture for the whole set, but the document focuses on the single components.

Each controller is discussed in a separate subsection in the remainder of this section.

The localization of these network elements is shown in Figure 3-2, as well as the identification of the main
network reference points of the controllers [PH-WP2-D2.1, PH-WP2-D2.2, PH-WP2-D2.6].

The Grid layer is typically WS-based and the choice of WS-Agreement technology has been adopted also for
the Network Service Plane (which controls the NRPS layer, see D1.1 and D1.2) and the GÉANT2 BoD system
(see GN2-JRA3 BoD specification documents, e.g. DJ3.4.1,2). For this reason, some form of translation from
the WS context to G2MPLS signalling and vice versa are needed at the external network reference points of the
G2MPLS NCP, i.e. the Grid-capable Optical User-Network Interface (G.UNI) and the Grid-capable External
Network-Network Interface (G.E-NNI). For this purpose, two additional architectural elements are part of the
G2MPLS network model (ref. Figure 3-2 and Figure 3-3):

• The G.UNI gateway
• The G.E-NNI gateway

2 In the G2MPLS framework, the user is principally a Grid site with an instance of middleware issuing/receiving requests for Grid Network
Services. However, the G2MPLS user can fall back to a standard ASON/GMPLS user issuing just Network Service requests and in this
case G2MPLS control plane falls back to a GMPLS Control Plane.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

20

The gateways are aimed to provide the needed bridging functionality between the two frameworks and
preserve the core G2MPLS/GMPLS signalling and routing procedures by concentrating in single points the
adaptation functions.

Figure 3-2: G²MPLS network elements.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

21

Figure 3-3: The G2MPLS Network Control Plane with gateway functional elements.

G2MPLS network elements are interconnected through network interfaces specified in [PH-WP2-D2.1, PH-
WP2-D2.2, PH-WP2-D2.7]. In details:

• G.UNI, i.e. the Grid Optical User-Network Interface that supports Grid and network signalling and
discovery between the Grid site and the G2MPLS domain.

• G.I-NNI, i.e. the Grid Internal Node-Node Interface (G.I-NNI) that supports the routing and signalling
procedures between adjacent nodes.

• G.E-NNI, i.e. the Grid External Network-Network Interface that propagates Grid and network topology
information across different Control Plane domains and supports the inter-domain signalling
mechanisms.

• SBI, i.e. the Southbound Interface that retrieves resource status from the specific Transport Plane
and translates Control Plane actions into appropriate configurations of those resources.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

22

• G.NBI, i.e. the Northbound Interface that connect the G2MPLS to the Grid layer and is based on WS
agreements technologies.

Each G2MPLS controller is connected to other G2MPLS controllers through the SCN. Therefore, each G2MPLS
controller has a number (at least one) SCN interfaces on top of which SCN adjacencies are established with
G2MPLS controller that are adjacent on the Transport Plane but may be not adjacent on the DCN. This
functionality is generally referred to as management of the dualism between Transport Network and Signalling
Network. See D2.1 for further details.

3.1 G2MPLS Edge Controller

3.1.1 Main functionalities

The G2MPLS edge controller is the entry point of the G2MPLS domain and, therefore, it is responsible for:

• the termination and control of a signalling session incoming through the UNI and initiated by an
attached Grid client (G.UNI-C)

• the progression and control of a G.UNI signalling session towards an attached Grid client (G.UNI-C)
• the control of the G2MPLS Call setup and its segment breakdown (with the scope of the domain in

which it operates)
• the control of the end-to-end recovery of a call segment (inter-domain recovery is left for further studies)
• the flooding of Grid and network routing information, in terms of

○ local TE-link information directly generated
○ Grid resource availabilities received through the G.UNI by the attached G2MPLS user
○ remote network and Grid information learned by peer routing controllers

• the computation of end-to-end explicit routes for a call and its segments. Routes are as much as
possible complete and strict at least for the domain in which the Edge Controller operates, while they
could be sparse and in case loose, depending on the available information published by neighbouring
G2MPLS domains

• [optional3] the flooding of inter-domain Grid and network routing information, in terms of
○ reception (feed-up) of topology (Grid and network) information from the domain in which it operates

(level 0)
○ flooding of routing information with peering inter-domain routing controllers
○ dissemination (feed-down) of the summarized topology information about neighbouring domains

towards the base routing instances operating in its domain (level 0).
• the retrieval of information (amount, status and alarms) on the Transport Network resources for

G2MPLS use in the equipment it is attached to
• the configuration (cross-connection) of Transport Network resources in the equipment it is attached to

3 The functionality is optional because just one node in the domain configured as RC

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

23

• the control of the G2MPLS data model (i.e. TE-links, Data-links, Control channels and SCN interfaces)
in accordance with the node configuration and the Transport Network resources availabilities retrieved
by the equipment

• [optional] the storage and control of the persistent data (TE-links, Calls, LSPs, resource status, etc.)
across case of node restart.

These functionalities are implemented by the software components depicted in Figure 3-4.

3.1.2 External interfaces

Interface Peer Directionality Main action (s)

SBI
TN

equipment in/out

� retrieval of information on transport
resources (e.g. ports, wavelengths,

� configurations on transport resources
(e.g. cross-connections, protections,
etc.)

� alarm reporting on configured resources

SCN interface
adjacent
G2MPLS
controller

in/out
� establish and maintain the adjacency

between pairs of G2MPLS controllers
� send/receive protocol SDUs

G.UNI

G2MPLS
user (Grid
site with

middleware)

in/out

� signalling
o setup and monitoring of G.UNI

calls
� routing

o learning of Grid resource
availabilities by the attached
G2MPLS user

o publication of remote Grid
resource availabilities learned
by other routing controllers
peering in the G2MPLS domain

G.I-NNI
G2MPLS

core
controller

in/out

� signalling
o control (setup and recovery) of

I-NNI call segments
� routing

o learning of node external Grid
and network (single domain and
multi-domain) topology resource
availabilities

[optional] G.E-NNI

G2MPLS
peering
Routing

Controllers

in/out

� routing
o publication and learning of inter-

domain Grid and network
topology information

Table 3-1: G2MPLS Edge Controller external interfaces.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

24

3.1.3 Internal interfaces

Peers Directionality Main action

G2.NCC – TNRC in/out

� head-end/tail-end resource configuration (cross-
connection or protection among internal labels and
“external” labels selected on ingress/egress TNAs)

� asynchronous notification of status change

G2.NCC – G2.RSVP-TE in/out
� connection setup
� connection recovery (particularly restoration)

G2.NCC – G.UNI RSVP in/out � G2MPLS call setup

G2.NCC – G2.PCERA in/out

� requests for call explicit routing (single-domain or inter-
domain) completion

� requests for end-to-end call rerouting (in case of e2e
crankback or recovery)

G2.PCERA – G2.OSPF-TE
(level 0)

in
� topology information (single-domain or summarized multi-

domain) on Grid and network resources
� topology updates

G2.RSVP-TE – TNRC in/out
� resource configuration (cross-connection or protection

among labels)
� asynchronous notification of status change

G2.RSVP-TE – LRM in/out
� resource selection (data-link or label)
� local TE-link status update

G2.RSVP-TE – SCNGW in/out
� send protocol messages
� receive protocol messages

G2.RSVP-TE – G2.PCERA in/out
� requests for ERO completion
� requests for local-to-egress ERO computation (in case of

crankback)

G.UNI RSVP – SCNGW in/out
� send protocol messages
� receive protocol messages

G.UNI RSVP – TNRC in/out
� resource configuration (cross-connection or protection

among labels)
� asynchronous notification of status change

LRM – TNRC in/out

� Update lists of data links and labels for bundling
purposes

� check status of a resource (data-link or label)
� asynchronous notification of status change at runtime for

bundling update

LRM – SCNGW out
� update bindings between TE-links and Control Channels

and between Control Channels and SCN interfaces
G2.OSPF-TE (level 0) –
LRM

in
� local TE-link update (all TE information)

G2.OSPF-TE (level 0) –
SCNGW

in/out
� send protocol messages
� receive protocol messages

G2.OSPF-TE (level 0) –
G2.OSPF-TE (level 1)

out
� send and keep updated inter-domain topology data (feed-

up)
G2.OSPF-TE (level 1) –
SCNGW in/out

� send protocol messages
� receive protocol messages

G2.OSPF-TE (level 1) –
G2.OSPF-TE (level 0)

out
� send and keep updated inter-domain topology data (feed-

down)

Table 3-2: G2MPLS Edge Controller internal interfaces.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

25

Figure 3-4: Internal components of the G2MPLS Edge Controller.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

26

3.2 G2MPLS Core Controller

3.2.1 Main functionalities

The G2MPLS core controller is similar to a GMPLS LSR and, therefore, it is responsible for:

• the progression and control of a G.I-NNI signalling session towards an specified session destination
• the control of the local crankback for a failing LSP
• the flooding of Grid and network routing information, in terms of

○ local TE-link information directly generated
○ remote network and Grid information learned by peer routing controllers

• the completion of sparse or loose Explicit Routes, depending on the available information published by
neighbouring G2MPLS domains

• [optional4] the flooding of inter-domain Grid and network routing information, in terms of
○ reception (feed-up) of topology (Grid and network) information from the domain in which it operates

(level 0)
○ flooding of routing information with peering inter-domain routing controllers
○ dissemination (feed-down) of the summarized topology information about neighbouring domains

towards the base routing instances operating in its domain (level 0).
• the retrieval of information (amount, status and alarms) on the Transport Network resources for

G2MPLS use in the equipment it is attached to
• the configuration (cross-connection) of Transport Network resources in the equipment it is attached to
• the control of the G2MPLS data model (i.e. TE-links, Data-links, Control channels and SCN interfaces)

in accordance with the node configuration and the Transport Network resources availabilities retrieved
by the equipment

• [optional] the storage and control of the persistent data (TE-links, Calls, LSPs, resource status, etc.)
across case of node restart.

These functionalities are implemented by the software components depicted in Figure 3-5.

3.2.2 External interfaces

Interface Peer Directionality Main action (s)

SBI
TN

equipment
in/out

� retrieval of information on transport
resources (e.g. ports, wavelengths,

� configurations on transport resources
(e.g. cross-connections, protections,

4 The functionality is optional because just one node in the domain configured as RC

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

27

etc.)
� alarm reporting on configured resources

SCN interface
adjacent
G2MPLS
controller

in/out
� establish and maintain the adjacency

between pairs of G2MPLS controllers
� send/receive protocol SDUs

G.I-NNI
G2MPLS

core
controller

in/out

� signalling
o control (setup and recovery) of

I-NNI call segments
� routing

o learning of node external Grid
and network (single domain and
multi-domain) topology resource
availabilities

[optional] G.E-NNI

G2MPLS
peering
Routing

Controllers

in/out

� routing
o publication and learning of inter-

domain Grid and network
topology information

Table 3-3: G2MPLS Core Controller external interfaces.

3.2.3 Internal interfaces

Peers Directionality Main action

G2.PCERA – G2.OSPF-TE
(level 0)

in
� topology information (single-domain or summarized multi-

domain) on Grid and network resources
� topology updates

G2.RSVP-TE – TNRC in/out
� resource configuration (cross-connection or protection

among labels)
� asynchronous notification of status change

G2.RSVP-TE – LRM in/out
� resource selection (data-link or label)
� local TE-link status update

G2.RSVP-TE – SCNGW in/out
� send protocol messages
� receive protocol messages

G2.RSVP-TE – G2.PCERA in/out
� requests for ERO completion
� requests for local-to-egress ERO computation (in case of

crankback)

LRM – TNRC in/out

� Update lists of data links and labels for bundling
purposes

� check status of a resource (data-link or label)
� asynchronous notification of status change at runtime for

bundling update

LRM – SCNGW out
� update bindings between TE-links and Control Channels

and between Control Channels and SCN interfaces
G2.OSPF-TE (level 0) –
LRM in

� local TE-link update (all TE information)

G2.OSPF-TE (level 0) –
SCNGW

in/out
� send protocol messages
� receive protocol messages

G2.OSPF-TE (level 0) –
G2.OSPF-TE (level 1)

out
� send and keep updated inter-domain topology data (feed-

up)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

28

G2.OSPF-TE (level 1) –
SCNGW

in/out
� send protocol messages
� receive protocol messages

G2.OSPF-TE (level 1) –
G2.OSPF-TE (level 0)

out
� send and keep updated inter-domain topology data (feed-

down)

Table 3-4: G2MPLS Core Controller internal interfaces.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

29

Figure 3-5: Internal components of the G2MPLS Core Controller.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

30

3.3 G2MPLS Border Controller

3.3.1 Main functionalities

The G2MPLS border controller is the egress point of a G2MPLS domain and, therefore, it is responsible for:

• the termination of a G2MPLS call segment incoming through the I-NNI
• the control of the G2MPLS Call setup
• the progression and control of a G.E-NNI signalling session towards an adjacent G2MPLS border

controller in another G2MPLS domain
• the flooding of Grid and network routing information, in terms of

○ local TE-link information directly generated
○ remote network and Grid information learned by peer routing controllers

• the completion of sparse or loose Explicit Routes, depending on the available information published by
neighbouring G2MPLS domains

• [optional5] the flooding of inter-domain Grid and network routing information, in terms of
○ reception (feed-up) of topology (Grid and network) information from the domain in which it operates

(level 0)
○ flooding of routing information with peering inter-domain routing controllers
○ dissemination (feed-down) of the summarized topology information about neighbouring domains

towards the base routing instances operating in its domain (level 0).
• the retrieval of information (amount, status and alarms) on the Transport Network resources for

G2MPLS use in the equipment it is attached to
• the configuration (cross-connection) of Transport Network resources in the equipment it is attached to
• the control of the G2MPLS data model (i.e. TE-links, Data-links, Control channels and SCN interfaces)

in accordance with the node configuration and the Transport Network resources availabilities retrieved
by the equipment

• [optional] the storage and control of the persistent data (TE-links, Calls, LSPs, resource status, etc.)
across case of node restart.

These functionalities are implemented by the software components depicted in Figure 3-6.

3.3.2 External interfaces

Interface Peer Directionality Main action (s)

SBI
TN

equipment
in/out

� retrieval of information on transport
resources (e.g. ports, wavelengths,

5 The functionality is optional because just one node in the domain configured as RC

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

31

� configurations on transport resources
(e.g. cross-connections, protections,
etc.)

� alarm reporting on configured resources

SCN interface
adjacent
G2MPLS
controller

in/out
� establish and maintain the adjacency

between pairs of G2MPLS controllers
� send/receive protocol SDUs

G.I-NNI
G2MPLS

core
controller

in/out

� signalling
o control (setup and recovery) of

I-NNI call segments
� routing

o learning of node external Grid
and network (single domain and
multi-domain) topology resource
availabilities

G.E-NNI

G2MPLS
peering
Routing

Controllers

in/out

� signalling
o setup and monitoring of G.E-

NNI calls
� [optional] routing

o publication and learning of inter-
domain Grid and network
topology information

Table 3-5: G2MPLS Border Controller external interfaces.

3.3.3 Internal interfaces

Peers Directionality Main action

G2.NCC – TNRC in/out

� head-end/tail-end resource configuration (cross-
connection or protection among internal labels and
“external” labels selected on ingress/egress TNAs)

� asynchronous notification of status change

G2.NCC – G2.RSVP-TE in/out
� connection setup
� connection recovery (particularly restoration)

G2.NCC – G.ENNI RSVP in/out � G2MPLS call setup

G2.NCC – G2.PCERA in/out

� requests for call explicit routing (single-domain or inter-
domain) completion

� requests for end-to-end call rerouting (in case of e2e
crankback or recovery)

G2.PCERA – G2.OSPF-TE
(level 0)

in
� topology information (single-domain or summarized multi-

domain) on Grid and network resources
� topology updates

G2.RSVP-TE – TNRC in/out
� resource configuration (cross-connection or protection

among labels)
� asynchronous notification of status change

G2.RSVP-TE – LRM in/out
� resource selection (data-link or label)
� local TE-link status update

G2.RSVP-TE – SCNGW in/out
� send protocol messages
� receive protocol messages

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

32

G2.RSVP-TE – G2.PCERA in/out
� requests for ERO completion
� requests for local-to-egress ERO computation (in case of

crankback)

G.ENNI RSVP – SCNGW in/out
� send protocol messages
� receive protocol messages

G.ENNI RSVP – TNRC in/out
� resource configuration (cross-connection or protection

among labels)
� asynchronous notification of status change

LRM – TNRC in/out

� Update lists of data links and labels for bundling
purposes

� check status of a resource (data-link or label)
� asynchronous notification of status change at runtime for

bundling update

LRM – SCNGW out
� update bindings between TE-links and Control Channels

and between Control Channels and SCN interfaces
G2.OSPF-TE (level 0) –
LRM

in
� local TE-link update (all TE information)

G2.OSPF-TE (level 0) –
SCNGW

in/out
� send protocol messages
� receive protocol messages

G2.OSPF-TE (level 0) –
G2.OSPF-TE (level 1)

out
� send and keep updated inter-domain topology data (feed-

up)
G2.OSPF-TE (level 1) –
SCNGW

in/out
� send protocol messages
� receive protocol messages

G2.OSPF-TE (level 1) –
G2.OSPF-TE (level 0)

out
� send and keep updated inter-domain topology data (feed-

down)

Table 3-6: G2MPLS Border Controller internal interfaces.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

33

Figure 3-6: Internal components of the G2MPLS Border Controller.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

34

3.4 G.UNI Gateway (G.UNI-GW)

3.4.1 Main functionalities

The G.UNI Gateway is the adapter between the G2MPLS Control Plane and the Grid middleware. It is
responsible for:

• the translation of WS-Agreement semantics on job request (JSDL) and resource availability (GLUE) into
G.UNI syntax

• initiating/terminating a GNS transaction and related G2MPLS calls
• the injection of Grid routing information into the G2MPLS domain
• the learning and forward to the middleware of remote Grid routing information coming from the G2MPLS

domain
• the configuration (cross-connection) of Transport Network resources in the customer equipment

attached to the G2MPLS domain

These functionalities are implemented by the software components depicted in Figure 3-7.

3.4.2 External interfaces

Interface Peer Directionality Main action (s)

G.UNI
G2MPLS

edge
controller

in/out

� signalling
o setup and monitoring of G.UNI

calls
� routing

o publication of local Grid
resource availabilities

o learning of remote Grid
resource availabilities by the
attached G2MPLS user

G.NBI
Grid

middleware
(Grid broker)

in/out

� WS-Agreement job creation
o setup and monitoring of jobs via

JSDL
� WS-Agreement resource information

o publication and learning of Grid
resource information

Table 3-7: G.UNI Gateway external interfaces.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

35

G.OUNI-C
RSVP

PC

G2.OSPF
PC

(client)

G.OUNI-N
RSVP

PC

G2.OSPFTE
PC

G.OUNI

WS-G.OUNI
adapter

G.OUNI RSVP
API

G.OUNI OSPF
API

WS-AG
Server

WS-AG
Client

XML-based comms
(JSDL + GLUE semantic)

G.NBI
WS-

Agreement
(JSDL +
GLUE)

G2

LSDB

G.OUNI GW G2MPLS LER

Grid Middleware

WS-AG
Client

WS-AG
Server

Figure 3-7: G.UNI Gateway (G.UNI-GW) breakdown into main components.

3.4.3 Internal interfaces

Peers Directionality Main action
WS-AG server –
WS-G.UNI adapter in/out

� translate WS-agreements on Grid job and resource
availabilities into an XML schema

WS-G.UNI adapter – G.UNI
RSVP

in/out
� G2MPLS call setup

WS-G.UNI adapter –
G2.OSPF (client)

in/out
� push/pull Grid topology information

Table 3-8: G.UNI Gateway internal interfaces.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

36

3.5 G.E-NNI Gateway (G.ENNI-GW)

The G.E-NNI GW is designed in the track of integration activities between G²MPLS, NSP/NRPSes and GN2-
JRA3 AutoBAHN system. Its design and high-level software specification will be reported in related documents
(D2.9).

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

37

4 Transport Network Resource Controller
(TNRC)

The TNRC module is a separate process, not part of Quagga routing suite and is developed from scratch. It is
integrated into Quagga framework according to Quagga daemon main structure (e.g. one master thread to
manage the single thread daemon as pseudo multi-thread, the trace log system, the VTY interface, etc).

4.1 TNRC basics

The TNRC module is responsible for abstracting the technology specific details of the transport network
resources for control plane use. The main functionalities of the Transport Network Resource Controller are:

• translation and maintenance of the bindings between the technology specific name space for transport
resources (e.g. in DWDM equipments: <port, wavelength>; in TDM: <port, virtual container>; in
Ethernet: <port, VLANs>) and the G2MPLS name space (<data-link, label>)

• translation between the technology specific configurations for transport resources (e.g. cross-
connections, protections, etc.) and the G2MPLS corresponding actions

• binding maintenance among the resources (e.g. cross-connections, bookings, protections/restorations,
etc.).

The TNRC module is further broken down in two sub-modules as described in Table 4-1

module sub-module short description

TNRC
(Transport Network
Resource Controller)

TNRC-AP
(TNRC Abstract Part)

Process offering a generic API for the configuration &
monitoring of the TN resources. It will abstract the TN
resource description, and provide an atomic grouping of
actions that might be composed by a set of local
management sub-actions on the equipment.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

38

TNRC-SP
(TNRC Specific Part))

Lower part of the process, loaded as plug-in, and
offering the upper part an API specific to the equipment
considered. It will name resources based on the
underlying TN technology and SwCap. The core part of
the TNRC-SP is likely to be dependent on the controlled
equipment (e.g. based on some proprietary SNMP MIB
sub-tree supported for configuration and monitoring).

Table 4-1: TNRC breakdown in sub-modules.

The following sections will describe the TNRC data model, the TNRC Abstract Part and the generic TNRC
Specific Part. Examples of TNRC SP design and implementations can be found in Appendix C.

4.2 TNRC data model

The TNRC data model is depicted in Figure 4-1.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

39

Figure 4-1: TNRC data model

4.2.1 TNRC_Master instance

The TNRC_Master instance is the root of the whole TNRC data model. When TNRC process starts, a global
instance of TNRC_Master is created, all available plug-ins (representing all possible TNRC Specific Part) are
loaded in a plug-in container, which is linked to the TNRC_Master.

The TNRC_Master instance is also linked to:

• the unique TNRC_AP instance (tnrc_ap_)
• the unique ApiQueue instance (api_aq_)
• a map of Action instances, representing all the actions either in execution or executed (actions_)
• a map of XC instances (xcs_)
• the unique Plugin instance installed (plugin_)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

40

class TNRC_Master {
 public:
 static bool init(void);
 static bool destroy(void);

 static TNRC_Master & instance(void);

 void init_vty(void);

 void pc(Pcontainer * PC);
 Pcontainer * getPC();

 struct thread_master * getMaster();
 static TNRC::TNRC_AP * getTNRC();

 bool test_mode(void);
 void test_mode(bool val);
 char* test_file(void);
 void test_file(std::string loc);

 tnrcap_cookie_t new_cookie();
 uint32_t new_xc_id();

 eqpt_type_t getEqpt_type(eqpt_id_t id);

 static bool attach_instance(TNRC::TNRC_ AP * t);
 static bool detach_instance(TNRC::TNRC_ AP * t);

 Plugin* getPlugin(void);
 void installPlugin(Plugin * p);
 std::string plugin_location(void);
 void plugin_location(std::string loc);

 bool api_queue_insert(api_queue_ element_t * e);
 api_queue_element_t * api_queue_extract(void);
 int api_queue_size(void);
 void api_queue_process(void);
 u_int api_queue_tot_request(void) ;

 void process_make_xc(api_queue_e lement_t * el);
 void process_destroy_xc(api_queu e_element_t * el);
 void process_reserve_xc(api_queu e_element_t * el);
 void process_unreserve_xc(api_qu eue_element_t * el);

 bool attach_action(tnrcap_cookie _t ck, Action * a);
 bool detach_action(tnrcap_cookie _t ck);
 Action * getAction (tnrcap_cookie_t ck);

 bool attach_xc(u_int id, XC * xc);
 bool detach_xc(u_int id);
 XC * getXC (u_int id);
 int n_xcs (void);

 // define iterator_actions
 DEFINE_MASTER_MAP_ITERATOR (actions, tnrcap_cookie _t, Action);
 // define iterator_xcs
 DEFINE_MASTER_MAP_ITERATOR (xcs, u_int, XC);

 protected:

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

41

 TNRC_Master& operator=(const TNRC_Master& j);
 TNRC_Master(const TNRC_Master & j);
 TNRC_Master(void);
 ~TNRC_Master(void);

 private:
 static TNRC_Master * instance_;

 static tnrcap_cookie_t cookie_; //v alue for the next cookie
 static uint32_t xc_id_; //v alue for the next Xc id

 static struct thread_master * master_;
 //test mode
 bool test_mode_;
 std::string test_file_;

 TNRC::TNRC_AP * tnrc_ap_; // TNRC_AP instance

 Pcontainer * PC_; // p ointer to Plugin container
 Plugin * plugin_;// p ointer to installed Plugin
 std::string plugin_locat ion_;

 ApiQueue api_aq_;
 std::map<tnrcap_cookie_t, Action *> actions_; // actions in
 // execution/executed

 std::map<u_int, XC *> xcs_; // XCs active or reserved

 static time_t start_time_;
};

Code 4-1: TNRC_Master class.

4.2.2 TNRC_AP instance

The TNRC_AP instance is the container of the TNRC abstraction of the Transport Network resources. It
manages Eqpt, Board, Port and Resource instances offering an up-to-date image of the equipment resources
status.

The most relevant fields are:

• a flag active when the link with equipment is down (eqpt_link_down_): in this case no further actions on
the equipment can be accepted until restoring communication with equipment (in charge of TNRC
Specific Part)

• a map of linked Eqpt instances (eqpts_). Even if only one Eqpt instance is accepted, there is a map to
take in account of future upgradings

class TNRC_AP {
 public:
 TNRC_AP(void);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

42

 ~TNRC_AP(void);

 bool attach(EqptKey_t k, Eqpt * e);
 bool detach(EqptKey_t k);

 Eqpt * getEqpt(EqptKey_t k);
 Board * getBoard(EqptKey_t e_id,
 BoardKey_t b_id);
 Port * getPort(EqptKey_t e_id,
 BoardKey_t b_id,
 PortKey_t p_id);
 Resource * getResource(EqptKey_t e_id,
 BoardKey_t b_id,
 PortKey_t p_id,
 ResourceKey_t l_id);

 int n_eqpts(void);

 bool eqpt_link_down(void);
 void eqpt_link_down(bool val);

 // Defines eqpts_iterator
 DEFINE_DM_MAP_ITERATOR(eqpts, Eqpt);

 private:
 uint32_t dflt_RetransmitInterval_;
 time_t tnrc_start_time_;
 time_t current_time_;
 time_t stats_reset_time_;
 time_t shutdown_delay_;

 bool eqpt_link_down_; // flag active if equipm ent link is down

 std::map<EqptKey_t, Eqpt *> eqpts_; // map of eqpt s
};

Code 4-2: TNRC_AP class.

4.2.3 Eqpt instance

The Eqpt instance is the highest level of abstraction of the equipment resources, representing the equipment
itself. There is only one Eqpt instance linked to the TNRC_AP instance.

The most relevant fields are:

• a unique identifier (eqpt_id_)
• the type of equipment (e.g. ADVA, Calient, etc.) (type_)
• operational state (opstate_)
• administrative state (admstate_)
• a map of linked Board instances (boards_)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

43

class Eqpt {
 public:
 Eqpt(void);
 ~Eqpt(void);
 Eqpt(TNRC_AP * tnrc,
 eqpt_id_t id,
 g2mpls_addr_t addr,
 eqpt_type_t t,
 opstate_t opst,
 admstate_t admst,
 std::string loc);

 bool attach(BoardKey_t k, Board * b);
 bool detach(BoardKey_t k);
 Board * getBoard(BoardKey_t k);
 int n_boards(void);

 eqpt_id_t eqpt_id(void);
 g2mpls_addr_t address(void);
 eqpt_type_t type(void);

 opstate_t opstate(void);
 void opstate(opstate_t st);
 admstate_t admstate(void);
 void admstate(admstate_t st);

 const char * location(void);

 // Defines boards_iterator
 DEFINE_DM_MAP_ITERATOR(boards, Board);

 private:
 TNRC_AP * tnrc_ap_; // TNRC_AP pare nt instance

 g2mpls_addr_t address_;
 eqpt_id_t eqpt_id_;
 eqpt_type_t type_; // type of equipment

 opstate_t opstate_;
 admstate_t admstate_;

 std::string location_name_;

 std::map<BoardKey_t, Board *> boards_; // map of b oards
};

Code 4-3: Eqpt class.

4.2.4 Board instance

The most relevant fields of the Board instance are:

• a unique board identifier for a given Eqpt (board_id_)
• switching capability of all Ports and Resources linked (sw_cap_)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

44

• encoding type of all Ports and Resources linked (enc_type_)
• operational state (opstate_)
• administrative state (admstate_)
• a map of linked Port instances (ports_)

class Board {
 public:
 Board(void);
 ~Board(void);
 Board(Eqpt * e,
 board_id_t id,
 sw_cap_t sw_cap,
 enc_type_t enc_type,
 opstate_t opst,
 admstate_t admst);

 Eqpt * eqpt();

 bool attach(PortKey_t k, Port * p);
 bool detach(PortKey_t k);
 Port* getPort (PortKey_t k);
 int n_ports(void);

 board_id_t board_id(void);

 sw_cap_t sw_cap(void);
 enc_type_t enc_type(void);

 opstate_t opstate(void);
 void opstate(opstate_t st);
 admstate_t admstate(void);
 void admstate(admstate_t st);

 // Defines ports_iterator
 DEFINE_DM_MAP_ITERATOR(ports, Port);

 private:
 Eqpt * eqpt_; // eqpt parent instance
 board_id_t board_id_;

 sw_cap_t sw_cap_; // switching capability
 enc_type_t enc_type_; // encoding type

 opstate_t opstate_;
 admstate_t admstate_;

 std::map<PortKey_t, Port *> ports_; // map of port s
};

Code 4-4: Board class.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

45

4.2.5 Port instance

The Port instance is the TNRC abstraction for the data link in the G2MPLS space. The triple Eqpt/Board/Port in
fact identifies a single data link on the equipment.

The most relevant fields are:

• a unique port identifier for a given Board (port_id_)
• the protection type for this data link (prot_type_)
• operational state (opstate_)
• administrative state (admstate_)
• total available bandwidth on the data link (max_bw_)
• maximum reservable bandwidth on the data link (max_res_bw_)
• unreserved bandwidth per priority on the data link (unres_bw_). This parameter is updated each time a

linked Resource is involved in some action on the equipment.
• minimum reservable bandwidth per LSP on the data link (min_lsp_bw_)
• maximum reservable bandiwdth per LSP and per priority on the data link (max_lsp_bw_)
• a map of linked Resource instances (resources_)

class Port {
 public:
 Port(void);
 ~Port(void);
 Port(Board * b,
 port_id_t id,
 int flags,
 g2mpls_addr_t rem_eq_addr,
 port_id_t rem_port_id,
 opstate_t opst,
 admstate_t admst,
 uint32_t bandwidth,
 gmpls_prottype_t protection);

 Board * board();

 bool attach(ResourceKey_t k, Resour ce * r);
 bool detach(ResourceKey_t k);
 int n_resources (void);

 Resource * getResource(ResourceKey_t k);

 port_id_t port_id (void);
 int port_flags (void);
 g2mpls_addr_t remote_eqpt_address (void);
 port_id_t remote_port_id (void);

 opstate_t opstate (void);
 void opstate(opstate_t st);
 admstate_t admstate(void);
 void admstate(admstate_t st);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

46

 uint32_t max_bw(void);
 uint32_t max_res_bw(void);
 avail_bw_per_prio_t unres_bw(void);
 uint32_t min_lsp_bw(void);
 avail_bw_per_prio_t max_lsp_bw(void);
 void upd_unres_bw(label_t label);

 gmpls_prottype_t prot_type(void);

 // Defines resources_iterator
 DEFINE_DM_MAP_COMP_ITERATOR(resources, Resource, m yCompareResource);

 private:
 Board * board_; // parent boar d instance

 port_id_t port_id_;
 int port_flags_; // bit mask des cribing the port behaviour
 g2mpls_addr_t remote_eqpt_address_;
 port_id_t remote_port_id_;

 opstate_t opstate_;
 admstate_t admstate_;

 gmpls_prottype_t prot_type_; // Protection ty pe

 uint32_t max_bw_; // total availab le bandwidth
 uint32_t max_res_bw_; // max reservabl e bandwidth
 avail_bw_per_prio_t unres_bw_; // unreserved b andwidth per priority
 uint32_t min_lsp_bw_; // minimum reser vable bandiwdth
 avail_bw_per_prio_t max_lsp_bw_; // maximum reser vable bandiwdth per priority

 // map of resources
 std::map<ResourceKey_t, Resource *, myCompareResou rce> resources_;
};

Code 4-5: Port class.

4.2.6 Resource instance

The Resource instance is the lowest level of abstraction of the equipment resources, representing a single label
associated to a data link.

The most relevant fields are:

• a unique label identifier for a given Port (label_id_)
• operational state (opstate_)
• administrative state (admstate_)
• label state (state_)
• a map of advance reservation for this label (reservations_), stored as [start time, end time] couples

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

47

class Resource {
 public:
 Resource(void);
 ~Resource(void);
 Resource(Port * p,
 int tp_fl,
 label_t id,
 opstate_t opst,
 admstate_t admst,
 label_state_t st);

 bool attach(struct timeval start, struc t timeval end);
 bool detach(struct timeval start);
 bool check_label_availability(struct ti meval start,
 struct timeval end);

 Port * port();
 int tp_flags(void);
 label_t label_id(void);

 opstate_t opstate(void);
 void opstate(opstate_t st);
 admstate_t admstate(void);
 void admstate(admstate_t st);
 label_state_t state(void);
 void state(label_state_t st);

 //define iterator advance reservations
 typedef std::map<struct timeval, struct timeval, myCompareTime>::
 iterator iterator_reservations;

 iterator_reservations begin_reservations(void)
 iterator_reservations end_reservations(void);

 private:
 Port * port_; // parent port p ointer

 int tp_flags_;
 label_t label_id_;

 opstate_t opstate_;
 admstate_t admstate_;
 label_state_t state_;

 // Advance Reservation Calendar
 std::map<struct timeval, struct timeval, myCompare Time> reservations_;
};

Code 4-6: Resource class.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

48

4.2.7 Plugin Container (Pcontainer) instance

The Plugin Container (Pcontainer) instance is unique and is created at the boot of the TNRC process. It is a
container of all available plug-ins, that are loaded in the Plugin Container at the boot.

class Pcontainer {
 public:
 Pcontainer(void) {};
 ~Pcontainer(void){};

 bool attach(std::string name, Plugin *p);
 bool detach(std::string name);
 Plugin * getPlugin(std::string name);

 // Defines iterator_plugins
 DEFINE_PIN_MAP_ITERATOR(plugins, std::string, Plug in);

 private:
 std::map<std::string, Plugin *> plugins_; // map o f plugins
};

Code 4-7: Pcontainer class.

4.2.8 Plugin instance

The Plugin class is the abstract interface of the TNRC Specific Part. Each TNRC Specific Part for for a given
equipment type (ADVA, Calient, etc.) implements his own interface, inheriting the following Plugin class.

One and only one plug-in can be installed in the TNRC_Master instance, in fact one TNRC process manges
one and only one equipment.

The most relevant fields are:

• a unique plug-in name (name_)
• a flag for bidirectional cross-connections support (xc_bidir_support_)

class Plugin {
public:
 Plugin(void) {};
 ~Plugin(void){};
 Plugin(std::string name);

 std::string name(void);
 tnrcsp_handle_t new_handle(void);

 bool xc_bidir_support(void);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

49

 virtual wq_item_status wq_function(void *d) = 0;
 virtual void del_item_data(void *d) = 0;
 virtual tnrcapiErrorCode_t probe(std::string locat ion) = 0;

 virtual tnrcsp_result_t
 tnrcsp_make_xc(tnrcsp_handle_t * handlep,
 tnrc_port_id_t portid_in,
 label_t labelid_in,
 tnrc_port_id_t portid_out,
 label_t labelid_out,
 xcdirection_t direction,
 tnrc_boolean_t isvirtual,
 tnrc_boolean_t activate,
 tnrcsp_response_cb_t response_cb,
 void * response_ctxt,
 tnrcsp_notification_cb_t async_cb,
 void * async_ctxt) = 0;

 virtual tnrcsp_result_t
 tnrcsp_destroy_xc(tnrcsp_handle_t * handlep,
 tnrc_port_id_t portid_in,
 label_t labelid_in,
 tnrc_port_id_t portid_out,
 label_t labelid_out,
 xcdirection_t direction,
 tnrc_boolean_t isvirtual,
 tnrc_boolean_t deactivate,
 tnrcsp_response_cb_t response_cb,
 void * response_ctxt) = 0;

 virtual tnrcsp_result_t
 tnrcsp_reserve_xc(tnrcsp_handle_t * handlep,
 tnrc_port_id_t portid_in,
 label_t labelid_in,
 tnrc_port_id_t portid_out,
 label_t labelid_out,
 xcdirection_t direction,
 tnrcsp_response_cb_t response_cb,
 void * response_ctxt) = 0;

 virtual tnrcsp_result_t
 tnrcsp_unreserve_xc(tnrcsp_handle_t * handlep,
 tnrc_port_id_t portid_in,
 label_t labelid_in,
 tnrc_port_id_t portid_out,
 label_t labelid_out,
 xcdirection_t direction,
 tnrcsp_response_cb_t response_cb,
 void * response_ctxt) = 0 ;

 virtual tnrcsp_result_t
 tnrcsp_register_async_cb(tnrcsp_event_t *events) = 0;

protected:
 std::string name_;
 tnrcsp_handle_t handle_;
 bool xc_bidir_support_;

 struct work_queue * wqueue_;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

50

};

Code 4-8: Plugin class.

The pure virtual methods in the Plugin class are the TNRC Specific Part API exposed toward TNRC Abstract
Part to communicate with the equipment. These methods, implemented by each TNRC Specific Part plug-in,
are:

• tnrcsp_make_xc(): create (or activate a reserved) cross-connection on the equipment, with the
following behaviour:
○ it returns soon after the preliminary checks have been carried out: poisitively if the cross-

connection has been requested and started o the equipment, else negatively
○ later, when the cross-connection has been completed, the TNRC Specific Part will come back

using the response callback (response_cb) and context (response_ctxt),and delivering the result of
the operation

○ any future event related to the cross-connection or one of its component will be reported with the
asynchronus callback (async_cb)

• tnrcsp_destroy_xc(): destroy an existent cross-connection on the equipment, with the following
behaviour:
○ it returns soon after the preliminary checks have been carried out: poisitively if the cross-

connection removal has been requested and started o the equipment, else negatively
○ later, when the cross-connection removal has been completed, the TNRC Specific Part will come

back using the response callback (response_cb) and context (response_ctxt),and delivering the
result of the operation

• tnrcsp_reserve_xc(): reserve a cross-connection on the equipment, with the following behaviour:
○ it returns soon after the preliminary checks have been carried out: poisitively if the cross-

connection reservation has been requested and started o the equipment, else negatively
○ later, when the cross-connection reservation has been completed, the TNRC Specific Part will

come back using the response callback (response_cb) and context (response_ctxt),and delivering
the result of the operation

• tnrcsp_unreserve_xc(): unreserve an existent reserved cross-connection on the equipment, with the
following behaviour:
○ it returns soon after the preliminary checks have been carried out: poisitively if the cross-

connection unreservation has been requested and started o the equipment, else negatively
○ later, when the cross-connection unreservation has been completed, the TNRC Specific Part will

come back using the response callback (response_cb) and context (response_ctxt),and delivering
the result of the operation

• tnrcsp_register_async_cb(): report about events on ports; it’s invoked asynchronously by the TNRC
Specific Part, based on underlying event report mechanism

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

51

4.2.9 ApiQueue instance

The ApiQueue instance is unique and is created at the boot of the TNRC process. It contains a queue in which
are stored all the action requests coming from the upper layers, through the TNRC Abstract Part external API.

Each time an action is executed (either successfully or unsuccessfully), an action request is extracted from the
queue and executed.

class ApiQueue {
 public:
 ApiQueue(void);
 ~ApiQueue(void) {};

 bool insert(api_queue_element_t * e);
 api_queue_element_t * extract(void);

 int size(void);
 u_int tot_request (void);

 private:
 u_int tot_req_; // total number of action requests

 std::queue<api_queue_element_t *> queue_; // que ue of actions to execute
};

Code 4-9: ApiQueue class.

4.2.10 Action instance

The Action instance is the basic item in the TNRC data model dedicated to equipment resource requests
management. An Action instance is created each time that a “create” (make/reserve cross-connection) action
request is extracted from ApiQueue and ready to communicate with the equipment. Otherwise when a “destroy”
action (destroy/unreserve cross-connection) is extracted from ApiQueue, no new Action instance is created,
and correspondent make/reserve Action instance is retrieved to post an event on its FSM instance.

It has the following relevant fields:

• a unique identifier generated for the client requested the action (ap_cookie_)
• a unique identifier generated by TNRC Specific Part (sp_handle_)
• type of action (make/destroy or reserve/unreserve cross-connection) (action_type_)
• a pointer to the (unique) installed plug-in (plugin_)
• a pointer to the Action FSM instance for this action (FSM_)
• atomic action in execution (atomic_)
• queue containing all the atomic actions for this action (atomic_actions_)
• queue containing the atomic actions to do (atomic_todo_)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

52

• queue containing the atomic actions already done (atomic_done_)

class Action {
public:
 Action (void) {};
 ~Action (void){};

 Plugin * plugin();

 Action * atomic();
 void atomic(Action * at);

 tnrcap_cookie_t ap_cookie(void);

 void sp_handle(tnrcsp_handle_t h);
 tnrcsp_handle_t sp_handle(void);

 long resp_ctxt(void);
 void resp_ctxt(long ctxt);

 long async_ctxt(void);

 tnrc_action_type_t action_type(void);
 void action_type(tnrc_action_type_t type);

 void prel_check(tnrcsp_result_t pc);
 tnrcsp_result_t prel_check(void);

 void eqpt_resp(tnrcsp_result_t res);
 tnrcsp_result_t eqpt_resp(void);

 void have_atomic(bool atomic);
 bool have_atomic(void);

 bool have_atomic_todo(void);
 bool have_atomic_todestroy(void);

 bool wait_answer(void);
 void wait_answer(bool val);

 //atomic actions to do management
 void pop_todo();
 Action * front_todo(void);
 void push_todo(Action * at);
 int todo_size(void);

 //atomic actions done management
 void pop_done();
 Action * front_done(void);
 void push_done(Action * at);
 int done_size(void);
 void swap_action_type(void);

 int n_retry(void);
 void n_retry_inc();

 virtual void fsm_start(void) = 0;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

53

 virtual void fsm_post(fsm::TNRC::virtFsm::root_eve nts_t ev,
 void * ctxt,
 bool queue = fa lse) = 0;

 //define iterator_atomic_actions
 DEFINE_QUEUE_ITERATOR(atomic_actions, Action);
 //define iterator_atomic_done
 DEFINE_QUEUE_ITERATOR(atomic_done, Action);

protected:
 tnrcap_cookie_t ap_cookie_;
 tnrcsp_handle_t sp_handle_;

 long resp_ctxt_;
 long async_ctxt_;

 tnrc_action_type_t action_type_;

 tnrcsp_result_t prel_check_;

 tnrcsp_result_t eqpt_resp_;

 bool have_atomic_;
 bool have_atomic_todo_;

 bool wait_answer_;
 int n_retry_;

 Plugin * plugin_;

fsm::TNRC::virtFsm * FSM_; // Acti on FSM instance

 Action * atomic_; // ato mic action in execution

 std::deque<Action *> atomic_actions_; // que ue of atomic actions
 std::deque<Action *> atomic_todo_; // que ue of atomic actions todo
 std::deque<Action *> atomic_done_; // que ue of atomic actions done
};

Code 4-10: Action class.

4.2.11 XC instance

An XC instance is created each a time a make or reserve cross-connection action is executed successfully.
The XC instance is useful to correlate an executed action with the correspondent cross-connection on the
equipment, allowing to manage easily any possible notification related to the cross-connection from the
equipment.

An XC instance is deleted when correspondent cross-connection is either destroyed or unreserved on the
equipment.

It has the following relevant fields:

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

54

• a unique cross-connection identifier (id_)
• identifier of the associated action (cookie_)
• resources (and ports) involved in the cross-connection (portid_in_, portid_out_, labelid_in_,

labelid_out_)

class XC {
 public:
 XC(void) {};
 ~XC(void){};
 XC(u_int id,
 tnrcap_cookie_t ck,
 tnrcap_xc_state_t st,
 tnrc_port_id_t portid_in,
 label_t labelid_in,
 tnrc_port_id_t portid_out,
 label_t labelid_out,
 xcdirection_t direction,
 long ctxt);

 u_int id(void);

 tnrcap_cookie_t cookie(void);
 void cookie(tnrcap_cookie_t ck);

 tnrcap_xc_state_t state(void);
 void state(tnrcap_xc_state_t st);

 tnrc_port_id_t portid_in(void);
 tnrc_port_id_t portid_out(void);
 label_t labelid_in(void);
 label_t labelid_out(void);
 xcdirection_t direction(void);

 long async_ctxt (void);
 void async_ctxt (long ctxt);

 private:
 u_int id_; // id of the cros s-connection
 tnrcap_cookie_t cookie_; // cookie of the associated action

 tnrcap_xc_state_t state_; // state of the c rossconnection

 tnrc_port_id_t portid_in_;
 tnrc_port_id_t portid_out_;
 label_t labelid_in_;
 label_t labelid_out_;
 xcdirection_t direction_;

 long async_ctxt_;
};

Code 4-11: XC class.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

55

4.3 TNRC Abstract Part

The TNRC Abstract Part is the core of the TNRC module; it is implemented as a process integrated in the
Quagga framework, and it is in charge of:

• bridging the semantics from the G2MPLS space down to the equipment (through TNRC_SP)
○ G2MPLS resource spec:

— data link
— label

○ lower layer resource spec (at TNRC_SP)
— FSC

- port
— LSC

- port
- wavelength/waveband

— TDM
- port
- Termination Point (TP)

— L2SC
- port
- label

• decoupling the communication mechanism
• decomposing and serializing the operations that are atomic at the G2MPLS level into a sequence of

operations that are atomic at the equipment level
• maintaining a synchronized image of equipment resource status
• providing access to this mirrored information to upper G2MPLS module
• handling the notifications rising from the equipment and correlating them to some G2MPLS-level

resource

The TNRC Abstract Part has three different APIs:

• configuration API (exposed to TNRC Specific Part)
• external API (exposed to external modules)
• action specific API (exposed to TNRC Specific Part)

4.3.1 TNRC Abstract Part configuration API

The configuration API is exposed to TNRC Specific Part, and is used to install the unique plug-in and to build
an up-to-date image of the equipment .in TNRC Abstract Part. It is specified in <sw_root>/tnrcd/tnrc_apis.h.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

56

tnrcapiErrorCode_t init_plugin(std::string name, st d::string loc);

int plugin_probe(struct thread *t);

tnrcapiErrorCode_t add_Eqpt(eqpt_id_t id,
 g2mpls_addr_t address,
 eqpt_type_t type,
 opstate_t opst,
 admstate_t admst,
 std::string location);

tnrcapiErrorCode_t add_Board(eqpt_id_t eqpt_id,
 board_id_t id,
 sw_cap_t sw_cap,
 enc_type_t enc_type,
 opstate_t opst,
 admstate_t admst);

tnrcapiErrorCode_t add_Port(eqpt_id_t eqpt_i d,
 board_id_t board_id,
 port_id_t id,
 int flags,
 g2mpls_addr_t rem_eq_addr,
 port_id_t rem_port_id,
 opstate_t opst,
 admstate_t admst,
 uint32_t bandwidth,
 gmpls_prottype_t protection);

tnrcapiErrorCode_t add_Resource(eqpt_id_t eqpt_ id,
 board_id_t board_id,
 port_id_t port_id,
 int tp_fl,
 label_t id,
 opstate_t opst,
 admstate_t admst,
 label_state_t st);

Code 4-12: TNRC Abstract Part configuration API.

The methods of the API are:

• init_plugin(): install the plug-in specified by name into TNRC_Master instance, and schedule the
execution of plugin_probe()

• plugin_probe(): this is the core method of the configuration API. It’s a wrapper of TNRC Specific Part
plug-in method called probe() (see Code 4-8), that is responsible to create the image of equipment in
the TNRC_AP instance through.the add_Eqpt(),add_Board(),add_Port(),add_Resource() methods

• add_Eqpt(): add an Eqpt instance in the data model
• add_Board(): add a Board instance in the data model
• add_Port(): add a Port instance in the data model
• add_Resource(): add a Resource instance in the data model

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

57

4.3.2 TNRC Abstract Part external API

The external API is exposed to external modules, and is used to accept new action requests and to provide
access to the image of the equipment stored in the data model. It is specified in <sw_root>/idl/tnrc.idl.

#include "types.idl"
#include "g2mplsTypes.idl"

interface TNRC {
 exception InternalProblems { };
 exception CannotFetch { };
 exception ParamError { };

 boolean makeXC(out Types::uint32 cookie,
 in g2mplsTypes::DLinkId dlinkIn,
 in g2mplsTypes::labelId labelIn,
 in g2mplsTypes::DLinkId dlinkOut,
 in g2mplsTypes::labelId labelOut,
 in g2mplsTypes::xcDirection direction,
 in Types::uint32 activate,
 in Types::uint32 rsrvCookie,
 in long responseCtxt,
 in long asyncCtxt)
 raises(InternalProblems, ParamError);

 boolean destroyXC(in Types::uint32 cookie,
 in Types::uint32 deactivate,
 in long responseCtxt)
 raises(InternalProblems, ParamError);

 boolean reserveXC(out Types::uint32 cookie,
 in g2mplsTypes::DLinkId dlinkIn,
 in g2mplsTypes::labelId labelIn,
 in g2mplsTypes::DLinkId dlinkOut,
 in g2mplsTypes::labelId labelOut,
 in g2mplsTypes::xcDirection direction,
 in Types::uint32 advanceRsrv,
 in long startTime,
 in long endTime,
 in long responseCtxt)
 raises(InternalProblems, ParamError);

 boolean unreserveXC(in Types::uint32 cookie,
 in long responseCtxt)
 raises(InternalProblems, ParamError);

 boolean getDLinkDetails(in g2mplsTypes::DLinkId dataLink,
 out g2mplsTypes::DLinkParameters params)
 raises(InternalProblems, CannotFetch);

 boolean getLabelStatus(in g2mplsTypes::DLinkId localDataLink,
 in g2mplsTypes::labelId label,
 out g2mplsTypes::labelState labelState,
 out g2mplsTypes::operState opState)
 raises(InternalProblems, CannotFetch);

 boolean getLabelFromDLink(in g2mplsTypes::DLinkId dataLink,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

58

 out g2mplsTypes::labelId label)
 raises(InternalProblems, CannotFetch);
};

Code 4-13: TNRC Abstract Part external API IDL.

The methods of the API are:

• makeXC(): create (or activate a reserved) cross-connection on the equipment, with the following
behaviour:
○ it returns soon after the preliminary checks on the data model have been carried out: positively if

the request is consistent and queued in the ApiQueue instance, else negatively
○ later, when the cross-connection has been completed, the TNRC Abstract Part will come back

using the actionResponse() method exposed by G².RSVP-TE external API (see section 7.3) and
context (responseCtxt), delivering the result of the operation

• any future event related to the cross-connection or one of its component will be reported with the
actionNotify() method exposed by G².RSVP-TE external API

• destroyXC(): destroy an existent cross-connection on the equipment, with the following behaviour:
○ it returns soon after the preliminary checks on the data model have been carried out: positively if

the request is consistent and queued in the ApiQueue instance, else negatively
• later, when the cross-connection removal has been completed, the TNRC Abstract Part will come back

using the actionResponse() method exposed by G².RSVP-TE external API and context (responseCtxt),
delivering the result of the operation

• reserveXC(): reserve a cross-connection on the equipment, with the following behaviour:
○ it returns soon after the preliminary checks on the data model have been carried out: poisitively if

the request is consistent and queued in the ApiQueue instance, else negatively
○ later, when the cross-connection reservation has been completed, the TNRC Abstract Part will

come back using the actionResponse() method exposed by G².RSVP-TE external API and context
(responseCtxt), delivering the result of the operation

○ if the advance reservation flag (advanceRsrv) is active and the preliminary checks on the data
model have been carried out positively, a make cross-connection action is scheduled to be
executed at startTime, and a destroy cross-connection one is scheduled to be executed at
endTime

• unreserveXC(): unreserve an existent reserved cross-connection on the equipment, with the following
behaviour:
○ it returns soon after the preliminary checks have been carried out: positively if the request is

consistent and queued in the ApiQueue instance, else negatively
○ later, when the cross-connection unreservation has been completed, the TNRC Abstract Part will

come back using the actionResponse() method exposed by G².RSVP-TE external API and context
(responseCtxt), delivering the result of the operation

• getDLinkDetails(): method called to retrieve information about a data link (operational and
administrative status, bandwidth parameters, switching capability, encoding type, etc.)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

59

• getLabelStatus(): method called to retrieve the status (operational, administrative and label status) of
the specified label associated to the specified data link

• getLabelfromDLink(): method called to pick a free label among all free labels associated to the
specified data link

4.3.3 TNRC Abstract Part action specific API

The action specific API is exposed to TNRC Specific Part, and is used to provide a set of action result callbacks
to be called by the Specific Part when the action has been completed on the equipment. It is specified in
<sw_root>/tnrcd/tnrc_apis.h.

void make_xc_resp_cb(tnrcsp_handle_t handle,
 tnrcsp_result_t result,
 void * ctxt);

void destroy_xc_resp_cb(tnrcsp_handle_t handle,
 tnrcsp_result_t result,
 void * ctxt);

void notification_xc_cb(tnrcsp_handle_t han dle,
 tnrcsp_resource_id_t ** failed_resource_listp,
 void * cxt);

void reserve_xc_resp_cb(tnrcsp_handle_t handle,
 tnrcsp_result_t result,
 void * ctxt);

void unreserve_xc_resp_cb(tnrcsp_handle_t handle,
 tnrcsp_result_t result,
 void * ctxt);

Code 4-14: TNRC Abstract Part action specific API.

The methods of the API are:

• make_xc_resp_cb(): this method is registered as response_cb parameter when TNRC Specific Part
API tnrcsp_make_xc() method is called by the Abstract Part. An appropriate event is posted to the
action FSM and the data model is updated, according to the result value

• destroy_xc_resp_cb(): this method is registered as response_cb parameter when TNRC Specific Part
API tnrcsp_destroy_xc() method is called by the Abstract Part. An appropriate event is posted to the
action FSM and the data model is updated, according to the result value

• notification_xc_cb(): this method is registered as async_cb parameter when TNRC Specific Part API
tnrcsp_make_xc() method is called by the Abstract Part. The data model is updated according to the
event notified

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

60

• reserve_xc_resp_cb(): this method is registered as response_cb parameter when TNRC Specific Part
API tnrcsp_reserve_xc() method is called by the Abstract Part. An appropriate event is posted to the
action FSM and the data model is updated, according to the result value

• unreserved_xc_resp_cb(): this method is registered as response_cb parameter when TNRC Specific
Part API tnrcsp_unreserve_xc() method is called by the Abstract Part. An appropriate event is posted
to the action FSM and the data model is updated, according to the result value

4.4 TNRC Specific Part

The TNRC Specific Part is in charge of:

• implementing the specific actions on the hardware, by means of any available and suitable
management interface

• decoupling the mechanism of the lower management interface from the upper layers (TNRC Abstract
Part)
○ decoupling of blocking/unblocking sync/async communication
○ decoupling of objects or sessions identifiers

• perform any final translation from the semantics and object identifiers passed by TNRC Abstract Part
into those needed to communicate with the hardware

• hide away from TNRC Abstract Part some unneeded peculiarities of the underlying transport network

There is a different TNRC Specific Part for each type of equipment (ADVA, Calient,.etc.). A single Specific Part
is build via the implementation of a plug-in: this is done inheriting the Plugin class explained in the TNRC Data
Model section (see Code 4-8) and implementing the pure virtual methods specified.

The TNRC Specific Part offers an API to the Abstract Part to execute the actions on the equipment.

4.4.1 TNRC Specific Part API

The TNRC Specific Part API consists of the set of methods exposed by the Plugin class (see Code 4-8), and
implemented by each specific inherited plug-in.

These methods have already been explained in Section 4.2.8.

4.5 TNRC Action FSM

The main engine of TNRC Abstract Part is the finite state machine of the actions that are executed. Each
Action can be the collection of a number of correlated AtomicActions, whose execution and success determines

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

61

the success of the master Action. The FSM states and events are explained in Table 4-2 and Table 4-3, while
the overall FSM picture with the transition events between states are shown in Figure 4-2.

XXX FSM definition

st/ev eventI event1 event2 event3

stateI - state1 state2 state3
state1 - state1 - -
state2 - - state2 -
state3 - - - state3

{ FSM }

name = TNRC
definition-file = tnrc_action.def
include-name = tnrc_action.h
start-state = stateX [optional]
graphviz-file = tnrc_action.dot

Events

rootEvent = derivedEvent1, derivedEvent2, ...

{ Events }

ActionCreate = evActionCreate
AtomicActionOk = evAtomicActionOk , evAtomicActionNext, evActionEndUp,
 evActionEndDown
AtomicActionKo = evAtomicActionKo , evAtomicActionRetry,
evAtomicActionIncomplete, evAtomicActionAbort
ActionNotification = evAction Notification
ActionDestroy = evActionDestroy , evActionPending
ActionRollback = evActionRollback
AtomicActionTimeout = evAtomicActionTimeout
AtomicActionRetryTimer = evAtomicActionRetryTime r
AtomicActionDownTimeout = evAtomicActionDownTimeo ut
EqptDown = evEqptDown

States

state = state1 [The first state is the start on e if start-state is not set]
eventX -> dstState

state = state2
eventY -> dstState

{ States }

State = Down
 evActionCreate -> Creating

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

62

State = Creating
 evAtomicActionNext -> Creating
 evActionPending -> Dismissed
 evAtomicActionIncomplete -> Incomplete
 evActionEndUp -> Up
 evActionDestroy -> Down
 evAtomicActionKo -> Down
 evEqptDown -> Down

State = Incomplete
 evEqptDown -> Down
 evActionRollback -> Closing

State = Dismissed
 evEqptDown -> Down
 evAtomicActionKo -> Down
 evAtomicActionTimeout -> Down
 evAtomicActionOk -> Incomplete
 evAtomicActionIncomplete -> Incomplete

State = Up
 evActionNotification -> Up
 evActionDestroy -> Closing

State = Closing
 evAtomicActionNext -> Closing
 evAtomicActionRetry -> Closing
 evAtomicActionRetryTimer -> Closing
 evAtomicActionDownTimeout -> Closing
 evAtomicActionAbort -> Down
 evActionEndDown -> Down

Code 4-15: TNRC Abstract Part action FSM.

state short description

Down Initial state of the FSM; none of the AtomicAction has been run yet

Creating The Action has been created and all the component AtomicActions are executed

Dismissed
The Action has been stopped while going Up, and received a command to destroy
itself; but the current AtomicAction is still waiting for a response from the TNRC-SP,
and thus the equipment Agent

Incomplete

The Action has been stopped while going Up, and received a command to destroy
itself; but the current AtomicAction is not already waiting for a response from the
equipment Agent (e.g. its request has not been ack-ed yet and can be silently
dismissed)

Up The Action has successfully run all the component AtomicAction and is now
established in an idle state

Closing
The Action is rewinding its “ready” component AtomicActions in order to undo all the
atomic operations carried out until the moment when the Destroy command has been
received

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

63

Table 4-2: TNRC Action FSM: states.

Event Root event short description

evActionCreate ActionCreate Start running the first AtomicAction in the Action

evAtomicActionOk AtomicActionOk
The current AtomicAction has been positively
answered by the equipment; do not run the next
Atomic Action

evAtomicActionNext AtomicActionOk
The current AtomicAction has been positively
answered by the equipment; now run the next
AtomicAction

evActionEndUp AtomicActionOk

The current AtomicAction has been positively
answered by the equipment, and this was the last
AtomicAction in the Action; the Action should go idle
into Up state

evActionEndDown AtomicActionOk

the current AtomicAction has been positively
answered by the equipment, and this was the last
AtomicAction in the Action; the Action should go idle
into Down state

evAtomicActionKo AtomicActionKo
The current AtomicAction has been negatively
answered by the equipment, and should not be re-
issued

evAtomicActionRetry AtomicActionKo
The current AtomicAction has been negatively
answered by the equipment, and should be re-
attempted later on (after a “retry” interval)

evAtomicActionIncomplete AtomicActionKo

The current AtomicAction has been negatively
answered by the equipment, and the Action should go
Down; but some other AtomicActions have been
successfully carried out before, thus those Action’s
AtomicActions need to be rewinded before the Action
can go Down

evAtomicActionAbort AtomicActionKo
The current AtomicAction has been negatively
answered by the equipment, and should not be
reattempted anymore

evActionNotification ActionNotification
The Action has received an asynchronous notification
from the equipment about some of its related
resources

evActionDestroy ActionDestroy
The Action got a Destroy command, and none of its
AtomicActions have been either carried out nor even
sent to the equipment

evActionPending ActionDestroy

The Action got a Destroy command, but the current
AtomicAction is still waiting for a response from the
equipment and, when ready, it might need to be
rewinded before the Action can go Down

evActionRollback ActionRollback Start rewinding this Action from the point it has
reached until now with its “ready” AtomicActions

evAtomiActionRetryTimer AtomiActionRetryTimer
The “retry” timer has expired; it is time to reissue the
request to the equipment about the currently
rewinded AtomicAction

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

64

evEqptDown EqptDown A failure on the TNRC Specific Part – equipment link
occurred

evAtomicActionTimeout AtomicActionTimeout (not used)

evAtomicActionDownTime
out

AtomicActionDownTime
out (not used)

Table 4-3: TNRC Action FSM: events and root events.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

65

Figure 4-2: TNRC actions finite state machine.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

66

4.5.1 Example transitions

In Figure 4-3 is showed an example of successfully make cross-connection action:

• the initial state is Down, an evActionCreate event is posted as soon as the Action instance is created.
• the TNRC Specific Part API tnrcsp_make_xc() method is called (for every atomic action) and the

Action FSM goes to the Creating state
• the equipment executes correctly all the atomic actions, and the Specific Part (through the Abstract

Part action specific API) post an evAtomicActionNext event for each atomic action
• when all atomic are executed, an evActionEndUp event is posted and the Action FSM goes to Up

state, meaning that the cross-connection is correctly done

In Figure 4-4 is showed an example of successfully destroy cross-connection action:

• the initial state is Up, an evActionDestroy event is posted as soon as the destroy action request is
extracted from the queue in the ApiQueue instance, and appropriate Action instance is retrieved

• the TNRC Specific Part API tnrcsp_destroy_xc() method is called (for every atomic action) and the
Action FSM goes to the Closing state

• the equipment executes correctly all the atomic actions, and the Specific Part (through the Abstract
Part action specific API) post an evAtomicActionNext event for each atomic action

• when all atomic are executed, an evActionEndDown event is posted and the Action FSM goes to Down
state, meaning that the cross-connection is correctly removed. The Action instance is destroyed.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

67

Figure 4-3: TNRC action FSM: example transitions in case of successfully make cross-connection.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

68

Figure 4-4: action FSM: example transitions in case of successfully destroy cross-connection.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

69

5 Link Resource Manager (LRM)

The LRM module is a separate process, not part of Quagga routing suite and is developed from scratch. It is
integrated into Quagga framework according to Quagga daemon main structure (e.g. one master thread to
manage the single thread daemon as pseudo multi-thread, the trace log system, the vty interface, etc).

5.1 LRM basics

This LRM module is responsible for the management of the relationships among TE-Links, Data-Links, Control
Channels and SCN Interfaces. The TE-links are the result of a bundling procedure applied to a number of
physical component Data-Links with the eligibility for being part of the same logical construct.

The functionalities of the LRM comprise:

• Selection and allocation/de-allocation of resources (<Data-link, label>) in TE-link for signaling
purposes,

• Management of the TE-link status and bundling information for topology purposes.

The LRM module exposes interfaces to gunirsvpd, G².RSVP-TE, TNRC, ospfd, SCNGW and g2nccd.

5.2 LRM Data Model

The LRM Data Model also holds the basic instances of nearly all the G2MPLS items. Each external module
remaps its own “view” or “instance” of a basic item (e.g. a Data-Links, ora TE-Link), but the basic item itself is
maintained and hosted by the LRM module.

The LRM Data Model is depicted in Figure 5-1.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

70

Figure 5-1: LRM Data Model.

5.2.1 LRM instance

The LRM instance is the root of the whole LRM Data Model. When LRM process starts, a global instance of
LRM is created. It holds:

• a unique network address of G2MPLS controller (router_id)
• all the SCN Interfaces instances (scn_if_list)
• all the Control Channel Instances (cc_list)
• all the Data-Link instances (datalink_list)
• all the TE-Link instances (telink_list)
• alle the Adjacency instances (adj_list)

typedef struct lrm {
 u_int32_t router_id;
 struct zlist * scn_if_list;
 struct zlist * cc_list;
 struct zlist * datalink_list;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

71

 struct zlist * telink_list;
 struct zlist * adj_list;
 uint32_t telink_count;
} lrm_t;

Code 5-1: LRM instance

5.2.2 SCN Interface instance

The SCN Interface is the basic item for the Control Network management. The SCN Interface instances are
created reading a configuration file containing the description of the entire data model. Each instance holds:

• the network address of the interface (addr)
• the type (broadcast/point-to-point) of the interface (type)
• operational state of the interface (op_state)
• administrative sate of the interface (adm_state)

typedef struct ctrl_interface {
g2mpls_addr_t addr;
if_type_t type;
opstate_t op_state;
admstate_t adm_state;
int sync_status;
} ctrl_intf_t;

Code 5-2: SCN interface instance

5.2.3 Control Channel instance

The Control Channel is a fundamental item in the Control Network management, and represent the binding of
two (local and remote) SCN Interfaces in the Control Network. The Control Channel instances are created
reading a configuration file containing the description of the entire data model. Each instance holds:

• a unique local identifier of the Control Channel (cc_id)
• the remote identifier of the Contro Channel (rem_cc_id)
• local SCN Interface address (lcl_scn_addr)
• remote SCN Interface address (rem_scn_addr)

typedef struct control_channel {
u_int32_t cc_id; /* local and node-unique CC id */
u_int32_t rem_cc_id; /* remote and node-unique CC id */

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

72

g2mpls_addr_t lcl_scn_addr;
g2mpls_addr_t rem_scn_addr;
opstate_t op_state;
admstate_t adm_state;
struct zlist * te_link_list; /* te-links m anaged by this CC */
 int sync_status;
} cc_t;

Code 5-3: Control Channel instance

5.2.4 Adjacency instance

The Adjacency is the highest level item of the Transport Netwok part of the data model. The Adjacency
instances are created each time a new TE-Link instance not linked to any Adjacency is created. Each instance
holds:

• a unique local identifier of the Adjacency ()
• the network address of the remote G2MPLS controller (its router_id parameter of LRM instance)

(adj_addr)
• the type of the Adjacency (INNI/ENNI/UNI) (link_type)
• the list of all associated TE-Link instances

typedef struct adj {
 u_int32_t adj_id;
 u_int32_t adj_addr;
 adj_type_t link_type;
 struct zlist * tel_list;
} adj_t;

Code 5-4: Adjacency instance.

5.2.5 TE-Link instance

The TE-Link is the basic routable item of the data model. The TE-Link instances are created reading a
configuration file containing the description of the entire data model.

The most relevant fields are:

• local address (lcl_id)
• remote address (rem_id)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

73

• the network address of the remote G2MPLS controller (its router_id parameter of LRM instance)
(rem_node_id)

• operational state (op_state)
• administrative state (adm_state)
• the type of the Adjacency (adj_type)
• the TE metric (te_metric)
• the list SRLG the TE-Link instance belongs to (SRLG_ids)
• the switching capability (swcap). This parameter must be the same for all associated Data-Link

instances
• the encoding type (enctype). This parameter must be the same for all associated Data-Link instances
• total available bandwidth (max_bw)
• maximum reservable bandwidth (max_res_bw)
• unreserved bandwidth per priority (avail_bw_per_prio)
• minimum reservable bandwidth per LSP (min_LSP_bw)
• maximum reservable bandiwdth per LSP and per priority (max_LSP_bw)
• the list of all associated Data-Link instances (dl_list). All the above bandwidth parameters are a bundle

of the correspondent parameters of the associated Data-Link instances
• a pointer to the parent Adjacency instance (adj)
• the list of all associated Control Channel instances (cc_list)

typedef struct _te_link {
 g2mpls_addr_t lcl_id;
 g2mpls_addr_t rem_id;
 u_int32_t rem_node_id; /* rem_id MUST be conta ined */
 char tel_name[20 + 1]; /* name of TEL */
 int tel_key; /* used for internal pu rposes */
 opstate_t op_state;
 admstate_t adm_state;
 /* Summary (after bundling) or configured TE info */
 adj_type_t adj_type;
 u_int32_t te_metric;
 u_int32_t link_color;
 struct zlist * SRLG_ids;

 sw_cap_t swcap; /* switching capability */
 enc_type_t enctype; /* encoding type */
 u_int32_t max_bw;
 u_int32_t max_res_bw;
 /* unreserved bw per priority */
 u_int32_t avail_bw_per_prio[MAX_BW_PRIORITIES];
 /*max of max LSP per priority p bw of component li nks*/
 u_int32_t max_LSP_bw[MAX_BW_PRIORITIES];
 u_int32_t min_LSP_bw;

 struct zlist * dl_list; /* list of data links in to te-link */
 adj_t * adj;
 cc_t * assoc_cc; /* cc associated whith t his te-link */
 struct zlist * cc_list; /* list of CCs for this TEL */
 u_int32_t num_cc_up; /* number of available C Cs in up */

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

74

 int sync_status;
} te_link_t;

Code 5-5: TE-Link instance.

5.2.6 Data-Link instance

The Data-Link is the lowest level item of the Transport Netwok part of the data model. The Data-Link instances
are created reading a configuration file containing the description of the entire data model. Each instance holds:

• local Transport Network address (lcl_id)
• remote Transport Network address (rem_id)
• operational state (op_state)
• administrative state (adm_state)
• the switching capability (swcap)
• the encoding type (enctype)
• total available bandwidth (max_bw)
• maximum reservable bandwidth (max_res_bw)
• unreserved bandwidth per priority (avail_bw_per_prio)
• minimum reservable bandwidth per LSP (min_LSP_bw)
• maximum reservable bandiwdth per LSP and per priority (max_LSP_bw)

typedef struct datalink {
g2mpls_addr_t lcl_id;
g2mpls_addr_t rem_id;
opstate_t op_state;
admstate_t adm_state;
sw_cap_t swcap; /* switching capabilit y */
enc_type_t enctype; /* the encoding type o f this data link */
u_int32_t max_bw;
u_int32_t max_res_bw;
u_int32_t avail_bw_per_prio[MAX_BW_PRIORITIE S];
u_int32_t max_LSP_bw[MAX_BW_PRIORITIES];
u_int32_t min_LSP_bw;
} datalink_t;

Code 5-6: Data Link instance.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

75

5.3 LRM configuration API

The LRM configuration API is used to build the LRM data model starting from the configuration file containing
its description.

It is specified in <sw_root>/lrmd/lrm_core.h.

int lrm_set_rid(lrm_t * lrm, u_int32_t rid);

/* CTRL IF related functions */
int scn_if_add(lrm_t * lrm, g2mpls_addr_t addr, if_type_t intf_ty pe);
int scn_if_del(lrm_t * lrm, g2mpls_addr_t addr);
int scn_if_ena(lrm_t * lrm, g2mpls_addr_t addr);
int scn_if_dis(lrm_t * lrm, g2mpls_addr_t addr);

/* CC related functions */
int control_channel_add(lrm_t * lrm,
 u_int32_t cc_id,
 g2mpls_addr_t lcl_scn,
 g2mpls_addr_t rem_scn);
int control_channel_del(lrm_t * lrm, u_int32_t cc_id);
int control_channel_ena(lrm_t * lrm, u_int32_t cc_id);
int control_channel_dis(lrm_t * lrm, u_int32_t cc_id);
int control_channel_up(lrm_t * lrm, u_int32_t cc_id); /* static-LMP */
int control_channel_down(lrm_t * lrm, u_int32_t cc_id); /* static-LMP */

/* DATA LINK related functions */
int data_link_add(lrm_t * lrm, g2mpls_addr_t dl_id, g2mpls_addr_t re m_dl_id);
int data_link_del(lrm_t * lrm, g2mpls_addr_t dl_id);
int data_link_ena(lrm_t * lrm, g2mpls_addr_t dl_id);
int data_link_dis(lrm_t * lrm, g2mpls_addr_t dl_id);

/* TE-LINK related functions */
int te_link_add(lrm_t * lrm,
 g2mpls_addr_t tel_id,
 g2mpls_addr_t r_tel_id,
 u_int32_t adj_rid,
 adj_type_t adj_type);
int te_link_del(lrm_t * lrm, g2mpls_addr_t tel_id);
int te_link_ena(lrm_t * lrm, g2mpls_addr_t tel_id);
int te_link_dis(lrm_t * lrm, g2mpls_addr_t tel_id);
int te_link_bind_cc(lrm_t * lrm, g2mpls_addr_t tel_id, u_int32_t cc_id);
int te_link_unbind_cc(lrm_t * lrm, g2mpls_addr_t tel_id, u_int32_t cc_id);
int te_link_push_dl(lrm_t * lrm, g2mpls_addr_t tel_id, g2mpls_addr_t d l_id);
int te_link_pop_dl(lrm_t * lrm, g2mpls_addr_t tel_id, g2mpls_addr_t d l_id);
int te_link_set_te_metric(lrm_t * lrm,
 g2mpls_addr_t tel_id,
 u_int32_t te_metric);
int te_link_set_link_color(lrm_t * lrm,
 g2mpls_addr_t tel_id,
 u_int32_t colotmask);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

76

int te_link_add_srlg_id(lrm_t * lrm,
 g2mpls_addr_t tel_id,
 u_int32_t SRLG_id);
int te_link_rem_srlg_id(lrm_t * lrm,
 g2mpls_addr_t tel_id,
 u_int32_t SRLG_id);

Code 5-7: LRM configuration API.

The methods of the API are:

• scn_if_add(): add a new SCN Interface instance in the data model, probing the specified interface by
means of ioctl() system call. Advertise SCNGW module through its external API of this addition

• scn_if_del(): delete an existent SCN Interface instance from the data model. Advertise SCNGW
module through its external API of this deletion

• scn_if_en(): set the administrative state of the SCN Interface istance to ENABLED
• scn_if_dis(): set the administrative state of the SCN Interface instance to DISABLED

• control_channel_add(): add a new Control Channel instance in the data model. Advertise SCNGW

module through its external API of this addition
• control_channel_del(): delete an existent Control Channel instance from the data model. Advertise

SCNGW module through its external API of this deletion
• control_channel_en(): set the administrative state of the Control Channel instance to ENABLED
• control_channel_dis(): set the administrative state of the Control Channel instance to DISABLED
• control_channel_up(): set the operational state of the Control Channel instance to UP
• control_channel_down(): set the operational state of the Control Channel instance to DOWN

• data_link_add(): add a new Data-Link instance in the data model, checking if this is consistent with

TNRC Abstract Part image of the equipment (through its external API)
• data_link_del(): delete an existent Data-Link instance from the data model
• data_link_en(): set the administrative state of the Data-Link instance to ENABLED
• data_link_dis():set the administrative state of the Data-Link instance to DISABLED

• te_link_add(): add a new TE-Link instance in the data model. Advertise SCNGW module through its

external API of this addition
• te_link_del(): delete an existent TE-Link instance from the data model. Advertise SCNGW module

through its external API of this deletion
• te_link_en():set the administrative state of the TE-Link instance to ENABLED
• te_link_dis():set the administrative state of the TE-Link instance to DISABLED
• te_link_bind_cc(): bind the specified Control Channel instance to specified TE-link Instance
• te_link_unbind_cc(): unbind the specified Control Channel instance from specified TE-link Instance
• te_link_push_dl(): associate the specified Data-Link instance to specified TE-link Instance

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

77

• te_link_pop_dl():disassociate the specified Data-Link instance from specified TE-link Instance
• te_link_set_te_metric(): set the metric for specified TE-link Instance
1.) te_link_set_link_color(): set the link color for specified TE-link Instance
2.) te_link_add_srlg_id(): add a SRLG to the specified TE-Link list of SRLGs
• te_link_rem_srlg_id(): remove a SRLG from the specified TE-Link list of SRLGs

5.4 LRM external API

The LRM external API is used to allow external modules to retrieve information about LRM data model. It is
specified in <sw_root>/idl/lrm.idl.

#include "types.idl"
#include "g2mplsTypes.idl"

interface LRM {

 exception InternalProblems { };
 exception UnknownTELinkIdentity { g2mplsTypes::TEL inkId id; };
 exception UnknownDLinkIdentity { g2mplsTypes::DLi nkId id; };
 exception UnknownTELink { };
 exception UnknownDLink { };
 exception UnknownAdjId { };
 exception UnknownNodeId { };
 exception NoTELinks { };

 void localDLinkIdFromRemoteDLinkId(in g2mplsTypes::nodeId nodeId,
 in g2mplsTypes::DLinkId remoteDLink,
 out g2mplsTypes::DLinkId localDLink,
 out g2mplsTypes::operState operState,
 out g2mplsTypes::adminState adminState)
 raises (InternalProblems, UnknownDLink, UnknownNo deId);

 g2mplsTypes::TELinkId TELinkFromDLink(in g2mplsTypes::DLinkId datalink)
 raises (InternalProblems, UnknownDLink);

 g2mplsTypes::DLinkId DLinkFromTELink(in g2mplsTypes::TELinkId telink)
 raises (InternalProblems, UnknownTELink);

 void TELinksData(inout g2mplsTypes::TELinkDataSeq telinks)
 raises (InternalProblems, UnknownTELinkIdentity);

 void DLinksData(inout g2mplsTypes::DLinkDataSeq datalinks)
 raises (InternalProblems, UnknownDLinkIdentity);

 g2mplsTypes::TELinkIdSeq allTELinkIds()
 raises (InternalProblems);

 g2mplsTypes::TELinkDataSeq allTELinks(in g2mplsTypes::adjType type)
 raises (InternalProblems, NoTELinks);

 g2mplsTypes::nodeId nodeId()
 raises (InternalProblems);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

78

 void scngw_isup()
 raises (InternalProblems);
};

Code 5-8: LRM external API.

The methods of the API are:

• localDLinkIdFromRemoteDLinkId(): retrieve local Data-Link address for specified remote Data-Link
address. This method return also the Data-Link instance administrative and operational state

• TELinkFromDLink(): retrieve parent TE-Link local address for the specified Data-Link instance
• DLinkFromTELink(): get a Data-Link instance local address among specified TE-Link instance list of

associated Data-Links
• TELinksData(): get TE-Link instance parameters for specified TE-Link instance
• DLinksData(): get Data-Link instance parameters for specified Data-Link instance
• allTELinkIds(): get all TE-Links instance local address
• allTELinks(): get all TE-Links instance local address for a specified Adjacency type
• nodeId(): get the network address of G2MPLS controller (router_id parameter of the LRM instance)
• scngw_isup(): this method is called by SCNGW module to start the synchronization phase in the

communication with LRM module (see SCNGW server external API)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

79

6 SCN Gateway (SCNGW)

The SCNGW module is not part of Quagga routing suite and is developed from scratch. It is integrated into
Quagga framework according to Quagga daemon main structure (e.g. one master thread to manage the single
thread daemon as pseudo multi-thread, the trace log system, the vty interface, etc).

6.1 SCNGW basics

The SCNGW module has the role to manage the dualism between the Transport Network and the Control
Network. It’s a kind of socket manager responsible of mapping TN resources (TE-links, well known by G2MPLS
protocols) into SCN resources (control i/fs, unknown by G2MPLS protocols). The main functionalities of the
SCN Gateway are:

• maintain the bindings between TE-links, Control Channels and SCN interfaces
• send the G2MPLS protocols’ SDUs on the appropriate Control Channels
• dispatch received SDUs (from network) to the correct G2MPLS protocol

SCNGW exposes interface to G2.RSVP-TE, G.UNI-GW, G.E-NNI RSVP, G.I-NNI RSVP (G2MPLS protocols)
and LRM. For these purposes, the module is broken down into two sub-modules:

module sub-module short description

SCNGW
(SCN Gateway)

SCNGW client
(SCNGWC)

Library offering a wrapped socket API, to be linked by
each protocol wanting communication across the SCN.
It acts as an access i/f to the SCNGW server, and has 2
channels with it: 1 for data, 1 for control (e.g. open/close
sockets, etc.)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

80

SCNGW server
(SCNGWS)

Separate process (i.e. a socket manager) handling
(tunnelled) communication through the SCN for one or
more clients. It maps TN resources (TE links) into SCN
resources (control i/fs) via the TE links <-> CCs
association.

Table 6-1: SCNGW breakdown into two sub-modules.

The overall structure of the SCNGW module is depicted in Figure 6-1.

Figure 6-1: SCNGW module structure.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

81

6.2 SCNGW client

The client part of SCNGW is responsible of the communication with the G2MPLS protocols; it is a library that
wraps the standard socket functions and exposes an API each protocol can use to interact with the SCNGW
server, that is the core of the SCNGW module.

#ifndef IPPROTO_OSPFIGP
#define IPPROTO_OSPFIGP 89
#endif /* IPPROTO_OSPFIGP */

#ifndef IPPROTO_RSVP
#define IPPROTO_RSVP 46
#endif /* IPPROTO_RSVP */

#define OSPF_PORT 61089
#define RSVP_PORT 61046

#define NO_TUNNEL 0 /* want no encap sulation in SCNGW server */
#define TUNNEL 1 /* want encapsul ation in SCNGW server */

#define WANT_NO_ACK 0 /* want no respo nse on packet from SCNGW */
#define WANT_ACK 1 /* want response on packet from SCNGW */

/* Protoypes */
extern int scngwc_init (int interface_typ e,
 int protocol,
 int encap,
 int want_ack);

extern int scngwc_sendmsg (int so ck,
 const void * sdu,
 u_int16_t sdu_size,
 struct in_addr src_addr,
 struct in_addr dst_addr,
 int flags,
 int * unread_packets);

extern int scngwc_stream_recvmsg (void * sdu,
 int sock,
 struct ip ** iph,
 size_t size);

extern void scngwc_close (int sock);

Code 6-1: SCNGW client API.

The interaction between the protocols and the SCNGW client takes place in three different actions:

• initialization
• exchanging of the SDUs
• closing

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

82

The functions of the API are:

• scngwc_init(): this function is responsible for the initialization phase, opening the TCP socket between
the client and the server part of the SCNGW module that will serve the considered G2MPLS protocol. It
also includes a registration of the protocol to the SCNGW server. The protocol that want to interact with
SCNGW has to call this function only once, declaring

○ protocol: what kind of protocol it is (e.g. OSPF or RSVP)

○ interface_type: the adjacency type (e.g. INNI or ENNI or UNI)

○ encap: if it wants his SDUs be encapsulated by SCNGW server

○ want_ack: if it wants an acknowledgment by SCNGW server of the transmission of the SDU on the
network

• scngwc_sendmsg(): this function is responsible for the exchanging of the SDUs phase, in the direction
G2MPLS protocol� SCNGW client. If the protocol wants his SDUs encapsulated, it also builds the first
IP packet header for the specified protocol SDU. When a protocol has to send its SDU has to specify

○ sock: file descriptor returned by scngwc_init()

○ sdu: pointer to the buffer containing the SDU

○ sdu_size: length of the SDU (bytes)

○ src_addr: address of the source TE-link, used to build the IP packet header and (in the SCNGW
server) to retrieve the correct SCN interface)

○ dst_addr: address of the destination TE-link, used to build the IP packet header and (in the SCNGW
server) to retrieve the correct SCN interface)

○ flags: flags to be used by the SCNGW server when sending the SDU on the network

○ unread_packets: flag valorized by SCNGW (out parameter) that specify if there any unread packets
for the protocol

• scngwc_recvmsg(): this function is responsible for the exchanging of the SDUs phase, in the direction
SCNGW client�G2MPLS protocol. If the protocol wants his SDUs encapsulated, it also remove the last

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

83

IP packet header of the incoming (from SCNGW server) packet, offering to the protocol the only SDU.
The protocol has to specify

○ sdu: pointer to the buffer for the incoming SDU

○ sock: file descriptor returned by scnwgc_init() and that is set by the incoming SDU

○ iph: pointer to the buffer for the incoming IP packet header

○ size: length of the buffer specified by the parameter sdu

• scngwc_close(): this function is responsible of the closing phase, opening the TCP socket between the
client and the server part of the SCNGW module. The G2MPLS protocol has to specify

○ sock: file descriptor returned by scnwgc_init()

For each G2MPLS protocol, the client and the server part of SCNGW module communicates each other
through a different socket. To improve this communication, each time there is a protocol SDU to be
sent/received by SCNGW client from SCNGW server and viceversa, a specific SCNGW overhead is added to
the entire message exchanged, containing some useful information about TE-links and SDU.

#define PACKET_MESSAGE 1U
#define ACK_MESSAGE 2U
#define NACK_MESSAGE 3U
#define REGISTRATION_MESSAGE 4U

/* structure containing the SCNGW header parameters */
struct scngw_hdr {
 u_int32_t msg_type; /* Message type */
 u_int32_t hdr_len; /* header length (b ytes) */
 u_int32_t sdu_len; /* SDU length (byte s) */
 u_int32_t msg_id; /* Message ID */
 u_int32_t flags; /* flags used by pr otocols */
 u_int32_t src_addr; /* TE-link local ad dress */
 u_int32_t dst_addr; /* TE-link remote a ddress */
 u_int32_t cc; /* Control channel */
};

Code 6-2: SCNGW header structure.

This overhead allows to simply identify the exchanged message type, and to retrieve basic information about
the TE-links’ addresses and the size of the SDU without reading the specific IP header packet fields.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

84

6.3 SCNGW server

The server part of the SCNGW is the core of this module. It is in charge of sending the SDU of the G2MPLS
protocol on the correct SCN interface (for the specified couple source/destination TE-links), and receiving
packets from the network dispatching the contained SDUs to the appropriate protocol.

To do that, SCNGW server maintains:

• an up-to-date association between TE-links/Control Channels/SCN interfaces through a
communication with LRM module

• a list of all registered G2MPLS protocols

When a registered G2MPLS protocol has to send its SDU:

• SCNGW client send to SCNGW server the SDU (with the IP packet header added if requested by the
G2MPLS protocol) adding the SCNGW header

• SCNGW server receives the message, read the SCNGW header and bind the SDU to the correct
registered G2MPLS protocol. Put the message in an internal queue of messages (associated with the
specific protocol) to send on the network.

• SCNGW server extracts first message from the queue, retrieves the appropriate Control Channel and
SCN interfaces for specified TE-links, add the last IP packet header and finally send the packet on the
correct SCN interface

When SCNGW server receives a packet from network:

• SCNGW server retrieves the SCN interface of the incoming packet
• SCNGW server fetches the appropriate registered protocol (“owner” of the incoming packet) basing on

the associations TE-links/Control Channels/SCN interfaces
• SCNGW server extracts first message from the queue, and send it to the G2MPLS protocol (through

SCNGW client), adding the SCNGW header

6.3.1 SCNGW server data structures

The SCNGW server data structures are specified in <sw_root>/scngwd/scngws.h.

#include "stream.h"
#include "linklist.h"
#include "scngws_packet.h"

/* SCNGWs master for system wide configuration and variables. */
struct scn_master {

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

85

 /* SCNGW thread master. */
 struct thread_master *master;
 struct zlist *client_list;

 /* Thread for END_SYNC timeout in LRM communicatio n */
 struct thread *timer_thread;

 /* Status of the connection with LRM */
 int lrm_conn_status;

 /* Timeout for synchronization phase with LRM (sec) */
 long int timeout_lrmsync;

 /* SCNGWs start time. */
 time_t start_time;
};

/* Structure for the SCNGWs client. */
struct scn_client {

 /* Client protocol */
 int proto;
 /* Client interface type */
 int interface_type;
 /* Encapsulation */
 int encap;
 /* ACK / NO ACK */
 int want_ack;
 /* Number of packets sent */
 int pckts_sent;
 /* Number of packets received */
 int pckts_rcvd;

 /* Socket */
 int fd_cl;
 int fd_net;

 /* Input buffers*/
 struct stream *ibuf_cl;
 /* Output queues. */
 struct scngws_fifo *obufq_cl;
 struct scngws_fifo *obufq_net;

 /* threads. */
 struct thread *t_read_cl;
 struct thread *t_write_cl;
 struct thread *t_read_net;
 struct thread *t_write_net;

};
/* Structure containing one SCN-if */
struct scnif {

 /* Status of SCN-if */
 int status:
 /*local SCN-if address*/
 struct in_addr loc_addr;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

86

};

/* Structure containing one TE-link/CC association */
struct tel_cc_assoc {

 /* Status of the TE-link */
 int status;
 /* INNI / ENNI / UNI */
 u_int16_t interface_type;
 /* key used to update association */
 u_int32_t key;
 /* local TE-link address*/
 struct in_addr tel_loc;
 /* remote TE-link address*/
 struct in_addr tel_rem;
 /* control channels (id) associated*/
 struct zlist *cclist;
};

/* Structure containing one CC/SCN-if association * /
struct cc_scnif_assoc {
 /* Status of the CC */
 int status;
 /* control channel id*/
 u_int32_t cc_id;
 /*local SCN-interface address*/
 struct in_addr scnif_loc;
 /*remote SCN-interface address*/
 struct in_addr scnif_rem;
};

/* SCN-if structure */
struct scn_if_addrs {
 /*local SCN-interface address*/
 struct in_addr loc_addr;
 /*remote SCN-interface address*/
 struct in_addr rem_addr;
 int mtu;
};

Code 6-3: SCNGWS data structures.

The scn_client structure identifies a registered G2MPLS protocol. The registration is done by SCNGW client
when the protocol is in the initialization phase of the communication with the client part. This structure contains
information about the parameters specified by the protocol (adjacency type, encapsulation, etc.), the file
descriptor of the sockets opened toward SCNGW client and the network, buffers and queues for internal
packets storage.

In the scn_master structure is stored the list of all registered protocols, used to retrieve the appropriate protocol
when a packet is receveid on a certain SCN interface.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

87

The tel_cc_assoc, cc_scnif_assoc and scnif_addrs structures identify respectively a singular TE-link/Control
Channelsl association, Control Channel/SCN interfaces association and a couple of local/remote SCN interface
addresses. These structures are created and updated by the communication with the LRM module. A list of all
these associations is maintained in SCNGW server ass global variable.

6.3.2 SCNGW server external API

The API for the communication with the LRM module is specified in <sw_root>/idl/scngw.idl.

#include "types.idl"
#include "g2mplsTypes.idl"

interface SCNGW {
 exception SyncErr { };
 exception InternalProblems { };
 exception CCNotFound { };

 void begin_sync(in long scnif_count,
 in long cc_count,
 in long telink_count)
 raises(SyncErr);

 void end_sync()
 raises(SyncErr);

 void sync_fatal_error();

 void scnif_add(in g2mplsTypes::addr addr)
 raises(SyncErr);

 void scnif_delete(in g2mplsTypes::addr addr)
 raises(SyncErr);

 void tel_cc_assoc_add(in TELCC_Add_AssocSeq assocs)
 raises(InternalProblems, SyncErr);

 void tel_cc_assoc_update(in long key_id,
 in UpdateSeq updates)
 raises(SyncErr);

 void tel_cc_assoc_delete(in TELCC_Delete_AssocSeq assocs)
 raises(SyncErr);

 void cc_scnif_assoc_add(in CC_Add_AssocSeq assocs)
 raises(InternalProblems, SyncErr);

 void cc_scnif_assoc_update(in long cc_id,
 in g2mplsTypes::addr local_addr,
 in g2mplsTypes::addr remote_addr)
 raises (CCNotFound, SyncErr);

 void cc_scnif_assoc_delete(in CC_Delete_AssocSeq assocs)
 raises(SyncErr);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

88

};

Code 6-4: SCNGW server external API IDL.

When the SCNGW server process starts, the scngw_is_up() LRM module external API function is called, and a
synchronization phase starts. During this phase LRM send all the TE-links/Control Channels/SCN interfaces
associations to SCNGW server (through the external API specified above). If something goes wrong during the
synchronization of the associations, SCNGW server deletes all the associations created and call again
scngw_is_up(), to restart the synchronization. When the synchronization ends correctly, SCNGW server is
ready to use the associations to send the protocols’ packets through the appropriate Control Channels.

The LRM module can add, delete or update some association simply calling, out of synchronization, an external
API function.

The external API functions are:

• begin_sync(): start of the synchronization of all associations (to be called specifying the number of
associations to send)

• end_sync(): end of the synchrionization of all associations
• sync_fatal_error(): fatal error in synchronization (to be called after 5 in a row unsuccessfully

synchronization)
• scnif_add(): add a couple of local/remote SCN interfaces (to be called either in synchronization phase

or to add a new association)
• scnif_delete(): delete an existent couple of local/remote SCN interfaces (to be called out of

synchronization phase)
• tel_cc_assoc_add(): add a TE-link/Control Channel association (to be called either in synchronization

phase or to add a new association)
• tel_cc_assoc_update(): update an existent TE-link/Control Channel association (to be called out of

synchronization phase)
• tel_cc_assoc_delete(): delete an existent TE-link/Control Channel association (to be called out of

synchronization phase)
• cc_scnif_assoc_add(): add a Control Channel/SCN interface association (to be called either in

synchronization phase or to add a new association)
• cc_scnif_assoc_update(): update an existent Control Channel/SCN interface association (to be called

out of synchronization phase)
• cc_scnif_assoc_delete(): delete an existent Control Channel/SCN interface association (to be called

out of synchronization phase)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

89

7 G2.RSVP-TE

The G2.RSVP-TE module is the RSVP-TE signalling protocol extended with GMPLS TE and Grid-GMPLS
extensions. This module implements the I-NNI signalling between G2MPLS nodes and it is responsible for
LSPs signalling.

It is compliant with the following IETF RFCs (see D2.1 and D2.2 for details):

• RFC 2205
• RFC 2961
• RFC 3209 / 3210
• RFC 3471
• RFC 3473
• RFC 3474
• RFC 3476
• RFC 3477

The g2rsvpted daemon is not originally part of Quagga routing suite and has been developed from scratch. The
G2.RSVP-TE protocol is integrated into the Quagga framework according to the Quagga daemon main
structure (e.g. one master thread to manage the single thread daemon as pseudo multi-thread, the trace log
system, the vty interface, etc etc).

Before starting the g2rsvpted daemon must:

• Initialize its own CORBA servants, i.e. NorthBound and TnrController interfaces (see Sec. 7.3).
• Initialize its CORBA clients toward tnrcd, nccd, rcd, g2pcera and lrmd.
• Set up the SCNGW client.

Therefore G².RSVP-TE protocol must start after the TNRC, NCC, RC, G2PCERA, LRM and SCNGW modules.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

90

7.1 G².RSVP-TE data model

The G2.RSVP-TE data model is sketched in Figure 7-1.

The main class is the G².RSVPTE, the instance of the protocol, triggered by the VTY command or equivalent
internal API. Once the protocol instance is created, is attached at the global G².RSVP-TE Thread Master, a
singleton class in charge of handling both the G².RSVP-TE protocol instance and the Quagga structures.

This class links a list of interfaces and the various G².RSVP-TE sessions.

Figure 7-1: The base G².RSVP-TE data model.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

91

7.1.1 G².RSVPTE instance

The G2RSVPTE instance is the root of the whole data model. At boot, each node in the network starts a
G².RSVP-TE protocol instance and loads all its interfaces from LRM module; each interface is instantiated and
attached at the G2.RSVP-TE instance.

The G².RSVP-TE instance links also a session map to manage a set of LSPs with share a common group of
parameters (see Sec. 7.1.2). In fact, when a createLSP() is called, the G².RSVP-TE instance checks if a
session instance with that lsp_ident_t already exists, otherwise, a new session is created and attached at the
protocol instance.

class G2RSVPTE {
 public:
 G2RSVPTE(void);
 G2RSVPTE(uint32_t defaultRefreshInterval,
 uint32_t defaultRapidRetransInterval,
 uint32_t defaultRapidRetryLimit,
 uint32_t defaultExpoBackoffDelta);
 ~G2RSVPTE(void);

 bool attach(InterfaceKey_t l, Interface * e);
 //bool detach(InterfaceKey_t l);
 bool attach(SessionKey_t k, Session * e);
 bool detach(SessionKey_t k, Session * e);

 // Defines iterator_interfaces
 DEFINE_MAP_ITERATOR(interfaces, Interface);
 // Defines iterator_sessions
 DEFINE_MAP_ITERATOR(sessions, Session);

 uint32_t nodeId(void);
 void nodeId(uint32_t id);

 //
 // Session utils
 //
 Session * findSession(SessionKey_t key);

 //
 // Interface utils
 //
 Interface * findInterface(InterfaceKey_t key);
 Interface * findInterface(g2mpls_addr_t addr,
 bool checkRemote);
 // returns the number of loaded interfaces
 int loadInterfaces(void);

 //
 // LSP utils
 //
 LSP * findLSP(lsp_ident_t info);
 LSP * createLSP(const lsp_ident_t & ident,
 Interface * intf,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

92

 Message * msg);

 LSP * createLSP(const lsp_ident_t & ident,
 const std::string & sessionName,
 const g2mpls_addr_t & iTna,
 const g2mpls_addr_t & eTna,
 const sw_cap_t & swcap,
 const enc_type_t & enctype,
 const gmpls_bwenc_t & bw,
 const gpid_t & gpid,
 const uint32_t & setupPrio,
 const uint32_t & holdingPrio,
 const lsp_type_t & type,
 const lsp_res_action_t & action,
 const lsp_rro_mode_t & rroMode,
 const uint32_t & refresh,
 const bool & activateAck,
 const uint32_t & rapidRetransInterv al,
 const uint32_t & rapidRetryLimit,
 const uint32_t & incrementValu eDelta);

 bool destroyLSP(const lsp_ident_t & id, bool int ernal = true);

 private:
 std::map<InterfaceKey_t, Interface *> interfaces_ ;
 std::map<SessionKey_t, Session *> sessions_;

 // ...

 uint32_t nodeId_; // route r id
 uint32_t defaultRefreshInterval_; // refre sh interval
 uint32_t defaultRapidRetransInterval_; // retra ns. interval
 uint32_t defaultRapidRetryLimit_; // retry limit
 uint32_t defaultExpoBackoffDelta_; // incr value delta
};

Code 7-1: G2RSVPTE class

7.1.2 Session instance

The Session class groups LSPs that share a common:

• Destination Node Id (nodeId_)
• Tunnel Id (tunnelId_);
• Extended tunnel Id (extTunId_).

The relationship with the protocol instance is implemented through the base Ancestor template class.

class Session : public Ancestor<true, G2RSVPTE> {
 friend std::ostringstream & operator<< (std::ostr ingstream & os,
 const Session & s);
 public:

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

93

 Session(G2RSVPTE * parent);
 Session(G2RSVPTE * parent,
 uint32_t nId,
 uint32_t tunId,
 uint32_t extTunId);
 ~Session(void);

 bool attach(LSPKey_t k, LSP * l);
 bool detach(LSPKey_t k, LSP * l);

 LSP * findLSP(LSPKey_t key);

 // return the number of LSPs attached at this ses sion
 uint32_t size(void);
 bool empty(void);

 // Defines iterator_lsps and methods: begin_lsps/ end_lsps
 DEFINE_MAP_ITERATOR(lsps, LSP);

 uint32_t nodeId(void) const;
 void nodeId(uint32_t id);
 uint32_t tunnelId(void) const;
 void tunnelId(uint32_t id);
 uint32_t extTunId(void) const;
 void extTunId(uint32_t id);

 private:
 uint32_t nodeId_; // Destination Node Id
 uint32_t tunnelId_; // Tunnel Id
 uint32_t extTunId_; // Extended Tunnel Id

 std::map<LSPKey_t, LSP *> lsps_;
};

Code 7-2: Session class

7.1.3 LSP instance

The LSP instance is differentiated from the others by:

• Source Node Id (nid_)
• LSP Id (id_).

The LSP class is the key element of the G².RSVP-TE protocol data model. It has:

• The two LSP identifiers (source node id and LSP id)
• Ingress/Egress termination points info
• A set of flags
• The retransmission and refresh timer values
• The Upstream and Downstream sending message interfaces

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

94

• The Path State Block (PSB) and Resv State Block (RSB)
• The LSP FSM instance.

The relationship with the session instance is implemented through the base Ancestor template class.

class LSP : public Ancestor<true, Session> {
 friend std::ostringstream & operator<< (std::ostr ingstream & os,
 const LSP & l);
 public:
 LSP(Session * parent);
 LSP(Session * parent, uint32_t nId, uint32_t lspI d);
 ~LSP(void);

 bool attach(LSPCtrl * ctrl);
 bool attach(UpstreamAckNack * u);
 bool attach(DownstreamAckNack * d);
 bool attach(PSB * psb);
 bool attach(RSB * rsb);

 bool isEnabled(void) const;
 uint32_t nid(void) const;
 uint32_t id(void) const;
 g2mpls_addr_t iTNA(void) const;
 g2mpls_addr_t eTNA(void) const;
 PSB * psb(void);
 RSB * rsb(void);
 UpstreamAckNack * usAckNack(void);
 DownstreamAckNack * dsAckNack(void);

 void iTNA(g2mpls_addr_t addr);
 void eTNA(g2mpls_addr_t addr);

 std::string sessionName(void) const;

 // Time functions
 uint32_t refreshInterval(void);
 uint32_t rapidRetryLimit(void);
 uint32_t expoBackoffDelta(void);
 uint32_t rapidRetransInterval(void);

 void refreshInterval(uint32_t time);
 void rapidRetransInterval(uint32_t time);
 void rapidRetryLimit(uint32_t time);
 void expoBackoffDelta(uint32_t time);

 // LSP methods
 bool eroProcess(bool recursive = true);
 bool loopDetect(void);

 // For APIs
 bool signalUpLSP(void);
 bool signalDownLSP(void);
 bool enableLSP(void);
 bool disableLSP(void);
 bool attachEroSubObj(EroSubObject * eroSubObj,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

95

 bool insertTail = true);
 bool sendPath(bool enqueueEvent = false);
 bool sendResv(bool enqueueEvent = false);
 bool sendDown(bool enqueueEvent = false);
 bool sendTear(bool enqueueEvent = false);
 bool sendConfirm(bool enqueueEvent = false);
 bool xConnCompleted(void);

 private:
 UpstreamAckNack * us_AckNack_;
 DownstreamAckNack * ds_AckNack_;
 PSB * psb_;
 RSB * rsb_;
 uint32_t nid_; // source no de id
 uint32_t id_; // LSP id
 g2mpls_addr_t ingress_tna_;
 g2mpls_addr_t egress_tna_;

 // Flags
 LSP_FLAGS flags_;

 // time intervals
 uint32_t refreshInterval_; // ref resh interval
 uint32_t rapidRetransInterval_; // ret rans. interval
 uint32_t rapidRetryLimit_; // ret ry limit
 uint32_t expoBackoffDelta_; // inc r value delta

 // LSP FSM instance
 fsm::G2RSVPTE_LSP_FSM::virtFsm * fsmInst_;
};

Code 7-3: LSP class

The LSP flags are:

Flag short description

G2RSVPTE_FLAG_ENABLED This LSP is enabled.

G2RSVPTE_FLAG_RECROUTE The Record Route for this LSP is active (RRO object
enable).

G2RSVPTE_FLAG_SIG_ADMIN_DOWN This LSP is in teardown because of an administrative
command.

G2RSVPTE_FLAG_TEAR_DOWN_US This LSP is in the first signalling tier of teardown.

G2RSVPTE_FLAG_TEAR_DOWN_DS This LSP is in the second signalling tier of teardown.

Table 7-1: LSP flags.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

96

7.1.3.1 Upstream/Downstream objects

The Upstream and Downstream instances inherit from a common interface object that wraps the connection
with SCNGW module by means of the SCNSocket class. This class uses the library exposed by SCNGW client
to send packets towards others G2MPLS controllers.

7.1.3.2 Path/Resv State Block objects

The Path State Block (PSB) and Resv State Block (RSB) classes inherit directly from the StateBlock class
according to RFC 2205. The StateBlock class has the following data (in case of PSB, data structures are
previous/upstream, whereas in case of RSB, are next/downstream):

• The remote data link, used by next/previous HOP
• The upstream/downstream local data link, used to go to previous/next HOP
• The interface to next/previous HOP
• The next/previous HOP node Id
• The next/previous logical interface handler
• The upstream/downstream label used to transmit to previous/next HOP
• The upstream/downstream label used to receive from previous/next HOP

class StateBlock {
 public:
 uint32_t lih(void);
 uint32_t nodeId(void);

 Interface * interface(void);

 g2mpls_addr_t remoteDL(void);
 g2mpls_addr_t localDL(void);

 uint32_t txLabel(void);
 uint32_t rxLabel(void);

 uint32_t refreshTimeout(void);
 uint32_t refreshInterval(void);

 private:
 g2mpls_addr_t remoteDL_;
 g2mpls_addr_t localDL_;
 Interface * intf_;

 uint32_t nodeId_;
 uint32_t lih_;

 uint32_t tx_label_;
 uint32_t rx_label_;

 uint32_t refreshTimeout_; //used Path/Resv re fresh timeout
 uint32_t refreshInterval_; //used Path/Resv re fresh interval

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

97

};
Code 7-4: g2rsvpte_dm.h StateBlock class
class PSB : public StateBlock {
 public:
 PSB(void);
 ~PSB(void);

 PathMessage * pathOut(void);
 PathMessage * pathIn(void);
 PathErrMessage * pathErr(void);
 ResvConfMessage * resvConf(void);
 PathMessage * pathDown(void);
 PathTearMessage * pathTear(void);

 private:
 PathMessage * pathIn_; // received Path msg
 PathMessage * pathOut_; // transmitted Path msg

 PathErrMessage * pathErr_; // TMP rx/tx Path Er r msg
 ResvConfMessage * resvConf_; // TMP rx/tx ResvCon f msg
 PathMessage * pathDown_; // TMP rx/tx Path (D =1 R=1) msg
 PathTearMessage * pathTear_; // TMP rx/tx PathTea r msg
};

class RSB : public StateBlock {
 public:
 RSB(void);
 ~RSB(void);

 ResvMessage * resvOut(void);
 ResvMessage * resvIn(void);
 ResvMessage * resvDown(void);
 ResvTearMessage * resvTear(void);
 ResvErrMessage * resvErr(void);

 private:
 ResvMessage * resvIn_; // received Resv msg
 ResvMessage * resvOut_; // transmitted Resv msg

 ResvMessage * resvDown_; // TMP rx/tx Resv (D =1 R=1) msg
 ResvTearMessage * resvTear_; // TMP rx/tx ResvTea r msg
 ResvErrMessage * resvErr_; // TMP rx/tx ResvTea r msg
};

Code 7-5: PSB/RSB classes

7.1.4 Interface instance

The Interface class is the data structure that wraps the TE-Link managed by LRM with additional information
needed by the G2.RSVP-TE protocol.

The relationship with the protocol instance is implemented through the base Ancestor template class.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

98

class Interface : public Ancestor<true, G2RSVPTE> {
 public:
 Interface(G2RSVPTE * parent);
 Interface(G2RSVPTE * parent,
 g2mpls_addr_t localId,
 g2mpls_addr_t remoteId,
 uint32_t nId,
 opstate_t op_state,
 admstate_t adm_state);
 ~Interface(void);

 g2mpls_addr_t remoteId(void) const;
 void remoteId(g2mpls_addr_t add);

 g2mpls_addr_t localId(void) const;
 void localId(g2mpls_addr_t add);

 opstate_t opState(void) const;
 void opState(opstate_t state);

 admstate_t admState(void) const;
 void admState(admstate_t state);

 uint32_t neighbourId(void) const;
 void neighbourId(uint32_t nId);
 void dump(void) const;

 friend std::ostringstream & operator << (std::ost ringstream & os,
 const Interface & intf);
 private:
 g2mpls_addr_t localId_;
 g2mpls_addr_t remoteId_;
 uint32_t neighbourId_;
 opstate_t op_state_;
 admstate_t adm_state_;
};

Code 7-6: Interface classes

7.2 G².RSVP-TE internal API

The internal API is used by the VTY interface and the CORBA G2.RSVP-TE servants to access the G2.RSVP-
TE data model and functionalities.

The G2.RSVP-TE internal API is specified in <sw_root>/g2rsvpted/g2rsvpte_apis.h and shown below.

namespace G2RSVPTE_API {
 RSVP::G2RSVPTE * g2rsvpteGet(std::string & resp);
 grapiErrorCode_t g2rsvpteStart(std::string & resp);
 grapiErrorCode_t g2rsvpteStop(std::string & resp) ;
};

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

99

namespace G2RSVPTE_GRAPI {
 grapiErrorCode_t lspCreate(const lsp_ident_t & key,
 const std::string & sessionName,
 const g2mpls_addr_t & ingressTna,
 const g2mpls_addr_t & egressTna,
 const sw_cap_t & swcap,
 const enc_type_t & enctype,
 const gmpls_bwenc_t & bw,
 const gpid_t & gpid,
 const uint32_t & setupPrio,
 const uint32_t & holdingPrio,
 const lsp_type_t & type,
 const lsp_res_action_t & action,
 const lsp_rro_mode_t & rroMode,
 const uint32_t & refresh,
 const bool & activateAck,
 const uint32_t & rapidRetrans mInter,
 const uint32_t & rapidRetryLi mit,
 const uint32_t & incrementVal ueDelta,
 std::string & resp);

 grapiErrorCode_t lspDestroy(const lsp_ident_t & key,
 std::string & resp);

 grapiErrorCode_t lspEnable(const lsp_ident_t & key,
 std::string & resp);

 grapiErrorCode_t lspDisable(const lsp_ident_t & key,
 std::string & resp);

 grapiErrorCode_t lspEroAttach(const lsp_ident_t & key,
 const std::list<lsp_ero_sobj_t> e ro,
 std::string & r esp);

 grapiErrorCode_t lspEroDetach(const lsp_ident_t & key,
 const std::list<lsp_ero_sobj_t> e ro,
 std::string & r esp);

 grapiErrorCode_t lspSendPath(const lsp_ident_t & key,
 std::string & resp);

 grapiErrorCode_t lspSendResv(const lsp_ident_t & key,
 std::string & resp);

 grapiErrorCode_t lspSendConfirm(const lsp_ident_t & key,
 std::string & resp);

 grapiErrorCode_t lspSendDown(const lsp_ident_t & key,
 std::string & resp);

 grapiErrorCode_t lspSendTear(const lsp_ident_t & key,
 std::string & resp);

 grapiErrorCode_t lspForceUp(const lsp_ident_t & key,
 std::string & resp);

 grapiErrorCode_t lspForceDown(const lsp_ident_t & key,
 std::string & resp);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

100

 grapiErrorCode_t lspXConnCompleted(const lsp_iden t_t & key,
 std::string & resp);

 grapiErrorCode_t getLsps(std::list<lsp_ident_t> & lsps,
 std::string & resp);

 grapiErrorCode_t lspGetDetails(const lsp_ident_t & key,
 lsp_param_t & params,
 std::string & resp);
};

Code 7-7: Internal API

The internal G².RSVPTE_API functions are:

• g2rsvpteGet(): allows to get the G².RSVP-TE protocol instance reference.
• g2rsvpteStart(): allows to create and start a G².RSVP-TE protocol instance.
• g2rsvpteStop(): allows to stop and delete the G².RSVP-TE protocol instance.

The internal G2RSVPTE_GRAPI functions are:

• lspCreate(): allows to create an LSP instance with the specified LSP identity and parameter attribute.
• lspDestroy(): allows to destroy the LSP identified by lsp_ident if this LSP is disabled.
• lspEnable(): allows to enable the specified LSP.
• lspDisable():allows to disable the specified LSP.
• lspEroAttach(): allows to attach the list of ERO sub objects at the specified LSP.
• lspEroDetach():allows to detach the list of ERO sub objects from the specified LSP.
• lspSendPath(): prepares the G².RSVP-TE Path Message to be sent and sends a

G2RSVPTE_LSP_FSM_SendPath event to the FSM of the specified LSP.
• lspSendResv(): prepares the G².RSVP-TE Resv Message to be sent and sends a

G2RSVPTE_LSP_FSM_SendResv event to the FSM of the specified LSP.
• lspSendConfirm(): prepares the G².RSVP-TE Resv Confirm Message to be sent and sends a

G2RSVPTE_LSP_FSM_SendConfirm event to the FSM of the specified LSP.
• lspSendDown(): allows to start the tear down G².RSVP-TE signalling procedure on the specified LSP if

the G2MPLS Controller is the head node of this LSP; otherwise, if the node is the tail of this LSP it
checks if the RSB is consistent, prepares the G².RSVP-TE Resv Down Message (Resv Message with
the Deletion flag set) to be sent and sends a G2RSVPTE_LSP_FSM_SendResvDown event to the FSM
of this LSP.

• lspSendTear(): prepares the G².RSVP-TE PathTear Message to be sent and sends a
G2RSVPTE_LSP_FSM_SendPathTear event to the FSM of the specified LSP if the G2MPLS Controller
is the head node of this LSP; otherwise, if the node is the tail of this LSP it prepares the G².RSVP-TE
Resv Tear Message to be sent and sends a G2RSVPTE_LSP_FSM_SendResvTear event to the FSM
of this LSP.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

101

• lspForceUp(): checks if the LSP is enabled, if the PSB is consistent, prepares the G².RSVP-TE Path
Message to be sent and sends a G2RSVPTE_LSP_FSM_SendPath event to the FSM of the specified
LSP, triggering the G².RSVP-TE signalling procedure for that LSP.

• lspForceDown(): if the G2MPLS Controller is the head node of the specified LSP, checks if the PSB is
consistent, prepares the G².RSVP-TE Path Down Message to be sent and sends a
G2RSVPTE_LSP_FSM_SendPathDown event to the FSM of this LSP; on the contrary, if the G2MPLS
Controller is the tail node of the specified LSP, checks if the RSB is consistent, prepares the G².RSVP-
TE Resv Down Message to be sent and sends a G2RSVPTE_LSP_FSM_SendResvDown event to the
FSM of this LSP.

• lspXConnCompleted(): allows to send a G2RSVPTE_LSP_FSM_XConnCompleted event to the FSM of
the specified LSP.

• getLsps(): returns the list of LSPs.
• lspGetDetails(): allows to retrieve all the parameters for the specified LSP.

7.3 G².RSVP-TE external API

The G2.RSVP-TE module exposes its interface by means of CORBA servants. Its API for the communication
with external modules is specified in the <sw_root>/idl/g2rsvpte.idl and shown below.

#include "types.idl"
#include "g2mplsTypes.idl"

module g2rsvpte {

 interface NorthBound {
 boolean
 lspCreate(in g2mplsTypes::lspIdent lspId,
 in g2mplsTypes::callIdent callId,
 in g2mplsTypes::lspParams lspInfo,
 in g2mplsTypes::recoveryParams recoveryInfo ,
 in boolean setup)
 raises(Types::InternalProblems);

 boolean
 lspAddEroPart(in g2mplsTypes::lspIdent lspId,
 in g2mplsTypes::eroSeq eroItem)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 lspDelEroPart(in g2mplsTypes::lspIdent lspId,
 in g2mplsTypes::eroSeq eroItem)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 lspEnable(in g2mplsTypes::lspIdent lspId)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 lspDisable(in g2mplsTypes::lspIdent lspId)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

102

 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 lspDestroy(in g2mplsTypes::lspIdent lspId)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 lspSetUp(in g2mplsTypes::lspIdent lspId)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 lspSetDown(in g2mplsTypes::lspIdent lspId)
 raises(Types::InternalProblems, Types::CannotFet ch);

 typedef sequence<g2mplsTypes::lspIdent> lspIdent Seq;
 lspIdentSeq getLsps()
 raises(Types::InternalProblems);

 boolean
 lspGetDetails(in g2mplsTypes::lspIdent lspId,
 out g2mplsTypes::callIdent callId,
 out g2mplsTypes::lspParams lspInfo,
 out g2mplsTypes::recoveryParams recovery Info,
 out g2mplsTypes::statesBundle states)
 raises(Types::InternalProblems, Types::CannotFet ch);
 };

 interface TnrControl {
 void
 actionResponse(in Types::uint32 cookie,
 in g2mplsTypes::tnrcResult result,
 in long responseCtxt)
 raises(Types::InternalProblems);

 void
 actionNotify(in Types::uint32 cookie,
 in g2mplsTypes::tnrcEvent event,
 in long notifyCtxt)
 raises(Types::InternalProblems);
 };
};

Code 7-8: G².RSVP-TE external API IDL.

The g2rsvpted exposes the G².RSVP-TE internal API to g2pcerad, nccd and rcd daemons through the
NorthBound interface, and exposes callback-like interfaces to tnrcd through the TnrControl interface.

The NorthBound methods are mapped 1:1 with the G2.RSVP-TE internal API as shown in Figure 7-1.

External API Internal API

NorthBound::lspCreate() G2RSVPTE_GRAPI::lspCreate()

NorthBound::lspAddEroPart() G2RSVPTE_GRAPI::lspEroAttach()

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

103

NorthBound::lspDelEroPart() G2RSVPTE_GRAPI::lspEroDetach()

NorthBound::lspEnable() G2RSVPTE_GRAPI::lspEnable()

NorthBound::lspDisable() G2RSVPTE_GRAPI::lspDisable()

NorthBound::lspDestroy() G2RSVPTE_GRAPI::lspDestroy()

NorthBound::lspSetUp() G2RSVPTE_GRAPI::lspForceUp()

NorthBound::lspSetDown() G2RSVPTE_GRAPI::lspForceDown()

NorthBound::getLsps() G2RSVPTE_GRAPI::getLsps()

NorthBound::lspGetDetails() G2RSVPTE_GRAPI::lspGetDetails()

Table 7-1: Mapping between internal and external G².RSVP-TE API

The TnrControl interface methods are like asynchronous callbacks with the following behaviour:

• actionResponse(): allows the TNRC to deliver the result of the operation (identified by the cookie)
previously requested by the G2.RSVP-TE.

• actionNotify(): allows the TNRC to deliver an asynchronous notification about the specified operation to
the G2.RSVP-TE.

7.4 G².RSVP-TE LSP FSM

The main element of the Phosphorus G².RSVP-TE is the LSP, which is controlled across the signalling phases
of the protocol with a specific finite state machine. The LSP FSM tracks the creation and installation phase of
an LSP on a G².RSVP-TE instance. The LSP is the result of a 2(3)-signalling tiers, i.e. Path-Resv (Path-Resv-
ResvConf). The FSM states and root events are explained in Table 7-2 and Table 7-3, while the overall FSM
picture with the transition events between states are shown in.Figure 7-2.

G2RSVP-TE LSP FSM definition

{ FSM }

name = G2RSVPTE_LSP_FSM
definition-file = g2rsvpte_lsp.def
If graphviz-file is defined the graphviz file wil l be create
graphviz-file = g2rsvpte_lsp.dot
include-name = g2rsvpte_lsp.h

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

104

#start-state = Down [optional]

Events

rootEvent = derivedEvent1, derivedEvent2, ...

{ Events } ################### REMOVED Net po stfix from rootEvents

RecvPath = evRecvPathOk, evRecvPathKo
RecvPathDown = evRecvPathDownOk, evRecvPathDo wnKo
RecvResvDown = evRecvResvDownOk, evRecvResvDo wnKo
RecvResv = evRecvResvOk, evRecvResvKo , evRecvResvVeryKo
RecvConfirm = evRecvConfirmOk, evRecvConfir mKo
RecvPathTear = evRecvPathTearOk, evRecvPathTe arKo
RecvResvTear = evRecvResvTearOk, evRecvResvTe arKo
RecvPathErr = evRecvPathErrOk, evRecvPathAl arm, evRecvPathErrCrankback,
evRecvActivateErr, evRecvPathErrKo
RecvResvErr = evRecvResvErrOk, evRecvResvEr rKo
RecvNotify = evRecvNotifyOk, evRecvNotify Down, evRecvNotifyKo
RecvActivate = evRecvActivateOk, evRecvActiva teKo
RecvPathTimer = evRecvPathTimer
RecvResvTimer = evRecvResvTimer
RecvPathTimeout = evRecvPathTimeout
RecvResvTimeout = evRecvResvTimeout
SendPath = evSendPath
SendResv = evSendResv
SendConfirm = evSendConfirm
SendPathDown = evSendPathDown
SendResvDown = evSendResvDown
SendPathTear = evSendPathTear
SendResvTear = evSendResvTear
#SendActivate = evSendActivate
XConnCompleted = evXConnCompleted
XConnErr = evXConnErr
XConnDown = evXConnDown
XConnPreempt = evXConnPreempt

States

state = state1 [The first state is the start on e if start-state is not set]
eventX -> dstState

state = state2
eventY -> dstState

{ States }

State = Down
 evRecvPathOk -> PathReceived
 evRecvPathKo -> Down
 evSendPath -> PathReceived

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

105

State = PathReceived ########### WAS PathProce ssed
 evRecvPathOk -> PathReceived
 evRecvPathKo -> PathReceived
 evRecvResvOk -> WaitEqptConf
 evRecvResvKo -> PathReceived
evRecvResvVeryKo -> Down
 evRecvPathTearOk -> Down
 evRecvPathTearKo -> PathReceived
 evRecvPathErrOk -> Down
 evRecvPathErrKo -> PathReceived
evRecvPathAlarm -> Down
 evRecvPathErrCrankback -> PathReceived
 evSendResv -> WaitEqptConf
 evSendPathTear -> Down
 evSendResvTear -> Down
 evRecvPathTimer -> PathReceived
 evRecvPathTimeout -> Down
 evXConnErr -> Down
 evXConnCompleted -> WaitResv

State = WaitEqptConf ########## WAS Reso urceWait
 evRecvPathOk -> WaitEqptConf
 evRecvPathKo -> WaitEqptConf
 evRecvResvOk -> WaitEqptConf
 evRecvResvKo -> WaitEqptConf
 evRecvResvVeryKo -> Down
 evRecvPathTearOk -> Down
 evRecvPathTearKo -> WaitEqptConf
 evRecvResvTearOk -> Down
 evRecvResvTearKo -> WaitEqptConf
 evRecvPathErrOk -> Down
 evRecvPathErrKo -> WaitEqptConf
evRecvPathAlarm -> Down
evRecvPathErrCrankback -> WaitEqptConf
 evRecvResvErrOk -> WaitEqptConf
 evRecvResvErrKo -> WaitEqptConf
 evSendPathTear -> Down
 evSendResvTear -> Down
 evRecvPathTimer -> WaitEqptConf
 evRecvPathTimeout -> Down
 evRecvResvTimer -> WaitEqptConf
 evRecvResvTimeout -> Down
 evXConnErr -> PathReceived
 evXConnCompleted -> WaitResvConf

State = WaitResv
 evRecvPathOk -> WaitResv
 evRecvPathKo -> WaitResv
 evRecvResvOk -> WaitResvConf
 evRecvResvKo -> WaitResv
 evRecvResvVeryKo -> Down
 evRecvPathTearOk -> Down
 evRecvPathTearKo -> WaitResv
 evRecvResvTearOk -> Down
 evRecvResvTearKo -> WaitResv

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

106

 evRecvPathErrOk -> Down
 evRecvPathErrKo -> WaitResv
 evRecvPathAlarm -> Down
 evRecvPathErrCrankback -> PathReceived
evRecvResvErrOk -> WaitResv
evRecvResvErrKo -> WaitResv
 evSendResv -> WaitResvConf
 evSendPathTear -> Down
 evSendResvTear -> Down
 evRecvPathTimer -> WaitResv
 evRecvPathTimeout -> Down
 evXConnPreempt -> WaitResv

State = WaitResvConf ################## WAS WaitConf
 evRecvPathOk -> WaitResvConf
 evRecvPathKo -> WaitResvConf
 evRecvPathDownOk -> TearDown
 evRecvPathDownKo -> WaitResvConf
 evRecvResvOk -> WaitResvConf
 evRecvResvKo -> WaitResvConf
 evRecvConfirmOk -> Installed
 evRecvConfirmKo -> WaitResvConf
 evRecvPathTearOk -> Down
 evRecvPathTearKo -> WaitResvConf
 evRecvResvTearOk -> Down
 evRecvResvTearKo -> WaitResvConf
 evRecvPathErrOk -> Down
 evRecvPathErrKo -> WaitResvConf
 evRecvPathAlarm -> Down
 evRecvResvErrOk -> WaitResvConf
 evRecvResvErrKo -> WaitResvConf
 evSendConfirm -> Installed
 evSendPathTear -> Down
 evSendResvTear -> Down
 evRecvPathTimer -> WaitResv
 evRecvResvTimer -> WaitResv
 evXConnPreempt -> WaitResvConf

State = Installed ########### WAS Acti ve
 evRecvPathOk -> Installed
 evRecvPathKo -> Installed
 evRecvPathDownOk -> TearDown
 evRecvPathDownKo -> Installed
 evRecvResvOk -> Installed
 evRecvResvKo -> Installed
 evRecvResvVeryKo -> Down
 evRecvResvDownOk -> TearDown
 evRecvResvDownKo -> Installed
 evRecvConfirmOk -> Installed
 evRecvConfirmKo -> Installed
 evRecvNotifyOk -> Installed
 evRecvNotifyDown -> Down
 evRecvNotifyKo -> Installed
 evRecvPathTearOk -> Down
 evRecvPathTearKo -> Installed
 evRecvResvTearOk -> Down

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

107

 evRecvResvTearKo -> Installed
 evRecvPathErrOk -> Down
 evRecvPathErrKo -> Installed
 evRecvPathAlarm -> Installed
 evRecvResvErrOk -> Installed
 evRecvResvErrKo -> Installed
 evRecvActivateOk -> Installed
 evRecvActivateKo -> Installed
 evRecvActivateErr -> Installed
 evSendPathDown -> TearDown
 evSendResvDown -> TearDown
evSendActivate -> Installed
 evRecvPathTimer -> Installed
 evRecvResvTimer -> Installed
 evXConnErr -> Installed
 evXConnCompleted -> Installed
 evXConnDown -> Installed
 evXConnPreempt -> Installed

State = TearDown ############ WAS Wa itTear
 evRecvPathDownOk -> TearDown
 evRecvPathDownKo -> TearDown
 evRecvResvDownOk -> TearDown
 evRecvResvDownKo -> TearDown
 evRecvPathTearOk -> Down
 evRecvPathTearKo -> TearDown
 evRecvResvTearOk -> Down
 evRecvResvTearKo -> TearDown
 evRecvPathErrOk -> Down
 evRecvPathErrKo -> TearDown
 evRecvPathAlarm -> TearDown
 evRecvResvErrOk -> TearDown
 evRecvResvErrKo -> TearDown
 evSendPathDown -> TearDown
 evSendResvDown -> TearDown
 evSendPathTear -> Down
 evSendResvTear -> Down
 evRecvPathTimeout -> Down
 evRecvResvTimeout -> Down

Code 7-9: G².RSVP-TE LSP FSM.

State short description

Down The LSP instance is created but no action or message has been received yet, or the LSP
has been torn down and it is going to be completely deleted in the protocol instance.

PathReceived The first or refresh Path has been received (downstream node) or sent (upstream node)
during the early phases of the signalling.

WaitEqptConf The Resv has been received (upstream node) or sent (downstream node) but the
equipment is still working on the implementation of the requested configuration.

WaitResv The equipment implemented the requested configuration and the protocol is waiting a
Resv for this LSP.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

108

WaitResvConf The protocol is waiting a ResvConf for this LSP (3-tiers signalling).

Installed The 2(3)-signalling tiers have been completed successfully and the reservation session is
installed. Traffic is ok.

TearDown A Tear Down message has been received/sent (Path or Resv with ADMIN_STATUS)
and the LSP is waiting for the completion of the deletion signalling flow.

Table 7-2: G².RSVP-TE LSP FSM: states

Root event short description

RecvPath A G².RSVP-TE Path Message has been received.

RecvPathDown A G².RSVP-TE Path Message with ADMIN_STATUS has been received.

RecvResvDown A G².RSVP-TE Resv Message with ADMIN_STATUS has been received.

RecvResv A G².RSVP-TE Resv Message has been received.

RecvConfirm A G².RSVP-TE Resv Confirm Message has been received.

RecvPathTear A G².RSVP-TE PathTear Message has been received.

RecvResvTear A G².RSVP-TE Resv Tear Message has been received.

RecvPathErr A G².RSVP-TE PathErr Message has been received.

RecvResvErr A G².RSVP-TE ResvErr Message has been received.

RecvNotify A G².RSVP-TE Notify Message has been received.

RecvPathTimeout A G².RSVP-TE Path Timeout has occurred.

RecvResvTimeout A G².RSVP-TE Resv Timeout has occurred.

SendPath A G².RSVP-TE Path Message must be sent.

SendResv A G².RSVP-TE Resv Message must be sent.

SendConfirm A G².RSVP-TE Resv Confirm Message must be sent.

SendPathDown A G².RSVP-TE Path Message with ADMIN_STATUS must be sent.

SendResvDown A G².RSVP-TE Resv Message with ADMIN_STATUS must be sent.

SendPathTear A G².RSVP-TE PathTear Message must be sent.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

109

SendResvTear A G².RSVP-TE Resv Tear Message must be sent.

XConnCompleted The coss connection has been completed.

XConnErr The requested coss connection has been failed.

XConnDown The cross connection has gone down.

XConnPreempt The cross connection has been preempted.

Table 7-3: G2RSVP-TE LSP FSM: root events

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

110

Figure 7-2: G2MPLS LSP finite state machine

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

111

7.4.1 Example transitions

The Figure 7-3 shows an example of LSP signal up. The highlighted line represents events and transitions for
the Ingress node, whereas the dotted line represents events and transitions for the Egress node.

In this picture the TNRC notify (evXConnCompleted event) has been received after the evRecvResv /
evSendResv event.

Independently from the current state, in case of an error event, the FSM comes back to Down state.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

112

Figure 7-3: Example of G2MPLS LSP signalling setup

7.5 G².RSVP-TE parsing and formatting

The G².RSVP-TE parsing and formatting is based on the serialization and de-serialization of the internal
message and object classes by means of the stream operators as shown in Figure 7-4.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

113

Figure 7-4: parsing and formatting sketch.

The MemoryBuffer class is the main data structure both for parsing and formatting functions. The
MemoryStream class, that has one instance of the MemoryBuffer, is used to convert a buffer into a G².RSVP-
TE Message.

The parsing phase is described by the following steps:

• When the buffer is received from the SCNGW module, a MemoryBuffer is created.
• A MemoryStream object is instantiated from the MemoryBuffer.
• The stream operator of the MemoryStream is used to create a G².RSVP-TE Message.

The formatting phase is described by the following steps:

• When the G².RSVP-TE Message is ready to be sent a MemoryStream object is created from the
message by means of stream operator.

• The MemoryStream object has a MemoryBuffer instance created from the data of the G².RSVP-TE
Message.

• The raw data into MemoryBuffer are sent to SCNGW module.

The MemoryCursor class is an helper object to make easier the serialisation and de-serialisation from
MemoryBuffer to G².RSVP-TE Message and vice-versa. It has all the functions and utilities to get/set data
from/to MemoryBuffer object as shown in Code 7-10, Code 7-11 and Code 7-12.

extern MemoryCursor & operator << (MemoryCursor &, const Message &);
extern MemoryCursor & operator >> (MemoryCursor &, Message * &);

class MemoryCursor {
 friend class MemoryBuffer;
 friend MemoryCursor & operator >> (MemoryCursor & cursor,
 ipv4_t & data);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

114

 friend MemoryCursor & operator >> (MemoryCursor & cursor,
 ipv6_t & data);
 friend MemoryCursor & operator >> (MemoryCursor & cursor,
 uint8_t & data);
 friend MemoryCursor & operator >> (MemoryCursor & cursor,
 uint16_t & data);
 friend MemoryCursor & operator >> (MemoryCursor & cursor,
 uint32_t & data);
 friend MemoryCursor & operator >> (MemoryCursor & cursor,
 uint64_t & data);
 friend MemoryCursor & operator >> (MemoryCursor & mc,
 Message * & msg);

 friend MemoryCursor & operator << (MemoryCursor & cursor,
 const ipv4_t data);
 friend MemoryCursor & operator << (MemoryCursor & cursor,
 const ipv6_t data);
 friend MemoryCursor & operator << (MemoryCursor & cursor,
 const uint8_t data);
 friend MemoryCursor & operator << (MemoryCursor & cursor,
 const uint16_t data);
 friend MemoryCursor & operator << (MemoryCursor & cursor,
 const uint32_t data);
 friend MemoryCursor & operator << (MemoryCursor & cursor,
 const uint64_t data);
 friend MemoryCursor & operator << (MemoryCursor & cursor,
 const Message & msg);

 friend std::ostream & operator << (std::ostream & os,
 const MemoryCursor & mb);
public:
 MemoryCursor(MemoryBuffer * buffer,
 size_t start,
 size_t stop);
 ~MemoryCursor(void);

 MemoryCursor & resize(size_t start, size_t stop);
 MemoryCursor neighbor(size_t len);
 size_t remainingSize(void);

 size_t start(void);
 size_t stop(void);

private:
 // pointer to main buffer for this family of curso rs
 MemoryBuffer * buffer_;

 // buffer index (range [0, size -1])
 size_t start_;
 size_t stop_;

 // Cursor index: range [0, stop_ - start_ + 1]
 // if (current == stop_ - start_ + 1) => buffer is full
 size_t current_;
};

Code 7-10: MemoryCursor class

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

115

class MemoryBuffer {
 friend std::ostream & operator << (std::ostream & os,
 const MemoryBuffer & mb);
public:
 MemoryBuffer(uint8_t * buffer, size_t size);
 MemoryBuffer(size_t size);
 ~MemoryBuffer(void);

 MemoryCursor & cursor(void);
 void print(std::ostream & os, size_t start, size_t stop) const;
 size_t size(void) const;
 const uint8_t * getData(void);

 // Checksum utils
 uint16_t calculateChecksum(void) const;
 void writeChecksum(void);
 bool isChecksumOk(void);

 // offset MUST have a range [0, size -1]
 WOP(w8, uint8_t, HTONC); // void w8(size_t off , uint8_t d);
 WOP(w16, uint16_t, htons);
 WOP(w32, uint32_t, htonl);
 WOP(w64, uint64_t, htonll);
 WOP(w32_addr, ipv4_t, HTONC);

 ROP(r8, uint8_t, NTOHC); // uint8_t r8(size_t o ff);
 ROP(r16, uint16_t, ntohs);
 ROP(r32, uint32_t, ntohl);
 ROP(r64, uint64_t, ntohll);
 ROP(r32_addr, ipv4_t, NTOHC);

private:
 uint8_t * buffer_;
 size_t size_;
};

Code 7-11: MemoryBuffer class

class MemoryStream {
 friend MemoryStream & operator >> (MemoryStream & ms,
 Message * & msg);
 friend MemoryStream & operator << (MemoryStream & ms,
 const Message & msg);
 friend std::ostream & operator << (std::ostream & os,
 const MemoryStream & ms);
public:
 MemoryStream(void);
 MemoryStream(uint8_t * buffer, size_t size);
 ~MemoryStream(void);

 void flushBuffer(void);
 const uint8_t * getBufferData(void);
 size_t getBufferDataSize(void) const;

private:
 MemoryBuffer * buffer_;
};

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

116

Code 7-12: MemoryStream class

All the G².RSVP-TE protocol Messages, Objects and SubObjects have their own functions and the following
mandatory interfaces:

• stream operator
• set/get to set/get protocol data
• isConsistent method to check the consistency of the packets according to the standard.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

117

8 Call Controllers

8.1 CC shared objects and functions (xCC)

The xCC shim software implements a set of common objects (Python classes) and methods that are used (as
is) or extended/replaced by the G².NCC and G².CCC protocols.

The xCC is implemented in Python 2.5 (code in <sw_root>/pyg2mpls/xcc/), and works in a real multi-threaded
environment (as compared to “fake” Quagga threads).

The xCC is based on a set of legacy Python modules, plus a number of modules purposely developed for the
Phosphorus-WP2 G²MPLS project. These modules are listed in the following:

� legacy ones (see docs about each module at http://docs.python.org/lib/module-<module-name>.html,
unless specified differently):

o os
o signal
o sys
o time
o re
o thread
o threading
o traceback
o socket
o xml (for Python ≥ 2.5) or elementtree (for Python < 2.5) (http://docs.python.org/lib/module-

xml.etree.ElementTree.html)
o omniORB and omniorbpy (http://omniorb.sourceforge.net/)

� developed for the Phosphorus-WP2 G²MPLS project (see section 14.4 for details):
o baseobj
o bits
o corbahelper

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

118

o fsm
o logger
o netutils
o protocol
o timer
o udpcomm
o version
o xmlmsg
o g2types

The xCC modules are composed of:

� ccdm.py: the base xCC data model
� ccsrv.py: xCC CORBA servant, for both the G².NCC and the G².CCC (the deviations in behaviour are

introduced by the specific classes)
� ccsigif.py: xCC signalling interface wrapper and XML implementation

8.1.1 xCC data model

The xCC data model is depicted in Figure 8-1.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

119

CallController

N

Protocol

Call

ProtoObject

CcSigIfInni

CcSigIfUni

CcSigIfEnni

CcSigIfBnni

1 1 1 1

CcSigIfMgmt

1

TimersCalendar

Neighbour

2 (prev, next)

timers
(signalling,
connection)

N

2 (indirect, direct)

CorbaRoot

1

1

UdpComm

1

CallParameters

1

TnaResource GnsTna

1/2 1/2

Figure 8-1: The base xCC data model

The main class is the CallController, which inherits directly from the Protocol class in the module protocol. This
class has a number of direct descendants (the CcSigIf<i/f> classes) and indirect descendants (inherited from
Protocol): the TimersCalendar, the CorbaRoot (with CORBA client and servants under it) and the UdpComm
classes.

The Call class is the core item for implementing the call data and behaviour, and links to:

� a couple of Neighbour classes: the previous (aka upstream) and next (aka downstream) Call
Controller (either CCC or NCC) with respect to the direction of call setup (from the initiator to the
receiver)

� a number of timers, for both signalling (expiration timers on call setup, in order to clean states if the
call setup doesn’t converge in a period of time) and connection (aka LSP) setup (this is for NCC
only)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

120

� a number of sub-parameters. Worth to be highlighted, the CallParameters class, which links to the
call endpoints (either a legacy Tna or a G² GnsTna).

8.1.2 xCC (CCC/NCC) External API

The API for both the CCC and NCC is specified in <sw_root>/idl /CallController.idl, and reported in Code 8-1.
The API has two CORBA interfaces: Mgmt and SouthBound.

The Mgmt interface allows to perform management-like operations on the CCC or NCC. In particular, the
foreseen usage scenarios for this interface are:

� Dynamic call creation and setup by the grid MW. In this case, the Mgmt methods at the CCC-a are
invoked by the G.UNI GW, that maps grid job requests from the MW into G² Calls.

� SPC Calls. In this case, the Mgmt methods at the NCC-1 are invoked by some NMS.

� Command-Line Interface. The Mgmt methods are invoked by the implementation of the CCC or NCC
CLI (VTY, see section 14)

The SouthBound interface is used for the interactions between the Call Controller and the underlying Recovery
Controller, in the upward direction. Its main function is to allow the Recovery Controller to notify the Call
Controller about events regarding the recovery bundles (each attached to a Call in the Call Controller domain).

#include "types.idl"
#include "g2mplsTypes.idl"

module CallController {

 interface Mgmt {

 typedef sequence<g2mplsTypes::callIdent> callIde ntSeq;
 typedef sequence<g2mplsTypes::recoBundleIdent> re coBundleIdentSeq;
 typedef sequence<g2mplsTypes::lspIdent> lspIden tSeq;

 boolean
 callCreate(inout g2mplsTypes::callIdent id,
 in g2mplsTypes::callParams callInfo,
 in g2mplsTypes::recoveryParams recoveryIn fo,
 in g2mplsTypes::lspParams lspInfo,
 in g2mplsTypes::actorInfo actor)
 raises(Types::InternalProblems);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

121

 boolean
 callSetTna(in g2mplsTypes::callIdent id,
 in g2mplsTypes::resourcePosition pos,
 in g2mplsTypes::tnaResource tnaRes,
 in g2mplsTypes::actorInfo actor)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 callSetGnsTna(in g2mplsTypes::callIdent id,
 in g2mplsTypes::resourcePosition pos,
 in g2mplsTypes::gridParams gnsTna,
 in g2mplsTypes::actorInfo actor)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 callAddEroPart(in g2mplsTypes::callIdent id,
 in g2mplsTypes::eroSeq eroItem,
 in g2mplsTypes::actorInfo actor)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 callEnable(in g2mplsTypes::callIdent id,
 in g2mplsTypes::actorInfo actor)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 callDisable(in g2mplsTypes::callIdent id,
 in g2mplsTypes::actorInfo actor)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 callDestroy(in g2mplsTypes::callIdent id,
 in g2mplsTypes::actorInfo actor)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 callSetUp(in g2mplsTypes::callIdent id,
 in g2mplsTypes::actorInfo actor)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 callSetDown(in g2mplsTypes::callIdent id,
 in g2mplsTypes::actorInfo actor)
 raises(Types::InternalProblems, Types::CannotFet ch);

 callIdentSeq getCalls()
 raises(Types::InternalProblems);

 boolean
 callGetDetails(in g2mplsTypes::callIdent id,
 out g2mplsTypes::callParams callInfo,
 out g2mplsTypes::recoveryParams recovery Info,
 out g2mplsTypes::lspParams lspInfo,
 out g2mplsTypes::actorInfo actor,
 out g2mplsTypes::statesBundle states,
 out recoBundleIdentSeq recoBundles)
 raises(Types::InternalProblems, Types::CannotFet ch);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

122

 boolean
 callGetTna(in g2mplsTypes::callIdent id,
 in g2mplsTypes::resourcePosition pos,
 out g2mplsTypes::tnaResource tnaRes)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 callGetGnsTna(in g2mplsTypes::callIdent id,
 in g2mplsTypes::resourcePosition pos,
 out g2mplsTypes::gridParams gnsTna)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 getRecoBundleDetails(in g2mplsTypes::recoBundleIdent id,
 out g2mplsTypes::recoveryParams info,
 out g2mplsTypes::statesBundle states,
 out lspIdentSeq lsps)
 raises(Types::InternalProblems, Types::CannotFet ch);
 };

 interface SouthBound {
 enum callEvent {
 CALLEVENT_CONN_READY,
 CALLEVENT_CONN_FAILED_UP,
 CALLEVENT_CONN_FAILED_DOWN,
 CALLEVENT_CONN_DELETED
 };

 boolean getNotification(in g2mplsTypes::callIdent id,
 in callEvent event)
 raises(Types::InternalProblems);
 };
};

Code 8-1: CallController.idl: CCC and NCC API

The methods for the Mgmt interface are:

� callCreate(): allows to create a new call at the CCC-a or NCC-1; in case of NCC-1, this is the door for
setting up an SPC Call.

� callSetTna(): allows to specify a legacy TNA resource (TNA, + Data Link, + Label) (ingress or egress)
for the newly created Call (it has to be still “Idle”).

� callSetGnsTna():allows to specify a GNS TNA (ingress or egress) for the newly created Call (it has to
be still “Idle”).

� callAddEroPart(): allows to add a piece of Explicit Route to the newly created Call (it has to be still
“Idle”). The Call ERO allows to specify the sequence of domains (i.e. NCCs) to be traversed by the

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

123

Call; each Call ERO element is a standard RSVP ERO, and the NCCs along the path are identified by,
either:

o their node id

o their ingress TE Link ids (w.r.t. the direction of the path)

� callEnable() and callDisable(): allow to set the administrative status of the Call to “enabled” and
“disabled”, respectively. This is for future use, e.g. to temporarily make a call unavailable for usage,
without tearing it down.

� callDestroy(): allows to remove a newly created Call (it has to be still “Idle”). In that status, no signalling
has occurred yet, and the call cannot disappear as a consequence of a teardown. An explicit command
is needed.

� callSetUp() and callSetDown(): the access points for setting up and tearing down the Call, respectively.
When callSetUp() is invoked, a number of checks will occur on consistency and completeness of the
information made available ([GNS] TNAs, ERO, etc.).

� getCalls(): allows to retrieve the list of the IDs of the Calls currently present at the NCC or CCC.

� callGetDetails(): allows to retrieve part of the details of a specific Call (call parameters, LSP
parameters, recovery information, states, IDs of the recovery bundles attached to this call). Further
information is retrieved by:

� callGetTna(): allows to retrieve the details on the legacy TNA resource at the ingress or egress
position.

� callGetGnsTna(): allows to retrieve the details on the GNS TNA at the ingress or egress position.

The methods for the SouthBound interface are:

� getNotification(): allows the Call Controller to receive notifications from the Recovery Controller about
its recovery bundles (aka “connections” in G.7713/Y.1704 terminology), attached to a Call. The main
events are:

o a new recovery bundle is ready

o a new recovery bundle has been torn down

o the setup of a recovery bundle failed

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

124

o the teardown of a recovery bundle failed

8.1.3 xCC Signalling Interfaces

The ccsigif module implements a generic wrapper for all the signalling interfaces that the CCC or NCC have to
cross with their transactions. These are:

� G.I-NNI (CcSigIfInni). No signalling protocol is specifically mandated by ASON for the NCC-to-NCC
communication across the I-NNI (unless piggybacked on G.RSVP-TE signalling for connection setup).
IETF CCAMP introduces the usage of the G.RSVP-TE Notify message for I-NNI call signalling
purposes (RFC 4974, see D2.1 and D2.2), but with a number of unclear and incomplete points. Due to
these incompleteness and to the needed GNS enhancements, a dedicated and proprietary signalling
based on XML has been defined and implemented.

� G.UNI (CcSigIfUni). To be based on OIF UNI 2.0 (see D2.1, D2.2, D2.7 for references)

� G.E-NNI (CcSigIfEnni). To be based on OIF E-NNI 2.0 signalling (see D2.1, D2.2, D2.7 for references)

� B-NNI (CcSigIfBnni). This is the Border Node-to-Node Interface, which implements the part of
signalling between UNI-N NCCs needed to support the concept of Indirect Call introduced in D2.1. This
is based on a proprietary signalling based on XML.

� Mgmt (CcSigIfMgmt). Not a real signalling interface. It is currently a pure stub, and might be used in a
future engineering of the stack as the source point for SNMP traps (e.g. to let the NMS know when an
SPC Call is ready).

Each of these interfaces is instantiated and attached at the CallController level, and provides a gateway to the
underlying signalling functions (send and receive), e.g. through G.UNI RSVP or G.ENNI RSVP for G.UNI and
G.E-NNI, respectively, or a full implementation of the XML signalling specified.

8.1.3.1 G.I-NNI and B-NNI XML signalling

The specified signalling protocol is based on the ASON message (G.7713/Y.1704) types and includes all the
relevant information needed to setup the Call.

The supported messages are:

� For Call setup:

o SetupRequest

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

125

o SetupIndication

o SetupConfirm

� For Call teardown:

o ReleaseRequest

o ReleaseConfirm

The basic message structure is as follows.

<!ELEMENT ccsigmsg (header, body)>

<!ELEMENT header (type, seqnum, sender)>
<!ELEMENT type (#PCDATA 6)>
<!ELEMENT seqnum (#PCDATA)>
<!ELEMENT sender (#PCDATA)>

<!ELEMENT body (name, client-name?, call-id?, indir ect?, rel-ind-call-id?,
emulated-if?, call-parms?, lsp-parms?, ero?, reason ?, errored-seqnum?)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT client-name (#PCDATA)>

<!ELEMENT call-id (type, srcId, localId, segments?) >

<!ELEMENT type (#PCDATA)>
<!ELEMENT srcId (#PCDATA)>
<!ELEMENT localId (#PCDATA)>

<!ELEMENT indirect (#PCDATA)>
<!ELEMENT rel-ind-call-id (type, srcId, localId, se gments?)>
<!ELEMENT emulated-if (#PCDATA)>
<!ELEMENT reason (#CDATA)>
<!ELEMENT errored-seqnum (#PCDATA)>

<!ELEMENT ero (eroelem +)>

<!ELEMENT eroelem (nodeId, teLink, upDataLink, upLa bel,
downDataLink, downLabel, loose)>

<!ELEMENT nodeId (#PCDATA)>
<!ELEMENT teLink (#PCDATA)>
<!ELEMENT upDataLink (#PCDATA)>
<!ELEMENT upLabel (#PCDATA)>
<!ELEMENT downDataLink (#PCDATA)>
<!ELEMENT downLabel (#PCDATA)>
<!ELEMENT loose (#PCDATA)>

6 A string indicating one of the message types reported above.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

126

<!ELEMENT call-parms (originator, jobProject, jobNa me, gnstnas,
disjointness, recoveryType, startTime, endTime, tna res)>

<!ELEMENT originator (#PCDATA)>
<!ELEMENT jobProject (#CDATA)>
<!ELEMENT jobName (#CDATA)>
<!ELEMENT disjointness (#PCDATA)>
<!ELEMENT startTime (#PCDATA)>
<!ELEMENT recoveryType (#PCDATA)>
<!ELEMENT endTime (#PCDATA)>
<!ELEMENT tnares (ingress, egress)>

<!ELEMENT ingress (dataLink, label, tna)>
<!ELEMENT egress (dataLink, label, tna)>

<!ELEMENT dataLink (#PCDATA)>
<!ELEMENT label (#PCDATA)>

 <!ELEMENT tna (#PCDATA)>
<!ELEMENT gnstnas (ANY 7)>

<!ELEMENT lsp-parms (lspRole, lspType, swCap, encTy pe, gpid,
bandwidth, tnResAction, rroMode, setupPrio, holding Prio, linkProtMask,
includeAll, includeAny, excludeAny, useAcks, rapidR etryLimit,
rapidRetransIntval, incrementValueDelta, refreshInt erval,
crankbackScope, maxCbackRetrSrc, maxCbackRetrIntmd) >

<!ELEMENT lspRole (#PCDATA)>
<!ELEMENT lspType (#PCDATA)>
<!ELEMENT swCap (#PCDATA)>
<!ELEMENT encType (#PCDATA)>
<!ELEMENT gpid (#PCDATA)>
<!ELEMENT bandwidth (#PCDATA)>
<!ELEMENT tnResAction (#PCDATA)>
<!ELEMENT rroMode (#PCDATA)>
<!ELEMENT setupPrio (#PCDATA)>
<!ELEMENT holdingPrio (#PCDATA)>
<!ELEMENT linkProtMask (#PCDATA)>
<!ELEMENT includeAll (#PCDATA)>
<!ELEMENT includeAny (#PCDATA)>
<!ELEMENT excludeAny (#PCDATA)>
<!ELEMENT useAcks (#PCDATA)>
<!ELEMENT rapidRetryLimit (#PCDATA)>
<!ELEMENT rapidRetransIntval (#PCDATA)>
<!ELEMENT incrementValueDelta (#PCDATA)>
<!ELEMENT refreshInterval (#PCDATA)>
<!ELEMENT crankbackScope (#PCDATA)>
<!ELEMENT maxCbackRetrSrc (#PCDATA)>
<!ELEMENT maxCbackRetrIntmd (#PCDATA)>

An example of SetupRequest is reported in the following, already parsed:

7 This is actually a structured element, as well, but its structure it is too complex to be reported here. Basically, its tag names and structure
are organized according to the basic GNS IDL types. See Appendix A for further details.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

127

header:
 type: 'SetupRequest'
 seqnum: 'i:1'
 sender: '192.168.40.1'
body:
 call-id:
 localId: '0x0000000000000001'
 segments:
 srcId: 'ipv4#192.168.40.1'
 type: 'CALLIDTYPE_OPSPEC'
 name: 'CALLIDTYPE_OPSPEC#(ipv4#192.168.40.1):0x1'
 indirect: 'b:0'
 emulated-if: 'I-NNI'
 call-parms:
 originator: 'ISSUERTYPE_UNI_IF'
 jobProject: 'progetto'
 jobName: 'myjob'
 gnstnas:
 disjointness: 'DISJOINTNESS_NONE'
 startTime: 'i:0'
 recoveryType: 'RECOVERYTYPE_UNPROTECTED'
 endTime: 'i:100'
 tnares:
 ingress:
 dataLink: 'ipv4#0.0.0.0'
 label:
 tna: 'ipv4#10.10.1.101'
 egress:
 dataLink: 'ipv4#0.0.0.0'
 label:
 tna: 'ipv4#10.30.2.120'
 lsp-parms:
 maxCbackRetrIntmd: 'i:0'
 rapidRetransIntval: 'i:0'
 rroMode: 'LSPRROMODE_TEL_DETAIL'
 rapidRetryLimit: 'i:0'
 gpid: 'GPID_LAMBDA'
 incrementValueDelta: 'i:0'
 holdingPrio: 'i:0'
 setupPrio: 'i:0'
 crankbackScope: 'CRANCKBACKSCOPE_E2E'
 linkProtMask: 'PROTTYPE_UNPROTECTED'
 excludeAny: 'i:0'
 useAcks: 'i:0'
 swCap: 'SWITCHINGCAP_LSC'
 lspRole: 'LSPROLE_UNDEFINED'
 includeAny: 'i:0'
 lspType: 'LSPTYPE_SPC'
 bandwidth: 'i:1000000'
 maxCbackRetrSrc: 'i:3'
 refreshInterval: 'i:0'
 encType: 'ENCODINGTYPE_LAMBDA'
 tnResAction: 'LSPRESOURCEACTION_XCONNECT'
 includeAll: 'i:0'
 ero:
 listelem-001:
 elem:
 downDataLink:

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

128

 downLabel:
 loose: 'b:0'
 nodeId:
 teLink: 'ipv4#192.168.2.50'
 upDataLink:
 upLabel:

Code 8-2: Example of parsed SetupRequest.

8.2 G².NCC – The Grid-GMPLS Network Call Controller

8.2.1 G².NCC basics

The G².NCC is the core component for the Grid-GMPLS end-to-end Service Plane. It implements the concept
of G² Call, which extends that of ASON/GMPLS Call. The [G²] Call8 is the bridging element between the
G²MPLS Network Control Plane and the Service Plane functionalities. As such, it supports two important
features:

� It incorporate information about the “service end-points”, be them legacy TNAs or non-network (grid)
resources (defined as “GNS TNAs” in software)

� It offers gateway functions to the AuthN/AuthZ Infrastructure (developed in WP4), thus augmenting the
G.UNI and G.E-NNI with inter-carrier capabilities

The G².NCC is implemented in Python 2.5 (code in <sw_root>/pyg2mpls/nccd/).

It shares a common shim software with the G².CCC (G² Client Call Controller), located in
<sw_root>/pyg2mpls/xcc/. The shared software between G².NCC and G².CCC implements a set of common
objects and functions, which are then inherited by the specialized objects and functions in G².NCC and
G².CCC.

The description of the shared “xCC” software can be found in section 14.4.

8.2.2 G².NCC software overview

The G².NCC composing files are:

� config.py: protocol-specific configuration file

8 From now on, the G2 Call is simply referred to as “Call”.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

129

� main.py: start-up file, for launching the NCC

� nccdm.py: the NCC data model, implementing the NetworkCallController and NetworkCall classes

� ncall_fsm.py: the implementation of the transitions of the NCC Call FSM

� ncall_fsm_desc.py: the description of the NCC Call FSM, automatically generated from
<sw_root>/tools/FSM/tools/ncc_call.conf.

The G2.NCC is implemented as a single process, and a number o threads (Figure 8-2):

� The main G2.NCC thread (1), which starts up all the protocol components and enters the ominORB
run() cycle.

� The FSM engine (1), which (in its configured usage) waits for FSM events to pop up in the FSM events
queue, and execute the related transitions

� The Timers manager (1), which waits for the next timer delta to expire in the timers calendar queue,
and executes the related callback function

� The UDP socket manager (1), which waits for UDP packets to appear in the UDP socket, receive them
and execute the related callback functions at protocol level

� A number of ORB threads (N), for the execution of servant methods and client invocations.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

130

G².NCC main

Blocked on orb.run()

FSM engine

Waiting for FSM events to
be posted in the events
queue, and executing them

UDP socket manager

Listening for UDP packets,
and executing the related
protocol receive callback

ORB threads

For client and servant
methods execution

1

N 1

Timers manager
Waiting for next timer in
the calendar to expire, and
executing the related
callback function

1

Figure 8-2: G².NCC threads structure

8.2.3 G².NCC data model

Figure 8-3 depicts the NCC Call data model. The main class is the NetworCallController, which inherits directly
from the CallController class in ccdm.py, with its signalling interfaces.

The NetworkCall class inherits from the Call class in ccdm.py, and, with respect to it, add links to some objects:

• one instance of the NetworkCallFsm class, whose methods collect all the in/out transitions of the NCC
Call FSM;

• a mirror image of the underlying Recovery Bundle handled by the Recovery Controller (see section 8.3);
• an Call ERO, as a list of EroItem(s).

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

131

NetworkCallController

N

CallController

NetworkCall

Call

CcSigIfInni

CcSigIfUni

CcSigIfEnni

CcSigIfBnni

1 1 1 1

CcSigIfMgmt

1

Neighbour

2 (prev, next)

timers
(signalling,
connection)

N

2 (indirect, direct)

CallParameters

1

TnaResource GnsTna

1/2 1/2
Network
Call
Fsm

1
EroItem

N

RecoBundle

1

RC RB

1

Figure 8-3: G².NCC data model

8.2.3.1 TNA rules

When setting up a new call at the NCC-1 via management (callSetUp) or when the call is initiated by UNI
signalling, a check on the consistency of the provided TNAs (either legacy or GNS) is performed. The legacy
TNA is expressed in the form of a TnaResource, i.e. a TNA, plus a Data Link, plus a Label. Not all of this info
has to be non-null. From now on, the detailed TNA information (aka TnaResource) is indifferently referred to as
TNA.

The check algorithm is described in the following.

� Both TNAs (ingress and egress) should be present (either in the form of legacy resource or GNS)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

132

� If the ingress TNA is a legacy resource,

o If the Data Link in the TNA resource is non-null, it should belong to the specified TNA, and both
of them should belong to the checking NCC. – If true, the check is over, with a positive result

o If a null Data Link is present, the check is limited to the TNA: it should belong to the checking
NCC. – If true, the check is over, with a positive result

o If we get here, the TNA does not belong to the checking node ⇒ this is an Indirect Call. The
checking NCC will ask the PCE which NCC owns the specified TNA, and set that node as the
“next” neighbour. – If found, the check is over, with a positive result.

� If the ingress TNA is not a legacy resource, it’s for sure a GNS TNA. In this case, the call is always
Indirect: Direct Calls always need to specify a network TNA as the ingress point.

8.2.4 G².NCC Call FSM

The FSM of the G².NCC Call is “inspired” by ITU-T Rec. G.7713/Y.1704 (rev. 05/2006) and RFC 4974 (with a
3-tier Call signalling, instead of a simple two-tier); see D2.1 and D2.2 for references. According to the view of
the design team of the G².NCC, both recommendations have to be considered as informational suggestions
rather than real implementation guidelines. The principle followed is the IETF CCAMP one: the Call has to be
completely set up before any network connection (aka LSP) is initiated. Honouring this useful principle forced
the adoption of a 3-tier signalling, instead of a simple 2-tier as suggested by RFC 4974 (a minimum of 3-tier is
needed when every NCC along the path has to know when the Call is completely ready).

The core skeleton of the FSM is derived from G.7713/Y.1704 (rev. 05/2006), although a number of
modifications had to be introduced to make it a usable and working FSM.

The FSM specification is in <sw_root>/tools/FSM/tools/ncc_call.conf, and is reported in the following:

NCC CALL FSM definition

{ FSM }

name = NCC_CALL_FSM
definition-file = ncc_call.def
If graphviz-file is defined the graphviz file wil l be create
graphviz-file = ncc_call.dot
#include-name = ncc_call.h
start-state = Idle #[optional]

Events

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

133

rootEvent = derivedEvent1, derivedEvent2, ...

{ Events }

inSetupRequest = inSetupRequestOk, inSetupRequestK o
inSetupIndication = inSetupIndicationOk, inSetupIn dicationKo
inSetupConfirm = inSetupConfirmOk, inSetupConfirmK o,
inSetupConfirmSkipConn
inReleaseRequest = inReleaseRequestOk, inReleaseRe questKo
inReleaseIndication = inReleaseIndicationOk, inRel easeIndicationKo
SetupVerification = SetupVerificationOk, SetupVeri ficationKo
ReleaseVerification = ReleaseVerificationOk, Relea seVerificationKo,
ReleaseVerificationSkipConn
inCallSigError = inCallSigError
ConnectionReady = ConnectionReady
ConnectionFailed = ConnectionFailed
ConnSetupTimeout = ConnSetupTimeout
ConnectionVerified = ConnectionVerifiedOk, Connect ionVerifiedKo
ScnErrorOn = ScnErrorOn
ScnErrorOff = ScnErrorOff
ConnectionReleased = ConnectionReleased
ConnRelFailed = ConnRelFailed
ConnRelTimeout = ConnRelTimeout

States

state = state1 [The first state is the start on e if start-state is not set]
eventX -> dstState

state = state2
eventY -> dstState

{ States }
see ITU-T Rec. G.7713/Y.1704 (05/2006) and RFC 49 74 (with a 3-tier Call signalling)

state = Idle # stable
 inSetupRequestOk -> VerifyCallSetupRequest # aka 'SetReq';
either from mgmt (e.g. setupCall), I-NNI (i.e. Noti fy msg), UNI, E-NNI (Path)
 inSetupRequestKo -> . #

state = VerifyCallSetupRequest
 SetupVerificationOk -> CallSetupRequestInitiated # aka
'SetVer'; verify ok should be automatic on downstre am NCC
 SetupVerificationKo -> Idle # aka 'SetNVer'
 inReleaseRequestOk -> Idle # aka 'RelReq';
either from mgmt (e.g. teardownCall), I-NNI (i.e. N otify msg), UNI, E-NNI (PathDown,
ResvDown, PathErr)
 inReleaseRequestKo -> . #

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

134

state = CallSetupRequestInitiated # setup
 inSetupIndicationOk -> CallSetupResponded # eit her from
I-NNI (i.e. Notify msg), UNI, E-NNI (Resv)
 inSetupIndicationKo -> Idle #
 inCallSigError -> Idle # either from I-NNI
(i.e. Notify msg), UNI, E-NNI (PathErr)
 inReleaseRequestOk -> Idle # aka 'RelReq';
either from mgmt (e.g. teardownCall), I-NNI (i.e. N otify msg), UNI, E-NNI (PathDown,
ResvDown, PathErr)
 inReleaseRequestKo -> . # aka 'RelReq';
either from mgmt (e.g. teardownCall), I-NNI (i.e. N otify msg), UNI, E-NNI (PathDown,
ResvDown, PathErr)

state = CallSetupResponded # setup
 inSetupConfirmOk -> SetupConnection # either fr om I-NNI
(i.e. Notify msg), UNI, E-NNI (ResvConf)
 inSetupConfirmSkipConn -> Active # either from I-NNI
(i.e. Notify msg), UNI, E-NNI (ResvConf)
 inSetupConfirmKo -> Idle #
 inCallSigError -> Idle # either from I-NNI
(i.e. lack of ack to Notify), UNI, E-NNI (ResvErr)
 inReleaseRequestOk -> Idle # aka 'RelReq'; eit her from
mgmt (e.g. teardownCall), I-NNI (i.e. Notify msg), UNI, E-NNI (PathDown, ResvDown,
PathErr)
 inReleaseRequestOk -> Idle #

state = SetupConnection # setup (connections are being set up)
 ConnectionReady -> VerifyCall # aka 'SetCon'; the
Recovery Bundle is up (Resv/ResvConf on last LSP in the RC for upstream/downstream
NCC)
 ConnectionFailed -> ReleaseConnection # aka
'SetNCon'; the Recovery Bundle failed (ResvErr/Path Err on last LSP in the RC for
upstream/downstream NCC)
 ConnSetupTimeout -> ReleaseConnection # aka
'SetExp'; the Recovery Bundle setup timed out
 inReleaseRequestOk -> VerifyCallReleaseRequest # aka
'RelReq'; either from mgmt (e.g. teardownCall), I-N NI (i.e. Notify msg), UNI, E-NNI
(PathDown, ResvDown, PathErr)
 inReleaseRequestKo -> . # aka 'RelReq';
either from mgmt (e.g. teardownCall), I-NNI (i.e. N otify msg), UNI, E-NNI (PathDown,
ResvDown, PathErr)

state = VerifyCall # setup
 ConnectionVerifiedOk -> Active # aka 'SetCallVe r'
 # nop, so far
 ConnectionVerifiedKo -> ReleaseConnection # aka
'SetCallNVer' # nop, so far
 inReleaseRequestOk -> VerifyCallReleaseRequest # aka
'RelReq'; either from mgmt (e.g. teardownCall), I-N NI (i.e. Notify msg), UNI, E-NNI
(PathDown, ResvDown, PathErr)
 inReleaseRequestKo -> . #

state = Active # stable

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

135

 ScnErrorOn -> SigError # aka
'SigErr'
 inReleaseRequestOk -> VerifyCallReleaseRequest # aka
'RelReq'; either from mgmt (e.g. teardownCall), I-N NI (i.e. Notify msg), UNI, E-NNI
(PathDown, ResvDown, PathErr)
 inReleaseRequestKo -> . #

state = SigError # stable; not used, so far
 ScnErrorOff -> Active # aka 'SigNErr'

state = VerifyCallReleaseRequest
 ReleaseVerificationOk -> ReleaseConnection # aka
'RelVer'; verify ok should be automatic on downstre am NCC
 ReleaseVerificationSkipConn -> CallReleaseRequestI nitiated # aka
'RelVer'; verify ok should be automatic on downstre am NCC
 ReleaseVerificationKo -> Idle # aka 'RelNVer'

state = ReleaseConnection # release (connections a re being released)
 ConnectionReleased -> CallReleaseRequestInitiat ed # aka
'RelCon'
 ConnRelFailed -> CallReleaseRequestInitiated # a ka
'RelNCon'
 ConnRelTimeout -> CallReleaseRequestInitiated # aka
'RelExp'

state = CallReleaseRequestInitiated # release
 inReleaseIndicationOk -> Idle #
 inReleaseIndicationKo -> Idle #
 inCallSigError -> Idle #

Code 8-3: G².NCC Call FSM.

The G².NCC Call states are reported in the following table. The steady ones have their names in italic.

State short description

Idle The Call has been created, but no signalling has occurred on it yet.

VerifyCallSetupRequest

The call setup signalling has been initiated (either a SetupRequest was
received from the network, or a management command has been issued),
and policy verification has started (i.e. an AuthZ request has been sent to the
AAI). Waiting for a reply to the policy verification.
Depending on the policy configuration, this state can be skipped at some
NCCs (e.g. it can be valid only for the ingress ones, downstream of UNI or E-
NNIs).

CallSetupRequestInitiated
The policy verification concluded successfully (or it was simply skipped), and
the SetupRequest message has been propagated downstream. Waiting for
an answer to it (SetupIndication).

CallSetupResponded
A SetupIndication has been received from the downstream NCC (or CCC if
the downstream NI is a UNI). Waiting for the Call to be fully completed (i.e.
the NCC has to see a SetupConfirm concerning this Call).

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

136

SetupConnection

The SetupConfirm has been received (or sent, if the Call FSM is at NCC-1),
and the Call setup signalling has successfully completed. The setup of the
network connections has started (i.e. the creation and setup of Recovery
Bundles at the Recovery Controller have been commanded). Waiting for this
process to successfully complete.

VerifyCall

The Call is now equipped with network connections (i.e. Recovery Bundles
and LSPs). This state can be optionally used at some NCCs (e.g. upstream
ones) to verify the Call connectivity across the domain. If this is not foreseen,
the Call jumps to the Active state.

Active
The Call has now reached is up steady state: it has been authorized,
signalled, equipped with network connections and (optionally) verified at Data
Plane level.

SigError An alternate steady state w.r.t. the Active one: some signalling error has
occurred on the Call after its setup.

VerifyCallReleaseRequest

The call teardown signalling has been initiated (either a ReleaseRequest was
received from the network, or a management command has been issued),
and policy verification has started (i.e. an AuthZ request has been sent to the
AAI). Waiting for a reply to the policy verification.
Depending on the policy configuration, this state can be skipped at some
NCCs (e.g. it can be valid only for the ingress ones, downstream of UNI or E-
NNIs).

ReleaseConnection

The policy verification concluded successfully (or it was simply skipped); now
the teardown has been authorized. The teardown of network connections has
started (i.e. proper teardown commands have been issued to the Recovery
Controller concerning the Recovery Bundle associated to this Call). Waiting
for the network connections to be torn down.

CallReleaseRequestInitiated

All the network connections associated to this Call have been torn down (i.e.
no more RBs at RC, and LSPs at G².RSVP-TE), and the ReleaseRequest
message has been propagated upstream or downstream. Waiting for an
answer to it (ReleaseIndication); when it will come, the Call will jump back to
its Idle state and be deleted.

Table 8-1: G².NCC Call FSM: states

The following table reports the root events that feed the FSM. When a root event might result in different
detailed events, this is discussed case by case.

Root event short description

inSetupRequest

A SetupRequest has been received through one of the NCC signalling
interfaces: G.I-NNI, G.UNI, G.E-NNI, B-NNI or Mgmt. In the latter case, actually it
is a command from the management (i.e. via CORBA) which reached the NCC
Call.

inSetupIndication A SetupIndication has been received through one of the NCC signalling
interfaces: G.I-NNI, G.UNI, G.E-NNI, B-NNI.

inSetupConfirm A SetupConfirm has been received through one of the NCC signalling interfaces:
G.I-NNI, G.UNI, G.E-NNI, B-NNI.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

137

inReleaseRequest

A ReleaseRequest has been received through one of the NCC signalling
interfaces: G.I-NNI, G.UNI, G.E-NNI, B-NNI or Mgmt. In the latter case, actually it
is a command from the management (i.e. via CORBA) which reached the NCC
Call.

inReleaseIndication A ReleaseIndication has been received through one of the NCC signalling
interfaces: G.I-NNI, G.UNI, G.E-NNI, B-NNI.

SetupVerification The Call setup policy verification concluded, either positively or negatively
(different derived events).

ReleaseVerification The Call teardown policy verification concluded, either positively or negatively
(different derived events).

inCallSigError Some call signalling error was received through one of the NCC signalling
interfaces: G.I-NNI, G.UNI, G.E-NNI, B-NNI.

ConnectionReady The setup of the network connections (aka RB at the RC) concluded
successfully.

ConnectionFailed The setup of the network connections (aka RB at the RC) failed.

ConnSetupTimeout The setup of the network connections (aka RB at the RC) did not conclude within
the configured timeframe.

ConnectionVerified The Data Plane verification of the network connections (aka RB at the RC) has
been carried out successfully.

ScnErrorOn Some error in the SCN occurred.

ScnErrorOff The pending errors in the SCN have been cleared.

ConnectionReleased The teardown of the network connections (aka RB at the RC) concluded
successfully.

ConnRelFailed The teardown of the network connections (aka RB at the RC) failed.

ConnRelTimeout The teardown of the network connections (aka RB at the RC) did not conclude
within the configured timeframe.

Table 8-2: G².NCC Call FSM: root events

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

138

Figure 8-4: G².NCC Call FSM.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

139

8.3 G².CCC – The Grid-GMPLS Client Call Controller

8.3.1 G².CCC basics

The G².CCC provides a prototypal implementation of the client-end of the G² Call. The client-side of the Call is
the access point for the creation of G² services, and their request as GNS through the G.UNI. The G² Call at the
CCC can be controlled in two ways:

� Automatically from job requests coming from the grid middleware, translated into Calls by the G.UNI
Gateway (see section 11).

� Via management, using the CORBA interface to the CCC.

The G².CCC is implemented in Python 2.5 (code in <sw_root>/pyg2mpls/cccd/). It shares a common shim
software with the G².NCC (G² Network Call Controller), located in <sw_root>/pyg2mpls/xcc/, as discussed
before for the NCC, and detailed in section 14.4.

8.3.2 G².CCC software overview

The G².CCC composing files are:

� config.py: protocol-specific configuration file

� main.py: start-up file, for launching the CCC

� cccdm.py: the CCC data model, implementing the ClientCallController and ClientCall classes

� ccall_fsm.py: the implementation of the transitions of the CCC Call FSM

� ccall_fsm_desc.py: the description of the CCC Call FSM, automatically generated from
<sw_root>/tools/FSM/tools/ccc _call.conf.

The G2.CCC is implemented as a single process, and a number o threads (Figure 8-5):

� The main G2.CCC thread (1), which starts up all the protocol components and enters the ominORB
run() cycle.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

140

� The FSM engine (1), which (in its configured usage) waits for FSM events to pop up in the FSM events
queue, and execute the related transitions

� The Timers manager (1), which waits for the next timer delta to expire in the timers calendar queue,
and executes the related callback function

� The UDP socket manager (1), which waits for UDP packets to appear in the UDP socket, receive them
and execute the related callback functions at protocol level

� A number of ORB threads (N), for the execution of servant methods and client invocations.

G².CCC main

Blocked on orb.run()

FSM engine

Waiting for FSM events to
be posted in the events
queue, and executing them

UDP socket manager

Listening for UDP packets,
and executing the related
protocol receive callback

ORB threads

For client and servant
methods execution

1

N 1

Timers manager
Waiting for next timer in
the calendar to expire, and
executing the related
callback function

1

Figure 8-5: G².CCC threads structure

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

141

8.3.3 G².CCC data model

Figure 8-6 depicts the CCC Call data model. The main class is the ClientCallController, which inherits directly
from the CallController class in ccdm.py, with its signalling interfaces.

The ClientCall class inherits from the Call class in ccdm.py, and it is a simplified version of the NCC Call. It
points to one instance of the ClientCallFsm class, whose methods collect all the in/out transitions of the CCC
Call FSM.

ClientCallController

N

CallController

ClientCall

Call

CcSigIfUni

1

CcSigIfMgmt

1

Neighbour

1 (prev, next)

timers
(signalling,
connection)

N
CallParameters

1

TnaResource GnsTna

1/2 1/2
Client
Call
Fsm

1

Figure 8-6: G².CCC data model

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

142

8.3.4 G².CCC Call FSM

As in the case of the the NCC Call FSM, the FSM of the G².CCC Call is “inspired” by ITU-T Rec.
G.7713/Y.1704 (rev. 05/2006) and RFC 4974 (with a 3-tier Call signalling, instead of a simple two-tier); see
D2.1 and D2.2 for references.

With respect to the NCC Call FSM, the CCC Call FSM is simpler (less states and less events), mostly due to
the fact that the CCC has not to deal with network connections; i.e. it implements just the Service Plane part of
the Call.

The FSM specification is in <sw_root>/tools/FSM/tools/ccc _call.conf, and is reported in the following:

CCC CALL FSM definition

{ FSM }

name = CCC_CALL_FSM
definition-file = ccc_call.def
If graphviz-file is defined the graphviz file wil l be create
graphviz-file = ccc_call.dot
#include-name = ccc_call.h
start-state = Idle #[optional]

Events

rootEvent = derivedEvent1, derivedEvent2, ...

{ Events }

inSetupRequest = inSetupRequestOk, inSetupRequestK o
inSetupIndication = inSetupIndicationOk, inSetupIn dicationKo
inSetupConfirm = inSetupConfirmOk, inSetupConfirmK o
inReleaseRequest = inReleaseRequestOk, inReleaseRe questKo
inReleaseIndication = inReleaseIndicationOk, inRel easeIndicationKo
SetupVerification = SetupVerificationOk, SetupVeri ficationKo
ReleaseVerification = ReleaseVerificationOk, Relea seVerificationKo
inCallSigError = inCallSigError
ScnErrorOn = ScnErrorOn
ScnErrorOff = ScnErrorOff

States

state = state1 [The first state is the start on e if start-state is not set]
eventX -> dstState

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

143

state = state2
eventY -> dstState

{ States }
see ITU-T Rec. G.7713/Y.1704 (05/2006) and RFC 49 74 (with a 3-tier Call signalling)

state = Idle
 # stable
 inSetupRequestOk -> VerifyCallSetupRequest # aka 'SetReq';
either from mgmt (e.g. setupCall), I-NNI (i.e. Noti fy msg), UNI, E-NNI (Path)
 inSetupRequestKo -> . #

state = VerifyCallSetupRequest
 SetupVerificationOk -> CallSetupRequestInitiated # aka 'SetVer';
verify ok should be automatic on downstream NCC
 SetupVerificationKo -> Idle # aka 'SetNVer'
 inReleaseRequestOk -> Idle # aka 'RelReq';
either from mgmt (e.g. teardownCall) or UNI
 inReleaseRequestKo -> . #

state = CallSetupRequestInitiated # setup
 inSetupIndicationOk -> CallSetupResponded #
 inSetupIndicationKo -> Idle #
 inCallSigError -> Idle
 # from UNI
 inReleaseRequestOk -> Idle # aka 'RelReq';
either from mgmt (e.g. teardownCall) or UNI
 inReleaseRequestKo -> . # aka 'RelReq';
either from mgmt (e.g. teardownCall) or UNI

state = CallSetupResponded # setup; aka "Call Se tup Accepted"
 inSetupConfirmOk -> Active # from UNI
 inSetupConfirmKo -> Idle #
 inCallSigError -> Idle # from UNI
 inReleaseRequestOk -> Idle # aka 'RelReq'; eith er from mgmt
(e.g. teardownCall), I-NNI (i.e. Notify msg), UNI, E-NNI (PathDown, ResvDown, PathErr)
 inReleaseRequestOk -> Idle #

state = Active
 # stable
 ScnErrorOn -> SigError # aka 'SigErr'
 inReleaseRequestOk -> VerifyCallReleaseRequest # aka 'RelReq';
either from mgmt (e.g. teardownCall) or UNI
 inReleaseRequestKo -> . #

state = SigError
 # stable; not used, so far
 ScnErrorOff -> Active # aka 'SigNErr'

state = VerifyCallReleaseRequest

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

144

 ReleaseVerificationOk -> CallReleaseRequestInitiat ed # aka 'RelVer';
verify ok should be automatic on downstream CCC
 ReleaseVerificationKo -> Idle # aka 'RelNVer'

state = CallReleaseRequestInitiated # release
 inReleaseIndicationOk -> Idle #
 inReleaseIndicationKo -> Idle #
 inCallSigError -> Idle #

Code 8-4: G².CCC Call FSM.

The G².CCC Call states are reported in the following table. The steady ones have their names in italic.

State short description

Idle The Call has been created, but no signalling has occurred on it yet.

VerifyCallSetupRequest

The call setup signalling has been initiated (either a SetupRequest was
received from the network, or a management/G.UNI GW command has been
issued), and policy verification has started (i.e. an AuthZ request has been
sent to the AAI). Waiting for a reply to the policy verification.
Depending on the policy configuration, this state can be skipped at some
CCCs, e.g. it can be valid only for the CCC-z, in order to allow or disallow
access to grid resources to the caller.

CallSetupRequestInitiated
The policy verification concluded successfully (or it was simply skipped), and
the SetupRequest message has been propagated downstream. Waiting for
an answer to it (SetupIndication).

CallSetupResponded
A SetupIndication has been received from the downstream CCC (or CCC if
the downstream NI is a UNI). Waiting for the Call to be fully completed (i.e.
the CCC has to see a SetupConfirm concerning this Call).

Active The SetupConfirm has been received (CCC-z) or sent (CCC-a). The Call has
now reached is up steady state: it has been authorized and signalled.

SigError An alternate steady state w.r.t. the Active one: some signalling error has
occurred on the Call after its setup.

VerifyCallReleaseRequest

The call teardown signalling has been initiated (either a ReleaseRequest was
received from the network, or a management command has been issued),
and policy verification has started (i.e. an AuthZ request has been sent to the
AAI). Waiting for a reply to the policy verification.
Depending on the policy configuration, this state can be skipped at some or
all CCCs.

CallReleaseRequestInitiated

The release request has been authorized (or just skipped), and the
ReleaseRequest message has been propagated upstream or downstream.
Waiting for an answer to it (ReleaseIndication); when it will come, the Call will
jump back to its Idle state and be deleted.

Table 8-3: G².CCC Call FSM: states

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

145

The following table reports the root events that feed the FSM. When a root event might result in different
detailed events, this is discussed case by case.

Root event short description

inSetupRequest

A SetupRequest has been received through one of the CCC signalling
interfaces: G.UNI or Mgmt. In the latter case, actually it is a command from the
management or middleware via the G.UNI GW (i.e. via CORBA) which reached
the CCC Call.

inSetupIndication A SetupIndication has been received through the CCC G.UNI signalling
interface.

inSetupConfirm A SetupConfirm has been received through the CCC G.UNI signalling interface.

inReleaseRequest

A ReleaseRequest has been received through one of the CCC signalling
interfaces: G.UNI or Mgmt. In the latter case, actually it is a command from the
management or middleware via the G.UNI GW (i.e. via CORBA) which reached
the CCC Call.

inReleaseIndication A ReleaseIndication has been received through the CCC G.UNI signalling
interface.

SetupVerification The Call setup policy verification concluded, either positively or negatively
(different derived events).

ReleaseVerification The Call teardown policy verification concluded, either positively or negatively
(different derived events).

inCallSigError Some call signalling error was received through the CCC G.UNI signalling
interface.

ScnErrorOn Some error in the SCN occurred.

ScnErrorOff The pending errors in the SCN have been cleared.

Table 8-4: G².CCC Call FSM: root events

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

146

Figure 8-7: G².CCC Call FSM.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

147

9 Recovery Controller (RC)

9.1 Recovery Controller basics

The Recovery Controller (RC) is the key module for creating and handling the recovery (i.e. both protection and
restoration) functionalities. The Recovery Controller is not actually mandated in any of the ASON functional
modules or PCs, but it is implied by the concept of a Call Segment transport with resiliency properties. The
Recovery Controller interfaces to the G².RSVP-TE directly, and commands the creation, setup, teardown and
deletion of G².RSVP-TE LSPs. The G².RSVP-TE, in its turn, keeps the RC informed about the status of the
requested LSPs, via a set of notifications (see section 9.5).

The RC implements the recovery of LSP introducing the concept of “Recovery Bundle ” (RB, or RecoBundle).
A Recovery Bundle introduces a new functional layer between two ASON objects: the Call and the Connection.
In practical terms, the Call Controller responsible for setting up the transport network resources across the
administrative domain (i.e. the upstream NCC) will not create the LSPs directly, but will ask the underlying RC
to create a Recovery Bundle, with specific recovery features. The RC, in its turn, will equip the Recovery
Bundle with as many LSPs as needed by the specified recovery level. This might mean 1 (e.g. for unprotected,
or reoruting aka “on-the-fly” restoration) or 2 LSPs (e.g. for a 1+1 protection). Also, the RB will be set with a
specific behaviour, depending on the selected recovery (e.g. an RB with just 1 LSP in it will behave differently
on failures, depending if the selected behaviour is “unprotected” or “rerouting”).

The current implementation of the RC deals with intra-domain recovery only. Inter-domain recovery is affected
by pending architectural and protocol-specific issues (e.g. availability of inter-domain OAM) that go beyond the
scope of WP2 in Phosphorus.

The specified recovery types for G²MPLS are defined in <sw_root>/idl/g2mplsTypes.idl (a more detailed
discussion can be found in D2.1):

� Unprotected (RECOVERYTYPE_UNPROTECTED): no protection for this RB; just like having an LSP
directly attached to the overlay Call.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

148

� 1+1 Protection (RECOVERYTYPE_PROTECTION): a typical 1+1 protection, which is a native feature in
SONET/SDH transport networks (SNCP), but a challenge for WSONs (LSC switching capability) or
Transport Ethernet networks.

� Pre-planned Protection (RECOVERYTYPE_PREPLANNED): protection path calculated before any failure
occurred, and “activated” when the failure occurs on the worker LSP.

� Rerouting restoration, aka On-the-fly (RECOVERYTYPE_OTF): no path are pre-calculated; everything is
performed (rerouting and signalling) when the worker failure occurs. Future releases will allow to
differentiate between “soft” (i.e. make-before-break) or “hard” (i.e. break-before-make) rerouting (according
to the IETF terminology, not the G.7713 one here). The RB FSM already support these two different styles.

� Revertive rerouting (RECOVERYTYPE_OTF_REVERTIVE): same as the classic rerouting, but the ability to
revert back to the original worker LSP, if its failure heals.

Currently, for fast prototyping reasons, the implemented recovery types are unprotected and hard rerouting.
More will be added in the future, according to the actual needs of the NRENs experimenting or deploying the
G²MPLS Control Plane.

9.2 Recovery Controller software overview

The RC is implemented in Python 2.5 (code in <sw_root>/pyg2mpls/rcd/). The composing files are:

� config.py: protocol-specific configuration file

� main.py: start-up file, for launching the RC

� rcdm.py: the RC data model, implementing the RecoveryController and RecoveryBundle classes

� rcsrv.py: the Recovery Controller CORBA servants

� recobundle_fsm.py: the implementation of the transitions of the Recovery Bundle FSM

� recobundle_fsm_desc.py: the description of the Recovery Bundle FSM, automatically generated from
<sw_root>/tools/FSM/tools/rc_recobundle.conf.

The RC is implemented as a single process, and a number o threads (Figure 9-1):

• The main RC thread (1), which starts up all the protocol components and enters the ominORB run()
cycle.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

149

• The FSM engine (1), which (in its configured usage) waits for FSM events to pop up in the FSM events
queue, and execute the related transitions

• The Timers manager (1), which waits for the next timer delta to expire in the timers calendar queue, and
executes the related callback function

• A number of ORB threads (N), for the execution of servant methods and client invocations.

RC main

Blocked on orb.run()

FSM engine

Waiting for FSM events to
be posted in the events
queue, and executing them

ORB threads

For client and servant
methods execution

1

N

Timers manager
Waiting for next timer in
the calendar to expire, and
executing the related
callback function

1

Figure 9-1: RC threads structure

9.3 Recovery Controller data model

Figure 9-2 depicts the RC data model. The main class is the RecoveryController, which inherits directly from
the Protocol class in the module protocol. This class has a number of indirect descendants (inherited from
Protocol): the TimersCalendar and the CorbaRoot (with CORBA client and servants under it).

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

150

The RecoveryBundle class is the core item for implementing the recovery behaviour, and links to:

• One instance of the RecoveryBundleFsm class, whose methods collect all the in/out transitions of the
RB FSM.

• The Lsp class, a mirror image of the corresponding LSP at the G².RSVP-TE level: it is needed to store
some basic data about the LSP; e.g. whether it exists or not, whether is up or not, some of its
parameters, etc.

• A number of timers for managing timeouts during the recovery procedures.
• The pointer (CallId) to the owning Call at the NCC level, plus a copy of its parameters (CallParameters,

mainly for the parameters related to the recovery properties of the Call).

RecoveryController

N

Protocol

RecoveryBundle

ProtoObject

TimersCalendar

Lsp

timers

N

CorbaRoot

1 1

CallParameters

N

LspParameters

1 1

G².RSVP-TE LSP

1

CallId

1

NCC Call

1

1

Recovery
Bundle
Fsm

1

LspParameters

Figure 9-2: RC data model

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

151

9.4 RC Recovery Bundle FSM

The FSM of the Recovery Bundle is designed in such a way to allow for many possible recovery procedures.
This choice makes the FSM intrinsically more complex than a set of separate FSMs, one for each kind of RB
(according to the recovery type), but achieve a higher flexibility when it comes to dynamically change the
recovery type of an RB, with no service disruption.

The FSM specification is in <sw_root>/tools/FSM/tools/rc_recobundle.conf, and is reported in the following:

Recovery Controller (RC) - Recovery Bundle FSM d efinition

{ FSM }

name = RC_RECOBUNDLE_FSM
definition-file = rc_recobundle.def
If graphviz-file is defined the graphviz file wil l be create
graphviz-file = rc_recobundle.dot
#include-name = rc_recobundle.h
start-state = Down #[optional]

Events

rootEvent = derivedEvent1, derivedEvent2, ...

{ Events }
 WorkerInstalled = evWorkerInstalled
 ProtectionInstalled = evProtectionInstalled
 WorkerSigErr = evWorkerSigErr
 ProtectionSigErr = evProtectionSigErr
 WorkerDeleted = evWorkerDeleted
 ProtectionDeleted = evProtectionDeleted
 WorkerFailed = evWorkerFailedUseSR, evWorkerFai ledUseHR,
evWorkerFailedMngErr, evWorkerFailedNoAction
 ProtectionFailed = evProtectionFailedNoAction#,
evProtectionFailedNotUseSR
 WorkerHealed = evWorkerHealed
 ProtectionHealed = evProtectionHealed
 SwappingRoles = evSwappingRoles
 RetryTimer = evRetryTimer, evRetryTimeout
 ActivateLsp = evActivateLspXConnSet,
evActivateLspXConnUnset, evActivateLspNone, evActiv ateLspErr
 SRLspRevert = evSRLspRevertReq, evSRLspRevertAc k,
evSRLspRevertNack, evSRLspRevertErr
 RecoveryManualTrigger = evRecoveryManualTrigger
 RetryRecovery = evRetryRecoveryOk, evRetryRecov erySROk,
evRetryRecoveryKo
 ProtectionRedo = evProtectionRedoOk, evProtectio nRedoErr

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

152

 ProtectionDismiss = evProtectionDismissOk,
evProtectionDismissErr

States

state = state1 [The first state is the start on e if start-state is not set]
eventX -> dstState

state = state2
eventY -> dstState

{ States }

state = Down
 evWorkerInstalled -> OneConnection
 evProtectionInstalled -> OneConnection # if 1+1 and slow
ResvConf on worker
 evWorkerSigErr -> .
 evProtectionSigErr -> .

state = OneConnection
 evWorkerInstalled -> LspBackupInstalled
 evProtectionInstalled -> LspBackupInstalled
 evWorkerFailedUseSR -> RestoringSoft
 evWorkerFailedUseHR -> RestoringHard
 evWorkerFailedMngErr -> .
 evWorkerFailedNoAction -> .
 evWorkerHealed -> .
 #evWorkerSigErr -> .
 evProtectionSigErr -> .
 evWorkerDeleted -> Down
 evProtectionDeleted -> .
 evRecoveryManualTrigger -> RestoringSoft
 evRetryRecoveryOk -> .
 evRetryRecoverySROk -> RestoringSoft
 evRetryRecoveryKo -> .
 evProtectionRedoOk -> LspBackupInstalled
 evProtectionRedoErr -> .
 evSRLspRevertReq -> .
 evSRLspRevertErr -> .
 evSRLspRevertAck -> .
 evSRLspRevertNack -> .

state = RestoringHard
 evWorkerHealed -> .
 evWorkerDeleted -> RestoredHard
 evWorkerSigErr -> RestoredHard
 evRetryTimer -> RestoredHard
 evRetryTimeout -> OneConnection

state = RestoredHard

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

153

 evWorkerInstalled -> OneConnection
 evWorkerSigErr -> .
 evRetryTimer -> .
 evRetryTimeout -> Down

state = RestoringSoft
 evWorkerHealed -> .
 evProtectionInstalled -> .
 evProtectionDeleted -> OneConnection
 evProtectionSigErr -> OneConnection
 evSwappingRoles -> RestoredSoft

state = RestoredSoft
 evWorkerHealed -> .
 evProtectionHealed -> .
 evProtectionDeleted -> OneConnection
 evProtectionSigErr -> .
 evRetryTimer -> .
 evRetryTimeout -> .

state = LspBackupInstalled
 #evWorkerFailedNotUseSR -> Recovering
 evWorkerFailedNoAction -> .
 #evProtectionFailedNotUseSR -> OneConnection
 evProtectionFailedNoAction -> .
 evProtectionHealed -> .
 evWorkerHealed -> .
 evWorkerDeleted -> OneConnection
 evProtectionDeleted -> OneConnection
 evActivateLspXConnSet -> Recovering
 evActivateLspNone -> .
 evActivateLspErr -> .
 evSRLspRevertReq -> .
 evSRLspRevertErr -> .
 evSRLspRevertAck -> .
 evSRLspRevertNack -> .
 evRetryRecoveryOk -> OneConnection
 evRetryRecoveryKo -> .
 evProtectionDismissOk -> OneConnection
 evProtectionDismissErr -> .

state = Recovering
 evWorkerHealed -> LspBackupInstalled
 evProtectionHealed -> .
 #evProtectionFailedNotUseSR -> Reprotecting
 evProtectionFailedNoAction -> .
 evActivateLspXConnUnset -> LspBackupInstalled
 evActivateLspNone -> .
 evActivateLspErr -> .
 evProtectionDeleted -> OneConnection
 evRetryRecoveryOk -> Reprotecting
 evRetryRecoveryKo -> .
 evProtectionDismissOk -> Reprotecting
 evProtectionDismissErr -> .

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

154

state = Reprotecting
 evWorkerHealed -> OneConnection
 evProtectionInstalled -> Recovering
 evProtectionSigErr -> .
 evWorkerDeleted -> Down
 evProtectionDeleted -> .
 evRetryRecoveryOk -> .
 evRetryRecoveryKo -> .
 evProtectionRedoOk -> Recovering
 evProtectionRedoErr -> .

Code 9-1: RC Recovery Bundle FSM.

The RB states are reported in the following table. The steady ones (depending on the recovery type) have their
names in italic.

State short description

Down The RB has been created, but has either no LSPs, or signalling on its LSP hasn’t
occurred yet. Steady state.

OneConnection
The RB has one of its LSPs installed (i.e. up). Arrival state for some recovery types
(e.g. unprotected or rerouting), or transient state for others (which still need the
backup LSP to be installed).

RestoringHard A hard rerouting (i.e. a break-before-make on-the-fly restoration) has begun, but not
yet finished: here waiting for the worker LSP to be torn down.

RestoredHard
Still in hard rerouting. The former (and failed) worker deletion has been carried out,
and the setup of a new worker LSP is now initiated. When the new worker LSP will be
installed successfully, the RB will go back to its OneConnection steady state.

RestoringSoft A soft rerouting (i.e. a make-before-break on-the-fly restoration) has begun, but not
yet finished: here waiting for the backup LSP to be ready (i.e. installed).

RestoredSoft

Still in soft rerouting. The new backup LSP setup has been carried out, and the
deletion of the former (and failed) worker LSP is now initiated. When the former
worker LSP will be deleted successfully, the RB will go back to its OneConnection
steady state.

LspBackupInstalled The RB has now 2 LSPs: steady state for any recovery (i.e. protection) scheme based
on 2 LSPs.

Recovering
State where the activation of a pre-planned backup LSP is in progress, caused by a
failure in the worker LSP. Steady state until the worker LSP heals, then back to
LspBackupInstalled.

Reprotecting Substituting the backup LSP (be it pre-planned or not).

Table 9-1: RC Recovery Bundle FSM: states

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

155

The following table reports the root events that feed the FSM. When a root event might result in different
detailed events, this is discussed case by case.

Root event short description

WorkerInstalled The worker LSP signalling (by G².RSVP-TE) has successfully completed, and
the LSP is now up and running.

ProtectionInstalled The backup LSP signalling (by G².RSVP-TE) has successfully completed, and
the LSP is now up and running.

WorkerSigErr Some error(s) occurred during the signalling (by G².RSVP-TE) of the worker
LSP, and its setup failed.

ProtectionSigErr Some error(s) occurred during the signalling (by G².RSVP-TE) of the backup
LSP, and its setup failed.

WorkerDeleted The teardown (by G².RSVP-TE) of the worker LSP has successfully completed;
no instance of that LSP exists anymore at G².RSVP-TE.

ProtectionDeleted The teardown (by G².RSVP-TE) of the backup LSP has successfully completed;
no instance of that LSP exists anymore at G².RSVP-TE.

WorkerFailed

A Data (aka Transport) Plane failure (i.e. alarm) raised somewhere along the
worker LSP; G².RSVP-TE might or might not have more detailed information of
what happened, and where (i.e. at which node/link).
Depending on the properties of this RB, this root event will result in a detailed
event that brings to some next restoration state (e.g. soft or hard rerouting).

ProtectionFailed
A Data (aka Transport) Plane failure (i.e. alarm) raised somewhere along the
backup LSP; G².RSVP-TE might or might not have more detailed information of
what happened, and where (i.e. at which node/link).

WorkerHealed The failure (aka alarm) at the worker LSP has disappeared “spontaneously”, i.e.
without the intervention of any recovery procedure by the RC.

ProtectionHealed The failure (aka alarm) at the backup LSP has disappeared “spontaneously”, i.e.
without the intervention of any recovery procedure by the RC.

SwappingRoles

During a soft rerouting (aka make-before-break on-the-fly) restoration, the roles
of the backup LSP and of the worker LSP have “swapped”, i.e. the configuration
of transport network resources at the two ends of the LSP (e.g. the SNCP in
SDH) have changed into a condition where the former worker LSP is not the
backup one, and vice versa. For some TN technology, waiting the swap is
necessary in order to be able to tear down the former worker LSP (now backup).

RetryTimer
See RetryRecovery below; this root event only applies during the hard rerouting
restoration (when a failure in recovering is very dangerous: it might leave the RB
– and the Call – with no LSPs under it).

ActivateLsp

This event allows to “activate” a pre-planned backup LSP, i.e. change it from a
planned one (with either some forms of pre-signalling or not) into a real LSP.
Depending on the RB properties and the RB setup/teardown phase, this root
event might result in making TN cross-connections, undoing them, or just no
action.

SRLspRevert

If the RB supports a soft rerouting restoration with reversion (i.e. a revertive on-
the-fly restoration), it will keep the former (and alarmed) worker LSP. This event
indicates that it is time to revert back to the former LSP (e.g. since the alarm on it
has cleared).

RecoveryManualTrigger This event emulates the occurrence of a alarm on the worker LSP: the RB
recovery behaviour is triggered via management procedures.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

156

RetryRecovery

Something has failed during a recovery attempt, and a timer has been set to try
to recover in the future, or, at least, to clean up the situation and revert back to a
steady state. This event might result in either an actual new attempt, or in
stopping any future attempts (e.g. the number of maximum retry times have been
reached).

ProtectionRedo Try again adding a backup LSP to this RB (it previously failed due to some
signalling reasons, probably).

ProtectionDismiss Stop trying adding a backup LSP to this RB; the RB might end in a steady state
that is not the one foreseen by its recovery type.

Table 9-2: RC Recovery Bundle FSM: root events

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

157

Figure 9-3: Recovery Bundle FSM

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

158

9.5 Recovery Controller External APIs

The API for the Recovery Controller is specified in <sw_root>/idl /RecoveryController.idl, and reported in Code
9-2. The API has two CORBA interfaces in the RecoveryController module: NorthBound and SouthBound.

The NorthBound interface implements the communication between the Network Call Controller and the
Recovery Controller, in the southbound direction (i.e. commands from the NCC to the RC).

The SouthBound interface is used by the Recovery Controller to receive notifications from the G².RSVP-TE
about the handled LSPs.

#include "types.idl"
#include "g2mplsTypes.idl"

module RecoveryController {
 interface NorthBound {

 typedef sequence<g2mplsTypes::recoBundleIdent> r bIdentSeq;

 boolean
 rbCreate(in g2mplsTypes::recoBundleIdent id,
 in g2mplsTypes::callIdent callId,
 in g2mplsTypes::callParams callInfo,
 in g2mplsTypes::recoveryParams recoveryInfo,
 in g2mplsTypes::lspParams lspInfo,
 in boolean setup)
 raises(Types::InternalProblems);

 boolean
 rbAddEroPart(in g2mplsTypes::recoBundleIdent id,
 in g2mplsTypes::eroSeq eroItem)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 rbEnable(in g2mplsTypes::recoBundleIdent id)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 rbDisable(in g2mplsTypes::recoBundleIdent id)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 rbDestroy(in g2mplsTypes::recoBundleIdent id)
 raises(Types::InternalProblems, Types::CannotFet ch);

 boolean
 rbSetUp(in g2mplsTypes::recoBundleIdent id)
 raises(Types::InternalProblems, Types::CannotFet ch);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

159

 boolean
 rbSetDown(in g2mplsTypes::recoBundleIdent id)
 raises(Types::InternalProblems, Types::CannotFet ch);

 rbIdentSeq getRecoBundles()
 raises(Types::InternalProblems);

 boolean
 rbGetDetails(in g2mplsTypes::recoBundleIdent id,
 out g2mplsTypes::callIdent callId,
 out g2mplsTypes::recoveryParams recoveryInfo,
 out g2mplsTypes::lspParams lspInfo,
 out g2mplsTypes::statesBundle states)
 raises(Types::InternalProblems, Types::CannotFet ch);

 };

 interface SouthBound {
 enum lspDetailedEvent {
 LSPDETAILEDEVENT_PATH,
 LSPDETAILEDEVENT_RESV,
 LSPDETAILEDEVENT_CONFIRM,
 LSPDETAILEDEVENT_NOTIFY,
 LSPDETAILEDEVENT_DOWN,
 LSPDETAILEDEVENT_ERR
 };

 enum lspEvent {
 LSPEVENT_READY,
 LSPEVENT_SIGERROR,
 LSPEVENT_FAILURE,
 LSPEVENT_HEALING,
 LSPEVENT_GOINGDOWN
 };

 struct eventInfo {
 lspEvent event;
 };

 enum sigPhase {
 SIGPHASE_SETUP,
 SIGPHASE_TEARDOWN,
 SIGPHASE_RECOVERY
 };

 enum tnResourceAction {
 TNRESOURCEACTION_XCONN,
 TNRESOURCEACTION_PROTECT,
 TNRESOURCEACTION_JOIN /* for MRN */
 };

 boolean notifyLspNew(in g2mplsTypes::lspIdent lspident,
 in g2mplsTypes::callIdent callId,
 in g2mplsTypes::lspParams info);

 boolean notifyLspDeleted(in g2mplsTypes::lspIdent ident);

 boolean notifyLspEvent(in g2mplsTypes::lspIdent lspident,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

160

 in eventInfo evinfo);

 boolean tellTNResourceAction(in g2mplsTypes::lspIdent lspident,
 in sigPhase phase,
 out tnResourceAction action);
 };
};

Code 9-2: Recovery Controller external APIs IDL.

The methods for the NorthBound interface are:

� rbCreate(): allows the NCC to create (and start setting up, if the flag is set) a new RB at the RC. The
Call ID is passed down to the RB and stored, to create an bi-directional association between the Call
and the RB, and to allow the RB to later pass the Call ID to the G².RSVP-TE for LSP signalling
purposes. Same applies to the Call parameters.

� rbAddEroPart(): allows the NCC to add a piece of Explicit Route to the newly created RB (it has to be
still “Down”). This might be useful in some contexts, e.g. if the NCC would need to set an RB scope
(i.e. destination node) narrower than the whole domain.

� rbEnable() and rbDisable(): allow to set the administrative status of the RB to “enabled” and “disabled”,
respectively. This is for future use, e.g. to temporarily make an RB unavailable for usage, without
tearing it down.

� rbDestroy(): allows to remove a newly created RB (it has to be still “Down”). In that status, no evolution
has occurred yet, and the RB cannot disappear as a consequence of a teardown. An explicit command
is needed.

� rbSetUp() and rbSetDown(): the access points for setting up and tearing down the RB, respectively.
When rbSetUp() is invoked, the Recovery Controller will start adding the needed LSPs to the RB, and
telling the G².RSVP-TE to set them up. Vice versa for the tear down procedure.

� getRecoBundles(): allows to retrieve the list of the IDs of the RBs currently present at the RC.

� rbGetDetails(): allows to retrieve the details of a specific RB (associated Call ID, recovery parameters,
LSP parameters,states). Further information is retrieved by:

The methods for the SouthBound interface are:

� notifyLspNew(): the signalling of a new LSP has reached this RC (usually located at the egress Border
Controller of the domain, since RB signalling starts from the ingress, as a practical rule). The new LSP

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

161

can be associated to a specific Call thanks to the Call ID transported, and thus to the specific RB
owned by that Call. As a result of this notification, the triplet <Call, RB, LSP> is bundled.

� notifyLspDeleted(): the teardown of an LSP has completed; G².RSVP-TE will destroy this LSP instance
soon exiting this method, and the RB has to align with that and evolve its FSM accordingly.

� notifyLspEvent(): invoked by G².RSVP-TE to notify some specif events on the LSP that might be of
interest for the RB, i.e.:

o LSPEVENT_READY: the LSP setup signalling has successfully completed: the LSP is up and
running, and installed from the RB’s viewpoint.

o LSPEVENT_SIGERROR: some signalling errors have occurred on this LSP, either during the
setup or teardown phases.

o LSPEVENT_FAILURE: failure (aka alarming) of some transport network resources (i.e. node or
link) along the path of this LSP. G².RSVP-TE might or might not know more about this failure.

o LSPEVENT_HEALING: the previously mentioned failure has disappeared; the LSP is working
again now.

o LSPEVENT_GOINGDOWN: the teardown signalling of this LSP has begun, and not as a result
of a previous rbSetDown() from this RC (i.e. probably the other-end RB has started a teardown
of the LSP).

� tellTNResourceAction(): invoked by G².RSVP-TE at LSP end nodes (either ingress or egress) to know
what exactly it should do when installing transport network resources. This is a critical action, where
only the RB knows exactly what to do, since the action depends much on information beyond the single
LSP treated by the G².RSVP-TE: the role of the LSPs (i.e. worker or backup), its relationship with other
LSPs in the RB, etc. Depeding on the signalling phase, the basic actions could be:

o TNRESOURCEACTION_XCONN: ask the TNRC to create a simple cross-connection.

o TNRESOURCEACTION_PROTECT: ask the TNRC to add a protection to a previously existing
cross-connection, with this protecting label.

o TNRESOURCEACTION_JOIN: ask the TNRC to stitch resources (i.e. labels) belonging to
different ISCs (i.e. Interface Switching Capabilities). Needed for the future support of Multi-
Region Network / Multi-Layer Network (MRN/MLN) features.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

162

10 G2MPLS Path Computation Engine Routing
Algorithm (G 2.PCE-RA)

10.1 G2.PCE-RA basics

In the Phosphorus-g2mpls stack the roles of the G2.PCE-RA are to:

• store the global view of the network topology (multi-domain including also grid sites with their own
resources)

• provide an interface for the other modules to request routes and other routing queries (e.g. TNA
resolution) across the overall topology.

For these purposes, G2.PCE-RA interacts with:

• the OSPF process, which exports LSDB contents in terms of G2.PCE-RA data structures;
• the Network Call Controller process , which is the main requester for call routes, topology queries, etc.
• the G.RSVP-TE process, which requests G2.PCE-RA for ERO computation/completion in case of

sparse EROs during LSP signalling or crankback;
• G2.PCE-RA VTY interface, which is mainly used for printing topology/module information and testing

the path computation module by means of dummy requests9.

The G2.PCE-RA component is broken down into sub-components, each responsible fro specific tasks.

The G2.PCE-RA Thread Master manages and schedules the activities of the QUAGGA pseudo-threads of the
G2.PCE-RA process, thus coordinating the incoming/outgoing messages from the two external interfaces, the
IPC middleware stratum and the VTY.

9 The dummy route computations does not imply the signaling of the produced ERO(s), but they have impact on the bandwidth estimation
mechanism of the G2.PCE-RA; thus, subsequent call route requests from NCC or LSP route from G.RSVPTE could not be fulfilled, if they
are done within the expiration time of the estimation and no topology update has occurred in the meanwhile.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

163

G2.PCERA

G2.PCERA
Thread Master

G2.PCERA
Topology API

G2.PCERA
Computation API

G2.PCERA
DATA MODEL

G2.PCERA
Algorithms
G2.PCERA
Algorithms
G2.PCERA
Algorithms

G2.PCERA
Algorithms
G2.PCERA
Algorithms
G2.PCERA
Algorithms

IPC
g2mplsTopology

servant

IPC
g2pcera
servant

IPC
lrm

client
VTY

g2pcera
library

VTY

IPC

Figure 10-1: The G2.PCE-RA component break-down.

The IPC G2.PCE-RA servants implement the CORBA sever side for the topology updates and the route
computations, while the IPC LRM client is used by the G2.PCE-RA to retrieve the routerID of the hosting
G2MPLS controller, which will act in the topology as root node.

The VTY G2.PCE-RA library implements the specific G2.PCE-RA VTY commands (parsing and processing) for
printing topology/module information and testing the path computation module by means of dummy requests.

G2.PCE-RA data model and algorithms sub-components represent the core engine of the overall process and
are detailed in the following sections for sake of clarity.

The CORBA client and servants and the VTY library are interfaced to the core G2.PCE-RA processing engine
through an internal common API, which is split in two namespaces: one for topology, the other for
computations.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

164

The first API namespace, i.e. topology, is used to directly access (create, update, destroy) data model
structures, in which the Grid and network topology is stored.

On the contrary, the computations API directly access the G2.PCE-RA algorithms, which run in a nearly read-
only mode on the topology, get the topology view as it is at the time of request execution and can just update
Path Computation related elements of the data model.

10.2 Topology view in G 2.PCE-RA

The G2.PCE-RA topological view of the network is always node-centric, because each G2MPLS controller in the
domain builds up its own topology map depending on the information managed by the IGP (OSPF-TE).
According to the G2MPLS specifications [PH-WP2-D2.1] and [PH-WP2-D2.2], the G2.PCE-RA on a NE holds a
complete TE detail of the Area/Domain10 it belongs to. In case of multi-domain operation across the E-NNI, the
G2.PCE-RA holds a summarized view of the other domains, in terms of inter-domain links between domains
and – optionally – intra-domain links within the domains. This hierarchical routing model provides a more
scalable approach to the inter-domain problem.

An example topology view that can be built into G2.PCE-RA is provided in the following Figure 10-2 and Figure
10-3.

RC1 RC2 RC3

Routing Control
Domain Level 1
(inter-domain)

Control
Domain

C

Control
Domain

B

Control
Domain

A
(my net.domain)

Grid site C.2

Grid site C.1Grid site A.1

Figure 10-2: Mixed topology with three domains, inter and intra-domain te-links and Grid sites.

10 In this document Area and Domain are synonymous, since no support for multi-area routing within a single control domain is needed.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

165

Control Domain A is the root domain, it connects a Grid site with resources (GN1), it is attached to Control
Domain B (transit), can reach Control Domain B (transit) that connects other Grid sites with resources (GS-C.1
and GS-C.2).

The resulting topology view is shown in Figure 10-3. G2.PCE-RA contains in its topology the three Grid nodes
(GS-A.1, GS-C.1 and GS-C.2) and a number of network nodes, some of them belonging to the domain core
(NN2, NN6), others operating on the domain edge (NN1), others acting as domain border nodes (NN3, NN5)
and others learns as domains (RC2, RC3).

NN5

NN3NN2

RC2
RC3

Inter domain E-NNI link

Intra domain E-NNI link

NN1

Intra domain I-NNI link

k
TELs

i
TELs

x
TELs

y
TELs

j
TELs

GS-A.1 GS-C.1

GS-C.2

NN6

TNA to GridNode bindingGridNode

NetNode with G.OUNI (TNAs) and G.I-NNI

NetNode with G.I-NNI and G.E-NNI

NetNode with G.I-NNI only

Domain NetNode

Figure 10-3: G2.PCE-RA representation of the previous mixed topology.

Bidirectional connectivity between network nodes (domain or not) is obtained though TE-Links (intra-domain I-
NNI, inter-domain E-NNI or intra-domain E-NNI).

Association between Grid nodes and their Provider Edge routers is maintained through the TNA.

The topology concept is implemented by the G2.PCE-RA data model described in the following section.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

166

10.3 G2.PCE-RA data model

The G2.PCE-RA data model is sketched in Figure 10-4, and follows a hierarchical structure in which an
ancestor element includes a set of child sub-elements, reported in the following sub-sections with their contents
hghlighted.

G2.PCE-RA

GNSCall

Primary
Connection

NetNode GridNode

GridSub-
ClusterGridService

TDM
TeLink TNA

Topology

Secondary
Connection

GridComp-
Elem

GridStorage
Elem

LSC G.709
TeLink

LSC WDM
TeLink

Generic
TeLink

0…*

0…1

0…*1…*

0…* 0…*

0…*0…*

1

0…1

0…* 0…*

0…*0…*0…*

Figure 10-4: The base G2.PCE-RA data model.

The hierarchy mechanism has been generalized though templates as shown in the following:

 template <bool REP, class P> class Ancestor {
 public:

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

167

 Ancestor(P * p) {
 //assert(p);

 parent_ = p;
 reparenting_ = REP;
 }
 ~Ancestor(void) {
 // mindless
 parent_ = 0;
 }

 // returns the parent
 P * parent(void) {
 return parent_;
 }

 // assign the new parent and returns the previous one
 P * reparent(P * p) {
 //assert(p);

 P * tmp;

 if (!reparenting_) {
 G2PCERA_ERROR("Reparenting not allowed!");
 return 0;
 }

 tmp = parent_;
 parent_ = p;

 return tmp;
 }

 private:
 P * parent_;
 bool reparenting_;
 };

Code 10-1: Ancestor template.

Most of the types used on the G2.PCE-RA data model elements can be found in <sw_root>/lib/g2mpls_types.h
and <sw_root>/g2pcerad/g2pcera_common.hh.

10.3.1 G2.PCE-RA instance

 class G2PCERA {
 public:
 G2PCERA(void);
 G2PCERA(uint32_t rootNodeId,
 spfType_t spfSelector = spfDijkstra);

 ~G2PCERA(void);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

168

 uint32_t rootNodeId(void);
 spfType_t spfSelector(void);

 bool loadTopology(void);
 const Topology * getTopology(void);

 bool attachGnsCall(GnsCall * ptr);
 bool detachGnsCall(GnsCall * ptr);
 GnsCall * getGnsCall(const call_ident_t & id);
 std::list<GnsCall *> getGnsCalls(void);
 size_t getGnsCallsCount(void);

 private:
 gnsCallIdent_t callIdMangle(const call_ident_t & id);

 spfType_t spfSelector_;
 uint32_t rootNodeId_;
 Topology * topology_;
 std::map<gnsCallIdent_t, GnsCall *> gnsCalls_;
 };

Code 10-2: G².PCE-RA instance.

10.3.2 GNS calls

 // map keys
 typedef std::string gnsCallIdent_t; // key

 class GnsCall: public Ancestor<true, G2PCERA> {
 public:
 GnsCall(G2PCERA * parent,
 const call_ident_t & ident,
 const ero_hop_t & srcHop,
 const ero_hop_t & dstHop,
 const call_info_t & callInfo,
 const recovery_info_t & recInfo,
 const lsp_info_t & lspInfo);
 ~GnsCall(void);

 call_ident_t ident(void);

 void dump(std::string & prefix,
 bool recursive);

 bool attachConnection(lsp_role_t role,
 Connection * ptr);
 bool detachConnection(lsp_role_t role,
 Connection * ptr);
 Connection * getConnection(lsp_role_t role);

 disjointness_level_t getDisjoinnessLevel(void);

 bool isConfirmed(void);
 void isConfirmed(bool flag);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

169

 private:
 void checkDisjoinnessLevel(void);

 call_ident_t ident_;
 ero_hop_t srcHop_;
 ero_hop_t dstHop_;
 call_info_t callInfo_;
 recovery_info_t recInfo_;
 lsp_info_t lspInfo_;

 Connection * primary_;
 Connection * secondary_;

 disjointness_level_t disjoinnessLevel_;

 bool isConfirmed_;
 };

Code 10-3: GNS calls.

10.3.3 Connections

 class Connection: public Ancestor<true, GnsCall> {
 public:
 Connection(GnsCall * parent,
 lsp_ident_t ident);
 ~Connection(void);

 void dump(std::string & prefix,
 bool recursive);

 bool addEroHop(bool onTop,
 const ero_hop_t & hop);
 bool delEroHop(const ero_hop_t & hop);

 std::list<ero_hop_t> getEro(void);

 private:
 lsp_ident_t ident_;
 std::list<ero_hop_t> ero_;
 };

Code 10-4: Connections.

10.3.4 Topology

 // map keys
 typedef uint32_t nodeKey_t;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

170

 class Topology: public Ancestor<true, G2PCERA> {
 public:
 Topology(G2PCERA * parent);
 ~Topology(void);

 bool attachNode(Node * ptr);
 bool detachNode(Node * ptr);
 Node * getNode(node_ident_t ident);
 GridNode * getGridNode(uint32_t peRouterId);

 std::list<Node *> getNodes(void);
 bool modTotNodesCount(uint32_t howMany,
 bool add);
 bool modTotLinksCount(uint32_t howMany,
 bool add);
 bool modTotTnasCount(uint32_t howMany,
 bool add);

 void dump(std::string & prefix,
 bool recursive);
 bool getData(topology_summary_data_t & data);

 private:
 uint32_t totNodes_;
 uint32_t totLinks_;
 uint32_t totTnas_;

 // Maximum link cost in the topology
 uint32_t maxLinkCost_;
 // Global SPF revision number
 uint32_t spfRevision_;

 std::map<nodeKey_t, Node *> nodes_;
 };

Code 10-5: Topology.

10.3.5 Nodes

 class Node: public Ancestor<true, Topology> {
 public:
 Node(topo_node_type_t type,
 uint32_t id);
 ~Node(void);

 topo_node_type_t type(void);
 node_ident_t ident(void);

 void dump(std::string & prefix);

 private:
 topo_node_type_t type_;
 uint32_t id_;
 };

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

171

Code 10-6: Node.

10.3.5.1 NetNode

 class NetNode: public Node {
 public:
 NetNode(uint32_t id,
 net_node_data_t & data);
 ~NetNode(void);

 void dump(std::string & prefix,
 bool recursive);

 bool setData(const net_node_data_t & data);
 bool getData(net_node_data_t & data);

 bool attachOutLink(TeLink * ptr);
 bool detachOutLink(TeLink * ptr);
 std::list<TeLink *> getOutLinks(void);
 size_t getOutLinksCount(void);
 TeLink * getOutLink(const telink_ident_t & id);

 bool attachTna(Tna * ptr);
 bool detachTna(Tna * ptr);
 std::list<Tna *> getTnas(void);
 size_t getTnasCount(void);
 Tna * getTna(const g2mpls_addr_t & id);

 bool attachCandElems(Node * ptr);
 bool detachCandElems(Node * ptr);
 std::list<Node *> getCandElems(void);

 uint32_t rootCost(void);
 void rootCost(uint32_t newCost);

 uint32_t spfRevision(void);
 void spfRevision(uint32_t newRev);

 uint8_t nodeFlags(void); // bitmask
 void nodeFlags(uint8_t newMask);

 bool attachFwdLink(TeLink * ptr);
 bool detachFwdLink(TeLink * ptr);
 std::list<TeLink *> getFwdLinks(void);

 bool fitInConstraints(uint32_t colors,
 uint16_t area);

 private:
 bool is_domain_;
 opstate_t op_state_;
 admstate_t adm_state_;
 uint32_t te_colors_;
 std::list<uint16_t> areas_;

 std::list<Tna *> tnas_;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

172

 std::list<TeLink *> links_; // outgoing links

 // Path Computation related members
 std::list<Node *> candidateElems_;
 uint32_t rootCost_;
 uint32_t spfRevision_;
 uint8_t nodeFlags_; // bitmask
 std::list<TeLink *> fwdLinks_; // cand. links

 };

Code 10-7: Net Node.

10.3.5.2 GridNode

 class GridNode: public Node {
 public:
 GridNode(uint32_t id,
 grid_site_data_t & data);
 ~GridNode(void);

 void dump(std::string & prefix,
 bool recursive);

 bool setData(const grid_site_data_t & data);
 bool getData(grid_site_data_t & data);
 uint32_t getPeRouterId(void);

 bool attachGridServices(GridService * ptr);
 bool detachGridServices(GridService * ptr);
 GridService * getGridService(void /* policy*/);
 GridService * getGridService(uint32_t id);

 bool attachGridCE(GridCompElem * ptr);
 bool detachGridCE(GridCompElem * ptr);
 GridCompElem * getGridCompElem(void /* policy*/) ;
 GridCompElem * getGridCompElem(uint32_t id);

 bool attachGridSubClusters(GridSubCluster * ptr) ;
 bool detachGridSubClusters(GridSubCluster * ptr) ;
 GridSubCluster * getGridSubCluster(void /* policy */);
 GridSubCluster * getGridSubCluster(uint32_t id);

 bool attachGridSE(GridStorageElem * ptr);
 bool detachGridSE(GridStorageElem * ptr);
 GridStorageElem * getGridStorageElem(void /* poli cy*/);
 GridStorageElem * getGridStorageElem(uint32_t id);

 private:
 std::string * name_;
 geo_coords_t location_;
 uint32_t peRouterId_;

 std::map<uint32_t, GridService *> gridServices_;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

173

 std::map<uint32_t, GridCompElem *> gridCompElems_ ;
 std::map<uint32_t, GridSubCluster *> gridSubClust ers_;
 std::map<uint32_t, GridStorageElem *> gridStorage Elems_;
 };

Code 10-8: Grid Node.

10.3.5.3 Grid Subnodes

 template <class DATA>
 class GridSubNode : public Ancestor<true, GridNode > {
 public:
 GridSubNode(grid_subnode_ident_t ident,
 DATA & data) :
 Ancestor<true, GridNode> (0) {
 //assert(p);

 ident_ = ident;
 data_ = data;
 }

 ~GridSubNode(void) {
 // mindless
 }

 grid_subnode_ident_t ident(void) {
 return ident_;
 }

 bool setData(const DATA & data) {
 data_ = data;
 return true;
 }

 bool getData(DATA & data) {
 data = data_;
 return true;
 }

 void dump(std::string & prefix) {
 G2PCERA_DEBUG("%s"DUMP_BAR1, prefix.c_str());

 prefix += DUMP_TAB;

 logDump(prefix, ident());

 DATA data;
 if (!getData(data)) {
 G2PCERA_ERROR("Cannot get data "
 "from object in %s",
 __PRETTY_FUNCTION__);
 return;
 }

 logDump(prefix, data);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

174

 G2PCERA_DEBUG("%s"DUMP_BAR2, prefix.c_str());
 }

 private:
 grid_subnode_ident_t ident_;
 DATA data_;
 };

Code 10-9: Grid Subnodes.

 class GridService: public GridSubNode<grid_service_data_t> {
 public:
 GridService(grid_subnode_ident_t subNodeId,
 grid_service_data_t & data) :
 GridSubNode<grid_service_data_t>(subNodeId, data) {};
 ~GridService(void) {};
 };

typedef struct grid_service_data_mask {
 uint32_t data:1;
 uint32_t state:1;
 uint32_t endpoint_addr:1;
} grid_service_data_mask_t;

typedef struct grid_service_data {
 grid_service_data_mask_t mask_;
 grid_service_info_t data;
 grid_service_state_t state;
 g2mpls_addr_t endpoint_addr;
} grid_service_data_t;

Code 10-10: Grid Service subnode.

 class GridCompElem: public GridSubNode<grid_ce_dat a_t> {
 public:
 GridCompElem(grid_subnode_ident_t subNodeId,
 grid_ce_data_t & data) :
 GridSubNode<grid_ce_data_t>(subNodeId, data) {};
 ~GridCompElem(void) {};
 };

typedef struct grid_ce_data_mask {
 uint32_t lrms_info:1;
 uint32_t host_addr:1;
 uint32_t gatekeeper_port:1;
 uint32_t job_manager:1;
 uint32_t data_dir:1;
 uint32_t default_storage_elem_id:1;
 uint32_t jobs_state:1;
 uint32_t jobs_stats:1;
 uint32_t jobs_timeperf:1;
 uint32_t jobs_timepolicy:1;
 uint32_t jobs_loadpolicy:1;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

175

 uint32_t free_job_slots_calendar:1;
} grid_ce_data_mask_t;

typedef struct grid_ce_data {
 grid_ce_data_mask_t mask_;
 grid_lrms_info_t lrms_info;
 g2mpls_addr_t host_addr;
 uint32_t gatekeeper_port;
 std::string * job_manager;
 std::string * data_dir;
 uint32_t default_storage_elem_id;
 grid_jobs_state_t jobs_state;
 grid_jobs_stats_t jobs_stats;
 grid_jobs_time_perf_t jobs_timeperf;
 grid_jobs_time_policy_t jobs_timepolicy;
 grid_jobs_load_policy_t jobs_loadpolicy;
 std::map<uint32_t, uint16_t> free_job_slots_calend ar;
} grid_ce_data_t;

Code 10-11: Grid Computational Element subnode.

 class GridSubCluster: public GridSubNode<grid_subcluster_data_t> {
 public:
 GridSubCluster(grid_subnode_ident_t subNodeId,
 grid_subcluster_data_t & data) :
 GridSubNode<grid_subcluster_data_t>(subNodeId, d ata){};
 ~GridSubCluster(void) {};
 };

typedef struct grid_subcluster_data_mask {
 uint32_t cpu:1;
 uint32_t os:1;
 uint32_t memory:1;
 uint32_t software:1;
 uint32_t software_env_setup:1;
 uint32_t subcluster_calendar:1;
} grid_subcluster_data_mask_t;

typedef struct grid_subcluster_data {
 grid_subcluster_data_mask_t mask_;
 grid_cpu_info_t cpu;
 grid_os_info_t os;
 grid_memory_info_t memory;
 grid_application_t software;
 std::string * software_env_setup;
 std::map<uint32_t, grid_cpu_count_t> subcluster_ca lendar;
} grid_subcluster_data_t;

Code 10-12: Grid Subcluster subnode.

 class GridStorageElem: public GridSubNode<grid_se_data_t> {
 public:
 GridStorageElem(grid_subnode_ident_t subNodeId,
 grid_se_data_t & data) :
 GridSubNode<grid_se_data_t>(subNodeId, data) {};

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

176

 ~GridStorageElem(void) {};
 };

typedef struct grid_se_data_mask {
 uint32_t storage_info:1;
 uint32_t online_size:1;
 uint32_t nearline_size:1;
 uint32_t storage_area_name:1;
 uint32_t storage_area_path:1;
 uint32_t storage_area_info:1;
 uint32_t se_calendar:1;
} grid_se_data_mask_t;

typedef struct grid_se_data {
 grid_se_data_mask_t mask_;
 grid_storage_info_t storage_info;
 grid_storage_size_t online_size;
 grid_storage_size_t nearline_size;
 std::string * storage_area_name;
 std::string * storage_area_path;
 grid_storage_area_info_t storage_area_info;
 std::map<uint32_t, grid_storage_count_t> se_calend ar;
} grid_se_data_t;

Code 10-13: Grid Storage Element subnode

10.3.6 TNAs

 class Tna: public Ancestor<true, NetNode> {
 public:
 Tna(const g2mpls_addr_t & id);
 ~Tna(void);

 g2mpls_addr_t ident(void);
 bool setRemNode(GridNode * ptr);
 bool getRemNodeIdent(node_ident_t & ident);
 void dump(std::string & prefix);

 private:
 g2mpls_addr_t ident_;
 // used for algorithm purposes
 GridNode * remNode_;
 };

Code 10-14: TNAs

10.3.7 TE Links

 class TeLink: public Ancestor<true, NetNode> {
 public:
 TeLink(telink_ident_t id);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

177

 ~TeLink(void);

 topo_link_type_t type(void);
 telink_ident_t ident(void);

 void dump(std::string & prefix);

 bool setData(const telink_com_data_t & data);
 bool getData(telink_com_data_t & data);

 bool setStates(const opstate_t & op,
 const admstate_t & adm);
 bool getStates(opstate_t & op,
 admstate_t & adm);

 bool appendIscs(const std::list<isc_t> & iscs);
 bool removeIscs(std::list<isc_t> & iscs);
 bool getIscs(std::list<isc_t> & iscs);

 bool setGenAvailBw(const avail_bw_per_prio_t & b w);
 bool getGenAvailBw(avail_bw_per_prio_t & bw);

 bool appendSrlgs(const std::list<uint32_t> & srl gs);
 bool removeSrlgs(std::list<uint32_t> & srlgs);
 bool getSrlgs(std::list<uint32_t> & srlgs);
 bool appendCalEvents(const
std::map<uint32_t,avail_bw_per_prio_t> & cal);
 bool removeCalEvents(std::map<uint32_t,avail_bw_ per_prio_t> &
 cal);
 bool getCalEvents(std::map<uint32_t,avail_bw_per _prio_t> &
 cal);

 bool fitInConstraints(const cspf_constr_t & data);

 uint64_t linkCost(void);
 void linkCost(uint64_t newCost);

 private:
 telink_ident_t ident_;

 topo_link_mode_t mode_;
 // adminMetric_ is the base OSPF link metric
 uint32_t adminMetric_;

 uint32_t teMetric_;
 uint32_t teColorMask_;
 uint8_t teProtectionTypeMask_;
 uint32_t teMaxBw_;
 uint32_t teMaxResvBw_;

 opstate_t opState_;
 admstate_t admState_;

 std::list<isc_t> teSwCaps_;
 avail_bw_per_prio_t teAvailBw_;
 std::list<uint32_t> teSrlgs_;
 std::map<uint32_t, avail_bw_per_prio_t> teLinkca lendar_;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

178

 // used for algorithm purposes
 Node * remNode_;
 TeLink * reverseLink_;
 int64_t linkCost_;
 };

Code 10-15: TE Links

10.3.7.1 SDH/SONET TE Links

 class TeSdhSonetLink: public TeLink {
 public:
 TeSdhSonetLink(telink_ident_t id);
 ~TeSdhSonetLink(void);

 void dump(std::string & prefix);

 bool setData(const telink_tdm_data_t & data);
 bool getData(telink_tdm_data_t & data);

 bool setTdmAvailBw(const std::list<uint32_t> & f ts);
 bool getTdmAvailBw(std::list<uint32_t> & fts);

 bool fitInConstraints(const cspf_constr_t & data);

 private:
 gmpls_sdhsonet_stdarbcap_t stdArbConc_;
 uint8_t hoMuxCapMask_;
 uint8_t loMuxCapMask_;
 uint32_t transparencyMask_;
 uint32_t blsrRingId_;

 std::list<uint32_t> freeTimeslots_;
 };

10.3.7.2 LSC G.709 TeLinks

 class TeG709Link: public TeLink {
 public:
 TeG709Link(telink_ident_t id);
 ~TeG709Link(void);

 void dump(std::string & prefix,
 bool recursive);

 bool setData(const telink_lscg709_data_t & data) ;
 bool getData(telink_lscg709_data_t & data);

 bool setLscG709AvailBw(const std::list<uint32_t> & foduk,
 const std::list<uint32_t> & foch);
 bool getLscG709AvailBw(std::list<uint32_t> & fod uk,
 std::list<uint32_t> & foch);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

179

 bool fitInConstraints(const cspf_constr_t & data);

 private:
 uint8_t odukMuxCapMask_;

 std::list<uint32_t> unallocODUk_;
 std::list<uint32_t> unallocOCh_;
 };

Code 10-16: SDH/SONET TE Links

10.3.7.3 LSC WDM TE Links

 class TeWdmLink: public TeLink {
 public:
 TeWdmLink(telink_ident_t id);
 ~TeWdmLink(void);

 void dump(std::string & prefix,
 bool recursive);

 bool setData(const telink_lscwdm_data_t & data);
 bool getData(telink_lscwdm_data_t & data);

 bool setLscWdmAvailBw(const wdm_link_lambdas_bitm ap_t & bm);
 bool getLscWdmAvailBw(wdm_link_lambdas_bitmap_t & bm);

 bool fitInConstraints(const cspf_constr_t & data);

 private:
 uint32_t dispersionPMD_;
 uint32_t spanLength_;
 std::list<wdm_amplifier_data_t> amplifiers_;
 wdm_link_lambdas_bitmap_t lambdasBitmap_;
 };

Code 10-17: LSC WDM TE Links

10.4 G2.PCE-RA internal API

10.4.1 Topology update in G 2.PCE-RA

The dynamic topology update process is generally managed by the routing protocol (i.e. OSPF-TE) through the
IPC, but also the VTY interface can inject topology elements for debugging purposes. Focusing on the OSPF
case, the G2.PCE-RA update can be triggered:

• upon the arrival of a new LSA;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

180

• when generating/re-generating an LSA.

The upload process is basically based on the filling up of G2.PCE-RA external data structures, depending the
type of the information contained in the LSA. These structures are then mangled by the IPC topology servant
and translated in internal types of the G2.PCE-RA process, to be used in the internal topology API of the
module.

The list of the topology related APIs is provided in the following.

10.4.1.1 Topology related

 pceraErrorCode_t
 topologyGet(topology_summary_data_t & data,
 std::string & resp);

10.4.1.2 Node generic

 pceraErrorCode_t
 nodeAdd(const node_ident_t& id,
 std::string & resp);

 pceraErrorCode_t
 nodeDel(const node_ident_t& id,
 std::string & resp);

 std::list<node_ident_t>
 nodeGetAll(std::string & resp);

10.4.1.3 Network Node related

 pceraErrorCode_t
 netNodeUpdate(uint32_t rId,
 const net_node_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 netNodeGet(uint32_t rId,
 net_node_data_t & data,
 std::string & resp);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

181

10.4.1.4 Grid Node related

 pceraErrorCode_t
 gridSiteUpdate(uint32_t siteId,
 const grid_site_data_t& data,
 std::string & resp);

 pceraErrorCode_t
 gridSiteGet(uint32_t siteId,
 grid_site_data_t & data,
 grid_subnodes_t & snodes,
 std::string & resp);

 pceraErrorCode_t
 gridSubNodeDel(uint32_t siteId,
 uint32_t id,
 std::string & resp);

 pceraErrorCode_t
 gridServiceUpdate(uint32_t siteId,
 uint32_t id,
 const grid_service_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 gridServiceGet(uint32_t siteId,
 uint32_t id,
 grid_service_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 gridCompElemUpdate(uint32_t siteId,
 uint32_t id,
 const grid_ce_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 gridCompElemGet(uint32_t siteId,
 uint32_t id,
 grid_ce_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 gridSubClusterUpdate(uint32_t siteId,
 uint32_t id,
 const grid_subcluster_data_t & data,
 std::string & resp);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

182

 pceraErrorCode_t
 gridSubClusterGet(uint32_t siteId,
 uint32_t id,
 grid_subcluster_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 gridStorageElemUpdate(uint32_t siteId,
 uint32_t id,
 const grid_se_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 gridStorageElemGet(uint32_t siteId,
 uint32_t id,
 grid_se_data_t & data,
 std::string & resp);

10.4.1.5 TNA related

 pceraErrorCode_t
 tnaAdd(const uint32_t & rId,
 const g2mpls_addr_t & id,
 std::string & resp);

 pceraErrorCode_t
 tnaDel(const uint32_t & rId,
 const g2mpls_addr_t & id,
 std::string & resp);

 std::list<g2mpls_addr_t>
 tnaGetAllFromNode(const uint32_t & rId,
 std::string & resp);

10.4.1.6 TE-Link related

 pceraErrorCode_t
 linkAdd(const telink_ident_t & id,
 std::string & resp);

 pceraErrorCode_t
 linkDel(const telink_ident_t & id,
 std::string & resp);

 std::list<telink_ident_t>
 teLinkGetAllFromNode(const uint32_t & rId,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

183

 std::string & resp);

 pceraErrorCode_t
 teLinkUpdateCom(const telink_ident_t & id,
 const telink_com_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 teLinkGetCom(const telink_ident_t & id,
 telink_com_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 teLinkUpdateTdm(const telink_ident_t & id,
 const telink_tdm_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 teLinkGetTdm(const telink_ident_t & id,
 telink_tdm_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 teLinkUpdateLscG709(const telink_ident_t & id,
 const telink_lscg709_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 teLinkGetLscG709(const telink_ident_t & id,
 telink_lscg709_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 teLinkUpdateLscWdm(const telink_ident_t & id,
 const telink_lscwdm_data_t & data,
 std::string & resp);

 pceraErrorCode_t
 teLinkGetLscWdm(const telink_ident_t & id,
 telink_lscwdm_data_t & data,
 std::string & resp);

 pceraErrorCode_t

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

184

 teLinkUpdateStates(const telink_ident_t& id,
 const opstate_t & opState,
 const admstate_t & admState,
 std::string & resp);

 pceraErrorCode_t
 teLinkGetStates(const telink_ident_t& id,
 opstate_t & opState,
 admstate_t & admState,
 std::string & resp);

 pceraErrorCode_t
 teLinkUpdateGenBw(const telink_ident_t & id,
 const avail_bw_per_prio_t & bw,
 std::string & resp);

 pceraErrorCode_t
 teLinkGetGenBw(const telink_ident_t & id,
 avail_bw_per_prio_t & bw,
 std::string & resp);

 pceraErrorCode_t
 teLinkUpdateTdmBw(const telink_ident_t & id,
 const avail_bw_per_prio_t & bw,
 const std::list<uint32_t> freeTS,
 std::string & resp);

 pceraErrorCode_t
 teLinkGetTdmBw(const telink_ident_t & id,
 avail_bw_per_prio_t & bw,
 std::list<uint32_t> freeTS,
 std::string & resp);

 pceraErrorCode_t
 teLinkUpdateLscG709Bw(const telink_ident_t & id,
 const avail_bw_per_prio_t & bw,
 const std::list<uint32_t> freeODUk,
 const std::list<uint32_t> freeOCh,
 std::string & resp);
 pceraErrorCode_t
 teLinkGetLscG709Bw(const telink_ident_t & id,
 avail_bw_per_prio_t & bw,
 std::list<uint32_t> freeODUk,
 std::list<uint32_t> freeOCh,
 std::string & resp);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

185

 pceraErrorCode_t
 teLinkUpdateLscWdmBw(const telink_ident_t & id,
 const avail_bw_per_prio_t & bw,
 wdm_link_lambdas_bitmap_t & bm,
 std::string & resp);

 pceraErrorCode_t
 teLinkGetLscWdmBw(const telink_ident_t & id,
 avail_bw_per_prio_t & bw,
 wdm_link_lambdas_bitmap_t & bm,
 std::string & resp);

 pceraErrorCode_t
 teLinkAppendSrlgs(const telink_ident_t & id,
 const std::list<uint32_t> & srlgs,
 std::string & resp);

 pceraErrorCode_t
 teLinkGetSrlgs(const telink_ident_t & ident,
 std::list<uint32_t> & srlgs,
 std::string & resp);

 pceraErrorCode_t
 teLinkAppendCalendar(const telink_ident_t & id,
 const std::map<uint32_t,avail_bw_per_prio_t > cal,
 std::string & resp);

 pceraErrorCode_t
 teLinkGetCalendar(const telink_ident_t & id,
 std::map<uint32_t,avail_bw_per_prio_t> cal,
 std::string & resp);

 pceraErrorCode_t
 teLinkAppendIsc(const telink_ident_t & id,
 const std::list<isc_t> & iscs,
 std::string & resp);

 pceraErrorCode_t
 teLinkGetIsc(const telink_ident_t & id,
 std::list<isc_t> & iscs,
 std::string & resp);
};

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

186

10.4.2 Computation of routes in G 2.PCE-RA

Path computation is the main task of the G2.PCE-RA module, triggered by G2.PCE-RA users in different cases:

• by NCC, for the computation of the route of a call and then the primary and/or secondary LSPs in it;
• by G.RSVP-TE, for the ERO completion and the crankback management;
• by G2.PCE-RA VTY, for testing purposes.

All the SPF computations are provided by an implementation of the Dijkstra constrained algorithm, described in
terms of pseudo-code in Figure 10-5.

algorithm Constrained Dijkstra

define V = set of vertices in the given graph

define U = set of unvisited vertices in the given graph

define ΓI = set of neighbor vertices of vertex I
define P(I) = predecessor of vertex I along the path

define cIJ = cost of the arc from vertex I to vertex J

define d(I) = cumulative path cost from root vertex S till vertex I

define S/D = source/destination vertex

define lIJ = arc between vertex I and J

define CONSTR = set of constraints the SPF must satisfy

begin

step 1. d(S)=0;

if (I ∈ ΓS and (lIJ,CONSTR)=TRUE) then d(I)= cSI else d(I)= ∞;
U = V-{S};

P(I)= S ∀ I ∈ U;

step 2. search J ∈ U:(lP(J)J,CONSTR)= TRUE and d(J)= min d(k), ∀ k ∈ U ;
U = U-{J};

if J = D then END

step 3. ∀ (I ∈ ΓJ and I ∈ U) do
if d(J)+ cJI < d(I) then {d(I)=d(J)+ cJI and P(I)=J};

goto step 2

end

Figure 10-5: G2.PCE-RA constrained Dijkstra pseudo-code.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

187

The list of the topology related APIs is provided in the following.

 pceraErrorCode_t
 nodeGetFromTna(const net_res_spec_t & tnaRes,
 uint32_t & rId,
 std::string & resp);

 pceraErrorCode_t
 nodeGetFromGnsTna(const grid_res_spec_t & tnaGnsRes,
 const std::list<uint32_t>& excludeSet,
 uint32_t & netNodeId,
 uint32_t & gridSiteId,
 std::string & resp);

 pceraErrorCode_t
 callRoute(const ero_hop_t & srcHop,
 const ero_hop_t & dstHop,
 const call_ident_t & callId,
 const call_info_t & callInfo,
 const recovery_info_t & recInfo,
 const lsp_info_t & lspInfo,
 std::list<ero_hop_t> & wEro,
 std::string & resp);

 pceraErrorCode_t
 callFlush(const call_ident_t & callId,
 std::string & resp);

 pceraErrorCode_t
 callConfirm(const call_ident_t & callId,
 std::string & resp);

 pceraErrorCode_t
 lspRoute(const ero_hop_t & srcHop,
 const ero_hop_t & dstHop,
 const call_ident_t & callId,
 const call_info_t & callInfo,
 const recovery_info_t & recInfo,
 const lsp_info_t & lspInfo,
 const std::list<ero_hop_t> & excludeEro,
 std::list<ero_hop_t> & wEro,
 std::list<ero_hop_t> & pEro,
 std::string & resp);

Code 10-18: Topology-related APIs

When a callRoute()with the request for computing two disjoint routes in the topology between the ingress and
egress TNAs occurs, the G2.PCE-RA provides two computational strategies:

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

188

• the Two Step Algorithm (TSA), applied in case of no strict requirement on the disjointness of the
produced pair of routes, if any;

• the Bhandari’s algorithm, applied in case of maximally disjoint routes computations.
In both cases (i.e. TSA, Bhandari), the SPF computation (i.e. Dijkstra) is carried out after a specific topology
transformation which modifies link metrics. After the computation, topology is reverted to the original state in
order to process subsequent computation requests on a reliable topology representation.

The following figures summarize the relevant function call flow in the G2.PCE-RA code by means of flow
diagrams.

call unprot.
or restored
on the fly

computeOneRoute()

req.
disjointness

matched

1 GNSCall
- primary conn.

1 GNSCall
- primary conn.
- second. conn.

1 GNSCall
- primary conn.
- second. conn.

exitOnErrror

route
exist

computeDisjointRoute()

route
exist

computeMaxDisjointRoutes()

route
exist

Y

N

N

N

Y

Y

Y

Y

N

N

callRoute()

- topology

Figure 10-6: Actions on a callRoute().

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

189

computeOneRoute()

simpleTopologyTransform()

simpleTopologyRevert()

secondary conn.

- primary conn.
- topology

exitOnErrror

computeDisjointRoute()

error

error

error

N

Y

Y

Y

N

N

Figure 10-7: Actions on a computeDisjointRoute().

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

190

computeOneRoute()

bhandariTopologyTransform()

bhandariTopologyRevert()

TEMP secondary
conn.

- primary conn.
- topology

exitOnErrror

computeMaxDisjointRoutes()

error

error

error

N

Y

Y

Y

N

N
bhandariInterlace()

NEW primary conn.
secondary conn.

error

N

Y

exitOnErrror

Figure 10-8: Actions on a computeMaxDisjointRoutes().

10.5 G2.PCE-RA external API

10.5.1 Topology API

The G2.PCE-RA module exposes an external topology interface by means of CORBA servants. The API for the
communication with external modules is specified in the <sw_root>/idl/g2mplsTopology.idl and shown below. It
is strictly related to the semantic of the internal G2.PCE-RA API for topology updates.

Common types used in this interface are specified in <sw_root>/idl/g2mplsTypes.idl and reported in Appendix
A.

#include "types.idl"
#include "g2mplsTypes.idl"

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

191

#ifndef G2MPLSTOPOLOGY_IDL
#define G2MPLSTOPOLOGY_IDL

interface g2mplsTopology {

 exception InternalProblems {
 string what;
 };

 exception CannotFetchNode {
 g2mplsTypes::nodeId id;
 string what;
 };

 exception CannotFetchSubNode {
 g2mplsTypes::nodeId parentId;
 g2mplsTypes::gridSubNodeId id;
 string what;
 };

 exception CannotFetchLink {
 g2mplsTypes::TELinkId id;
 string what;
 };

 exception CannotFetchTna {
 g2mplsTypes::tnaId id;
 string what;
 };

 //
 // Topology related calls
 //
 boolean
 nodeAdd(in g2mplsTypes::nodeIdent id)
 raises(InternalProblems);

 boolean
 nodeDel(in g2mplsTypes::nodeIdent id)
 raises(InternalProblems, CannotFetchNode);

 g2mplsTypes::nodeIdentSeq
 nodeGetAll()
 raises(InternalProblems);

 boolean
 netNodeUpdate(in g2mplsTypes::nodeId id,
 in g2mplsTypes::netNodeParams info)
 raises(InternalProblems, CannotFetchNode);

 boolean
 netNodeGet(in g2mplsTypes::nodeId id,
 out g2mplsTypes::netNodeParams info)
 raises(InternalProblems, CannotFetchNode);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

192

 // Grid related elements (from GLUE)
 boolean
 gridSiteUpdate(in g2mplsTypes::nodeId id,
 in g2mplsTypes::gridSiteParams info)
 raises(InternalProblems, CannotFetchNode);

 boolean
 gridSiteGet(in g2mplsTypes::nodeId id,
 out g2mplsTypes::gridSiteParams info,
 out g2mplsTypes::gridSubNodes snodes)
 raises(InternalProblems, CannotFetchNode);

 boolean
 gridSubNodeDel(in g2mplsTypes::nodeId siteId,
 in g2mplsTypes::gridSubNodeIdent id)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode);

 boolean
 gridServiceUpdate(in g2mplsTypes::nodeId siteId,
 in g2mplsTypes::gridSubNodeId id,
 in g2mplsTypes::gridServiceParams info)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode);

 boolean
 gridServiceGet(in g2mplsTypes::nodeId siteId,
 in g2mplsTypes::gridSubNodeId id,
 out g2mplsTypes::gridServiceParams info)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode);

 boolean
 gridCompElemUpdate(in g2mplsTypes::nodeId siteId,
 in g2mplsTypes::gridSubNodeId id,
 in g2mplsTypes::gridCEParams info)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode);

 boolean
 gridCompElemGet(in g2mplsTypes::nodeId siteId,
 in g2mplsTypes::gridSubNodeId id,
 out g2mplsTypes::gridCEParams info)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode);

 boolean
 gridSubClusterUpdate(in g2mplsTypes::nodeId siteId,
 in g2mplsTypes::gridSubNodeId id,
 in g2mplsTypes::gridSubClusterParams info)
 raises(InternalProblems,
 CannotFetchNode,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

193

 CannotFetchSubNode);

 boolean
 gridSubClusterGet(in g2mplsTypes::nodeId siteId,
 in g2mplsTypes::gridSubNodeId id,
 out g2mplsTypes::gridSubClusterParams info)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode);

 boolean
 gridStorageElemUpdate(in g2mplsTypes::nodeId siteId,
 in g2mplsTypes::gridSubNodeId id,
 in g2mplsTypes::gridSEParams info)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode);

 boolean
 gridStorageElemGet(in g2mplsTypes::nodeId siteId,
 in g2mplsTypes::gridSubNodeId id,
 out g2mplsTypes::gridSEParams info)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode);

 // TNA related
 boolean
 tnaIdsAdd(in g2mplsTypes::nodeIdent ident,
 in g2mplsTypes::tnaIdSeq seq)
 raises(InternalProblems,
 CannotFetchNode);

 boolean
 tnaIdsDel(in g2mplsTypes::nodeIdent ident,
 in g2mplsTypes::tnaIdSeq seq)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchTna);

 g2mplsTypes::tnaIdSeq
 tnaIdsGetAllFromNode(in g2mplsTypes::nodeIdent ident)
 raises(InternalProblems,
 CannotFetchNode);

 // Link related
 boolean
 linkAdd(in g2mplsTypes::teLinkIdent ident)
 raises(InternalProblems);

 boolean
 linkDel(in g2mplsTypes::teLinkIdent ident)
 raises(InternalProblems, CannotFetchLink);

 g2mplsTypes::teLinkIdentSeq
 teLinkGetAllFromNode(in g2mplsTypes::nodeIdent ident)
 raises(InternalProblems);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

194

 // link capabilities
 boolean
 teLinkUpdateCom(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::teLinkComParams info)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkGetCom(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::teLinkComParams info)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkUpdateTdm(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::teLinkTdmParams info)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkGetTdm(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::teLinkTdmParams info)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkUpdateLscG709(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::teLinkLscG709Params info)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkGetLscG709(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::teLinkLscG709Params info)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkUpdateLscWdm(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::teLinkLscWdmParams info)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkGetLscWdm(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::teLinkLscWdmParams info)
 raises(InternalProblems, CannotFetchLink);

 // link states
 boolean
 teLinkUpdateStates(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::statesBundle states)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkGetStates(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::statesBundle states)
 raises(InternalProblems, CannotFetchLink);

 // link bandwidth
 boolean
 teLinkUpdateGenBw(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::availBwPerPrio bw)
 raises(InternalProblems, CannotFetchLink);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

195

 boolean
 teLinkGetGenBw(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::availBwPerPrio bw)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkUpdateTdmBw(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::availBwPerPrio bw,
 in g2mplsTypes::freeCTPSeq freeTS)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkGetTdmBw(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::availBwPerPrio bw,
 out g2mplsTypes::freeCTPSeq freeTS)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkUpdateLscG709Bw(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::availBwPerPrio bw,
 in g2mplsTypes::freeCTPSeq freeODUk,
 in g2mplsTypes::freeCTPSeq freeOCh)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkGetLscG709Bw(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::availBwPerPrio bw,
 out g2mplsTypes::freeCTPSeq freeODUk,
 out g2mplsTypes::freeCTPSeq freeOCh)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkUpdateLscWdmBw(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::availBwPerPrio bw,
 in g2mplsTypes::teLinkWdmLambdasBitmap bm)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkGetLscWdmBw(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::availBwPerPrio bw,
 out g2mplsTypes::teLinkWdmLambdasBitmap bm)
 raises(InternalProblems, CannotFetchLink);

 // append operations
 boolean
 teLinkAppendSrlgs(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::srlgSeq srlgs)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkGetSrlgs(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::srlgSeq srlgs)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkAppendCalendar(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::teLinkCalendarSeq cal)
 raises(InternalProblems, CannotFetchLink);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

196

 boolean
 teLinkGetCalendar(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::teLinkCalendarSeq cal)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkAppendIsc(in g2mplsTypes::teLinkIdent ident,
 in g2mplsTypes::iscSeq iscs)
 raises(InternalProblems, CannotFetchLink);

 boolean
 teLinkGetIsc(in g2mplsTypes::teLinkIdent ident,
 out g2mplsTypes::iscSeq iscs)
 raises(InternalProblems, CannotFetchLink);
};
#endif // G2MPLSTOPOLOGY_IDL

Code 10-19: G².PCE-RA Topology external API IDL.

10.5.2 Computation API

The G2.PCE-RA module exposes an external call/LSP interface by means of CORBA servants. The API for the
communication with external modules is specified in the <sw_root>/idl/g2pcera.idl and shown below. It is strictly
related to the semantic of the internal G2.PCE-RA API for route computations.

Common types used in this interface are specified in <sw_root>/idl/g2mplsTypes.idl and reported in Appendix
A.

#include "types.idl"
#include "g2mplsTypes.idl"

#ifndef G2PCERA_IDL
#define G2PCERA_IDL

interface G2PCERA {

 exception InternalProblems {
 string what;
 };

 exception CannotFetchNode {
 g2mplsTypes::nodeId id;
 string what;
 };

 exception CannotFetchSubNode {
 g2mplsTypes::nodeId parentId;
 g2mplsTypes::gridSubNodeId id;
 string what;
 };

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

197

 exception CannotFetchLink {
 g2mplsTypes::TELinkId id;
 string what;
 };

 exception CannotFetchTna {
 g2mplsTypes::tnaId id;
 string what;
 };

 //
 // Computation related calls
 //

 boolean
 nodeGetFromTna(in g2mplsTypes::tnaResource tnaRes,
 out g2mplsTypes::nodeId node)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode,
 CannotFetchLink,
 CannotFetchTna);

 boolean
 nodeGetFromGnsTna(in g2mplsTypes::gridParams tnaGnsRes,
 in g2mplsTypes::nodeIdentSeq excludeSet,
 out g2mplsTypes::nodeId netNodeId,
 out g2mplsTypes::nodeId gridSiteId)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode,
 CannotFetchLink,
 CannotFetchTna);

 boolean
 callRoute(in g2mplsTypes::eroItem srcHop,
 in g2mplsTypes::eroItem dstHop,
 in g2mplsTypes::gridParams eTnaGnsRes,
 in g2mplsTypes::callIdent callId,
 in g2mplsTypes::callParams callInfo,
 in g2mplsTypes::recoveryParams recInfo,
 in g2mplsTypes::lspParams lspInfo,
 out g2mplsTypes::eroSeq wEro)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode,
 CannotFetchLink,
 CannotFetchTna);

 boolean
 callFlush(in g2mplsTypes::callIdent callId)
 raises(InternalProblems);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

198

 boolean
 callConfirm(in g2mplsTypes::callIdent callId)
 raises(InternalProblems);

 boolean
 lspRoute(in g2mplsTypes::eroItem srcHop,
 in g2mplsTypes::eroItem dstHop,
 in g2mplsTypes::callIdent callId,
 in g2mplsTypes::callParams callInfo,
 in g2mplsTypes::recoveryParams recInfo,
 in g2mplsTypes::lspParams lspInfo,
 in g2mplsTypes::eroSeq excludeEro,
 out g2mplsTypes::eroSeq wEro,
 out g2mplsTypes::eroSeq pEro)
 raises(InternalProblems,
 CannotFetchNode,
 CannotFetchSubNode,
 CannotFetchLink);
};
#endif // G2PCERA_IDL

Code 10-20: G².PCE-RA Computation external API IDL.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

199

11 G.UNI-GW Adapter Design Specification

The main functionality of the G.UNI-GW Adapter is to map signalling and routing information from the WSAG
Server to G2.RSVP and G2.OSPF protocol controllers. On one side, the G.UNI-GW implements a Web Service
that accepts incoming messages from the WSAG Server. On the other, these requests are translated into
CORBA IDL calls to control the client Call Controller on the UNI-C side.

11.1 G.UNI-GW Adapter Transactions

The transactions mapped by the G.UNI-GW involve GNS requests and Grid information updates. Figure 11-1
depicts G.UNI-GW adapter design, showing the involved interfaces and transactions. Communications between
G.UNI-GW adapter and the rest of the modules is bidirectional, so depending on the situation (local or remote),
the information will flow in one way (WSAG Server – G.UNIGW adapter – Call Controller) or the other (Call
Controller – G.UNIGW adapter – WSAG Server).

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

200

G.OUNI-C
RSVP
PC

G2.OSPF
PC

(client)

G.OUNI-N
RSVP
PC

G2.OSPF-TE
PC

G.OUNI

WS-G.OUNI
adapter

G.OUNI RSVP
API

G.OUNI OSPF
API

WS-AG
Server

WS-AG
Client

Web Services
(JSDL + GLUE semantic)

G.NBI
WS-

Agreement
(JSDL + GLUE)

G2

LSDB

G.OUNI GW G2MPLS LER

Grid Middleware

WS-AG
Client

WS-AG
Server

Sec.
10.1.1
Sec.

10.1.1

Sec.
10.1.2
Sec.

10.1.2

Figure 11-1: The GUNI-GW breakdown and transactions localization.

11.1.1 WSAG – WS-G.UNI Adapter – G.UNI-C RSVP PC (Signalli ng)

Three methods implement the signalling transactions that enable the creation and deletion of GNS:
CreateActivity, GetActivityStatuses, TerminateActivities.

CreateActivity

CreateActivity(CreateActivityType *, CreateActivity Response *)

The CreateAcitivty method is used to request a Grid Network Service.

• Incoming parameters: CreateActivityType � Contains Grid and Network information required to
provision a GNS.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

201

• Response parameters: CreateActivityResponseType � Contains a unique EndPointreference (EPR)
which identifies a certain activity. Usually, the address parameter of an EPR contains the URI of the V-
site that created the activity. This is required since the stage out process is initiated later on by the MSS
to simplify the workflow for the network scheduler.

• CORBA IDL Mapping:
○ callCreate
○ callSetTna
○ callSetGnsTna (ingress)
○ callSetGnsTna (egress)
○ callEnable
○ callSetup

• WSDL description:

<!-- Message Types -->
<xsd:complexType name="CreateActivityType">
 <xsd:sequence>
 <xsd:element ref="bes-factory:ActivityDocument" />
 <xsd:any namespace="##other" processContents="l ax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processCont ents="lax"/>
</xsd:complexType>

<xsd:complexType name="CreateActivityResponseType">
 <xsd:sequence>
 <xsd:element name="ActivityIdentifier" type="ws a:EndpointReferenceType"/>
 <xsd:element ref="bes-factory:ActivityDocument" minOccurs="0"/>
 <xsd:any namespace="##other" processContents="l ax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processCont ents="lax"/>
</xsd:complexType>

<!-- Message Elements -->
<xsd:element name="CreateActivity"
 type="bes-factory:CreateActivityType"/>
<xsd:element name="CreateActivityResponse"
 type="bes-factory:CreateActivityResponseType"/>

<!-- Messages -->
<wsdl:message name="CreateActivityRequest">
 <wsdl:part name="parameters" element="bes-factory :CreateActivity"/>
</wsdl:message>
<wsdl:message name="CreateActivityResponse">
 <wsdl:part name="parameters" element="bes-factory :CreateActivityResponse"/>
</wsdl:message>

<!-- Port Type -->
<wsdl:portType name="BESFactoryPortType">
 <wsdl:operation name="CreateActivity">
 <wsdl:input
 name="CreateActivity"
 message="bes-factory:CreateActivityRequest"
 wsa:Action="http://schemas.ggf.org/bes/2006/0 8/

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

202

 bes-factory/BESFactoryPortType/CreateActivity"/>
 <wsdl:output
 name="CreateActivityResponse"
 message="bes-factory:CreateActivityResponse"
 wsa:Action="http://schemas.ggf.org/bes/2006/0 8/
 bes-factory/BESFactoryPortType/CreateActivi tyResponse"/>
 </wsdl:operation>
</wsdl:portType>

<!-- Bindings -->
<wsdl:binding name="BESFactoryBinding" type="bes-fa ctory:BESFactoryPortType">
 <soap:binding style="document" transport="http:// schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="CreateActivity">
 <soap:operation soapAction="http://schemas.ggf. org/bes/2006/08/
 bes-factory/BESFactoryPortType/CreateActivity "/>
 <wsdl:input name="CreateActivity">
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="CreateActivityResponse">
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

GetActivityStatuses

GetActivityStatuses(GetActivityStatusesType *, GetA ctivityStatusesResponseType *)

The GetActivityStatuses method is used to request GNS status.

• Incoming parameters: GetActivityStatusType � Contains the GNS identifier of the activity to be check.
• Response parameters: GetActivityStatusResponseType � Contains the status of the requested GNS:

Pending, Running, Cancelled, Failed or Finished.
• CORBA IDL Mapping:

○ callGetDetails
• WSDL description:

<!-- Message Types -->
<xsd:complexType name="GetActivityStatusesType">
 <xsd:sequence>
 <xsd:element name="ActivityIdentifier" type="ws a:EndpointReferenceType"
 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:any namespace="##other" processContents="l ax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processCont ents="lax"/>
</xsd:complexType>

<xsd:complexType name="GetActivityStatusesResponseT ype">
 <xsd:sequence>
 <xsd:element name="Response" type="bes-factory: GetActivityStatusResponseType"

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

203

 maxOccurs="unbounded" minOccurs="0"/>
 <xsd:any namespace="##other" processContents="l ax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processCont ents="lax"/>
</xsd:complexType>

<!-- Message Elements -->
<xsd:element name="GetActivityStatuses"
 type="bes-factory:GetActivityStatusesType"/>
<xsd:element name="GetActivityStatusesResponse"
 type="bes-factory:GetActivityStatusesResponseType "/>

<!-- Messages -->
<wsdl:message name="GetActivityStatusesRequest">
 <wsdl:part name="parameters" element="bes-factory :GetActivityStatuses"/>
</wsdl:message>

<wsdl:message name="GetActivityStatusesResponse">
 <wsdl:part name="parameters" element="bes-factory :GetActivityStatusesResponse"/>
</wsdl:message>

<!-- Port Type -->
<wsdl:portType name="BESFactoryPortType">
 <wsdl:operation name="GetActivityStatuses">
 <wsdl:input
 name="GetActivityStatuses"
 message="bes-factory:GetActivityStatusesReque st"
 wsa:Action="http://schemas.ggf.org/bes/2006/0 8/
 bes-factory/BESFactoryPortType/GetActivityS tatuses"/>
 <wsdl:output
 name="GetActivityStatusesResponse"
 message="bes-factory:GetActivityStatusesRespo nse"
 wsa:Action="http://schemas.ggf.org/bes/2006/0 8/
 bes-factory/BESFactoryPortType/GetActivityS tatusesResponse"/>
 </wsdl:operation>
</wsdl:portType>

<!-- Bindings -->
<wsdl:binding name="BESFactoryBinding" type="bes-fa ctory:BESFactoryPortType">
 <soap:binding style="document" transport="http:// schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetActivityStatuses">
 <soap:operation soapAction="http://schemas.ggf. org/bes/2006/08/
 bes-factory/BESFactoryPortType/GetActivitySta tuses"/>
 <wsdl:input name="GetActivityStatuses">
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="GetActivityStatusesResponse" >
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

TerminateActivities

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

204

TerminateActivities(TerminateActivitiesType *, Term inateActivitiesResponseType *)

The TerminateActivities method is used to terminate a Grid Network Service.

• Incoming parameters: GetActivityStatusType � Contains the GNS identifier of the activity to be
terminated.

• Response parameters: GetActivityStatusResponseType � Contains the GNS identifier of the activity to
be terminated and the acknowledgement of the termination state.

• CORBA IDL Mapping:
○ callDisable
○ callDestroy

• WSDL description:

<!-- Message Types -->
<xsd:complexType name="TerminateActivitiesType">
 <xsd:sequence>
 <xsd:element name="ActivityIdentifier" type="ws a:EndpointReferenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:any namespace="##other" processContents="l ax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processCont ents="lax"/>
</xsd:complexType>

<xsd:complexType name="TerminateActivitiesResponseT ype">
 <xsd:sequence>
 <xsd:element name="Response" type="bes-factory: TerminateActivityResponseType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:any namespace="##other" processContents="l ax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processCont ents="lax"/>
</xsd:complexType>

<!-- Message Elements -->
<xsd:element name="TerminateActivities"
 type="bes-factory:TerminateActivitiesType"/>
<xsd:element name="TerminateActivitiesResponse"
 type="bes-factory:TerminateActivitiesResponseType "/>

<!-- Messages -->
<wsdl:message name="TerminateActivitiesRequest">
 <wsdl:part name="parameters" element="bes-factory :TerminateActivities"/>
</wsdl:message>

<wsdl:message name="TerminateActivitiesResponse">
 <wsdl:part name="parameters" element="bes-factory :TerminateActivitiesResponse"/>
</wsdl:message>

<!-- Port Type -->
<wsdl:portType name="BESFactoryPortType">
 <wsdl:operation name="TerminateActivities">
 <wsdl:input
 name="TerminateActivities"
 message="bes-factory:TerminateActivitiesReque st"

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

205

 wsa:Action="http://schemas.ggf.org/bes/2006/0 8/
 bes-factory/BESFactoryPortType/TerminateAct ivities"/>
 <wsdl:output
 name="TerminateActivitiesResponse"
 message="bes-factory:TerminateActivitiesRespo nse"
 wsa:Action="http://schemas.ggf.org/bes/2006/0 8/
 bes-factory/BESFactoryPortType/TerminateAct ivitiesResponse"/>
 </wsdl:operation>
</wsdl:portType>

<!-- Bindings -->
<wsdl:binding name="BESFactoryBinding" type="bes-fa ctory:BESFactoryPortType">
 <soap:binding style="document" transport="http:// schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="TerminateActivities">
 <soap:operation soapAction="http://schemas.ggf. org/bes/2006/08/
 bes-factory/BESFactoryPortType/TerminateActiv ities" />
 <wsdl:input name=" TerminateActivities">
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name=" TerminateActivitiesResponse ">
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

206

11.2 G.UNI-GW adapter Implementation

WS
Client/Serve

r

Corba
Client/Server

GUNI vty

Signalling
Request

Controller

Routing
Request

Controller

Figure 11-2: GUNI-GW operation flow.

The G.UNI-GW adapter can be divided in five basic functional blocks (Figure 11-2):

� WS Client/Server: This functional block implements the Web Service towards the WSAG Client/Server.
The binding structures and stubs have been implemented using the open source gSoap 2.7.10 wsdl
compiler.

� Corba Client/Server: This functional block calls the client Call Controller methods. The implementation
uses the open source omniORB-4.1.2, which is a CORBA Object Request Broker (ORB) for C++.

� GUNI vty: This functional block implements the virtual terminal interface commands to manage the
G.UNI-GW adapter.

� Signalling Request Controller: This block translates WS GNS requests into CORBA IDL calls.

� Routing Request Controller: This block translates WS Grid update information into CORBA IDL calls.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

207

11.2.1 File descriptions

• gunigw_main.cxx: Main GUNIGW process file.
○ Initializes vty
○ Starts WS Server

• gunigwd.cxx: Class GUNIGW_Master Implementation file.
• gunigw_vty: VTY commands file.
• BESFactoryBindingServer.cxx: GUNIGW Server Implementation file.

○ Implements the methods to be called from WSAG-Server.
• gunigw_corba.cxx: Corba client source file.
• soapBESFactoryBindingService.cpp, soapBESFactoryBindingService.h, soapC.cpp, soapH.h,

soapStub.h: WS Binding files automatically generated by gSOAP from gouni-bes-factory.wsdl file.
• gouni-bes-factory.wsdl: WSDL file describing GUNI-GW Web Service.
• bes-factory.xsd, jsdl.xsd, ws-addr.xsd: Schema files for GUNI-GW Web Service types.

11.3 Example

Next, an example of a CreateActivity XML request is shown:

<s11:Envelope
xmlns:s11=" http://www.w3.org/2003/05/soap-envelope "
xmlns:wsa=" http://www.w3.org/2005/08/addressing "
xmlns:jsdl=" http://schemas.ggf.org/jsdl/2005/11/jsdl "
xmlns:bes-factory=" http://schemas.ggf.org/bes/2006/08/bes-factory ">
<s11:Body>
 <bes-factory:CreateActivity>
 <bes-factory:ActivityDocument>
 <jsdl:JobDefinition>
 <jsdl:JobDescription>
 <jsdl:Application>
 <jsdl:ApplicationName> WISDOM</jsdl:ApplicationName>
 <jsdl:ApplicationVersion> 1.0</jsdl:ApplicationVersion>
 </jsdl:Application>
 <jsdl:DataStaging>
 <jsdl:FileName> input.dat</jsdl:FileName>
 <jsdl:FilesystemName> HOME</jsdl:FilesystemName>
 <jsdl:CreationFlag> dontOverwrite</jsdl:CreationFlag>
 <jsdl:Source>
 <jsdl:URI> http://source.org/input.dat </jsdl:URI>
 </jsdl:Source>
 </jsdl:DataStaging>
 </jsdl:JobDescription>
 </jsdl:JobDefinition>
 </bes-factory:ActivityDocument>
 </bes-factory:CreateActivity>
</s11:Body>
</s11:Envelope>

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

208

12 G.UNI and G.E-NNI RSVP-TE

The G.UNI and G.E-NNI RSVP-TE protocol controllers are derived from the I-NNI G.RSVP-TE protocol
controller documented in section 7.

This is made possible by a specific design choice: the I-NNI G.RSVP-TE is a superset of G.I-NNI, G.UNI and
G.E-NNI objects and functions, specified in D2.2 and D2.7 for the signalling part. This includes (but it is not
limited to) the parsing and formatting of G.UNI and G.E-NNI specific objects (e.g. the GENERALIZED_UNI),
that could cross the I-NNIs as RSVP opaque objects.

This design choice allowed to obtain a more flexible and complete G.RSVP-TE protocol controller, and easier
to maintain.

Some G.UNI and G.E-NNI specificities still exist in the G.UNI and G.E-NNI PCs, but have a limited impact and
are not relevant in a high-level software design discussion.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

209

13 G².OSPF-TE (I-NNI, E-NNI and UNI-N/C)

The overall OSPF-TE software architecture and details are documented in the QUAGGA v0.9.9.7 reference
documents.

The Phosphurus additions to migrate to G².OSPF-TE mainly consisted of the parsing and formatting of TE LSA
and the new Grid LSA, and impacted the following files:

� <sw_root>/ospfd/ospf_te.h

� <sw_root>/ospfd/ospf_te.c

� <sw_root>/ospfd/ospf_grid.h

� <sw_root>/ospfd/ospf_grid.c

� <sw_root>/ospfd/ospf_vty.c

Other areas of intervention concerned the network interface of OSPF, which is now sending and receiving
PDUs via its interface to the SCNGW. This work consisted of integrating an SCNGW Client in the OSPF, as
explained in section 6.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

210

14 Software structure

The G2MPLS code is based on the substrate of Quagga v0.99.7 routing suite [QUAGGA-DOC] from which it
inherits the base OSPFv2 implementation and some common libraries and tools. Different functionalities and
modules are implemented in the form of independent processes. The phosphorus-g2mpls package includes
software components developed from scratch, base Quagga protocols extended for Grid and GMPLS support,
additional tools for the automatic generation of FSM skeletons, extensions to the Quagga library for GMPLS.

All the processes import the Quagga library and the common framework for Inter-Process Communication
(IPC). The main modules are identified in Figure 14-1 and a short description is provided. Detailed software
decomposition is specified in the following of this document.

14.1 Configuration process

The Phosphorus software configuration process inherits the Quagga one, which is based upon the commonly
called autotools suite. The autotools suite is mainly composed by three different GNU tools: autoconf
(http://www.gnu.org/software/autoconf), automake (http://www.gnu.org/software/automake) and libtool
(http://www.gnu.org/software/libtool). An in-depth overview for each tool is out of scope for this document. We
will present a simple overview of the process in the following chapters

14.1.1 The configuration process from the user perspective

The Phosphorus software package comes with a set of scripts built during the development process. The most
important script is “configure” and is available in the package root directory.

A user who wants to compile and install the package must run the `configure' script in order to prepare the
source tree to be built on a particular system. The actual build process is performed using the make program.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

211

The `configure' script tests system features then makes the results of those tests available to the program while
it is being built.

phosphorus-g2mpls

lib
importimport

ipc
importimport

ospfd

g2rsvpted

gunirsvpdlrmd

scngwd

gennirsvpd

tnrcd

g2pcerad

gunigwd

gennigwd

nccd pyg2mplspyg2mpls

utilsutils

g2utilsg2utils

cccdcccd

nccdnccd

rcdrcd

xccxcc

toolstools

teststests

corbasketcorbasket

Figure 14-1: Phosphorus G2MPLS code structure.

The usual commands that should be invoked from the root Phosphorus source directory are the following ones:

./configure & make all install

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

212

At the end of the build procedure the software should be built and installed correctly on the host system.

14.1.2 The configuration process from the developer perspe ctive

The main input files for the configuration and building processes are the root `configure.ac' and all
`Makefile.am' scattered in the source tree. There is also a bunch of other files required by the autotools suite
which are interesting only from the maintainer point of view.

The autotools setup process requires some standard steps which are not needed anymore after the setup. The
developer which does not need to tweak the configuration process usually changes a subset of all Makefile.am
files of the source tree. The autotools setup is in charge of updating the developer environment consistently
upon a Makefile.am update.

The files produced by the autotools are not stored into the repository itself because they depend on the
developer versions of the autotools components. Stripping the repository from unnecessary files eases the
maintenance and shortens its size.

An ‘autogen.sh’ script which bootstraps a fresh checkout is provided in the root directory of the package, such
script simply rebuilds all the required files using the autotools suite available in the developer system.

14.2 Process start-up and monitoring

In order to start-up, shut-down and monitor the Phosphorus processes the ‘monit’ program has been selected
(http://www.tildeslash.com/monit). Monit is a widely spread utility for managing and monitoring, processes, files,
and directories on a UNIX systems. It can start a process if it does not run, restart it if it does not respond and
stop it if it uses too many resources.

Monit is controlled via a configuration file based on a free-format, token-oriented syntax. Monit logs messages
to syslog or to its own log file and sends notifies about error conditions and recovery status via customizable
alerts.

The following excerpt shows the format of the input configuration file:

Poll at 1-minute intervals.

set daemon 30

set mailserver your.mail.server

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

213

Set syslog logging.

set logfile syslog facility log_daemon

Set a default mail from-address for all alert mes sages emitted by monit.

set mail-format { from: mail@domain}

Send alert to system admin on any event

set alert mail@domain

Enable http support

set httpd port 2621
 allow localhost

check process scngwsd

check process scngwsd with pidfile /var/run/scngwsd .pid
 start program = "/etc/monit/scngwsd.start"
 stop program = "/etc/monit/scngwsd.stop"
 if failed port 2620 type tcp with timeout 15 secon ds then restart
 alert mail@domain
 with mail-format {
 from: mail@domain
 subject: scngwsd $EVENT - $ACTION
 message: This event occurred on $HOST at $DATE.
 Regards,
 monit
 }
 if cpu is greater than 60% for 2 cycles then alert
 if cpu > 80% for 5 cycles then restart
 if mem > 20 MB then alert
 if loadavg(5min) greater than 10 for 8 cycles then stop
 if 3 restarts within 5 cycles then timeout
 group quagga

check process lrmd

check process LRMd with pidfile /var/run/lrmd.pid
 start program = "/etc/monit/lrmd.start"
 stop program = "/etc/monit/lrmd.stop"
 if failed port 2610 type tcp with timeout 15 secon ds then restart
 alert mail@domain
 with mail-format {
 from: mail@domain
 subject: lrmd $EVENT - $ACTION
 message: This event occurred on $HOST at $DATE.
 Regards,
 monit

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

214

 }
 if cpu is greater than 60% for 2 cycles then alert
 if cpu > 80% for 5 cycles then restart
 if mem > 20 MB then alert
 if loadavg(5min) greater than 10 for 8 cycles then stop
 if 3 restarts within 5 cycles then timeout
 group quagga

check process tnrcd

check process tnrcd with pidfile /var/run/tnrcd.pid
 start program = "/etc/monit/tnrcd.start"
 stop program = "/etc/monit/tnrcd.stop"
 if failed port 2610 type tcp with timeout 15 secon ds then restart
 alert mail@domain
 with mail-format {
 from: mail@domain
 subject: tnrcd $EVENT - $ACTION
 message: This event occurred on $HOST at $DATE.
 Regards,
 monit
 }
 if cpu is greater than 60% for 2 cycles then alert
 if cpu > 80% for 5 cycles then restart
 if mem > 20 MB then alert
 if loadavg(5min) greater than 10 for 8 cycles then stop
 if 3 restarts within 5 cycles then timeout
 group quagga

Code 14-1: Configuration file for stack start-up and monitoring.

14.3 Inter-process communication

The Quagga software is composed by a multitude of processes, all of them use a socket based
intercommunication library to exchange messages. The involved software is located in the ‘zebra‘and ‘lib’
directories (zebra/zserv.c, zebra/zserv.h, lib/zclient.c and lib/zclient.h files).

Such mechanism is easy to extend and simple to use in communication environments characterized by simple,
fixed size and unstructured messages. In a GMPLS context like the Phosphorus one it cannot be used because
messages present the opposite nature: they are usually highly structured, variable sized and often
unstructured.

In order to cope with such an environment the Quagga IPC mechanisms has been replaced using the CORBA
middleware.

The CORBA framework [CORBA] is an industry-level middleware, defined by the Object Management Group
(OMG), which allows to normalize the method-call semantics (in a language-independent fashion) among
application objects that are located either in the same address space (i.e. application) or remote address space

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

215

(i.e. local or remote host). The CORBA framework adopts and Interface Definition Language (IDL) to specify
the interfaces between different modules, and are translated by IDL compilers into client and servant side code
in specific programming languages. The client code acts as a proxy in order to contact the server side. The
servant code is a skeleton which usually must be inherited and expanded to process the clients requests. An
ORB is usually provided with all the libraries needed to handle CORBA communications, the ORB user simply
fills the logic portions involved in the communication.

CORBA has been selected because it is complete and powerful inter-process and inter-platform communication
architecture. The ORB adopted by the Phosphorus team is the one developed within the omniORB project
[omniORB], which is an LGPL (Lesser GPL) CORBA ORB for C++ and Python. It has been chosen for its ability
to provide CORBA features in a sufficiently light and manageable suite.

14.3.1 omniORB

OmniOrb is a robust CORBA ORB with C++ and Python bindings, it is largely CORBA 2.6 compliant and it is
fully interoperable with other CORBA ORBs.

omniORB is fully multithreaded. To achieve low call overhead, unnecessary call-multiplexing is eliminated. With
the default policies, there is at most one call in-flight in each communication channel between two address
spaces at any one time. To do this without limiting the level of concurrency, new channels connecting the two
address spaces are created on demand and cached when there are concurrent calls in progress. Each channel
is served by a dedicated thread. This arrangement provides maximal concurrency and eliminates any thread
switching in either of the address spaces to process a call.

Furthermore, to maximise the throughput in processing large call arguments, large data elements are sent as
soon as they are processed while the other arguments are being marshalled. With GIOP 1.2, large messages
are fragmented, so the marshaller can start transmission before it knows how large the entire message will be.

From version 4.0 onwards, omniORB also supports a flexible thread pooling policy, and supports sending
multiple interleaved calls on a single connection. This policy leads to a small amount of additional call
overhead, compared to the default thread per connection model, but allows omniORB to scale to extremely
large numbers of concurrent clients.

omniORB uses real C++ exceptions and nested classes. It keeps to the CORBA specification's standard
mapping as much as possible and does not use the alternative mappings for C++ dialects. The only exception
is the mapping of IDL modules, which can use either namespaces or nested classes.

omniORB relies on native thread libraries to provide multithreading capability. A small class library (omnithread)
is used to encapsulate the APIs of the native thread libraries. In application code, it is recommended but not
mandatory to use this class library for thread management. It should be easy to port omnithread to any platform
that either supports the POSIX thread standard or has a thread package that supports similar capabilities.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

216

omniORB is available for download at the following URL: http://omniorb.sourceforge.net

14.3.2 Quagga daemons and threads

Traditional routing software is made as a one process program which provides all of the routing protocol
functionalities. Quagga takes a different design approach: it is made from a collection of several daemons that
work together to build the routing table. There may be several protocol-specific routing daemons and zebra the
kernel routing manager.

For changing the kernel routing table and for redistribution of routes between different routing protocols, there is
a kernel routing table manager zebra daemon. It is easy to add a new daemon to the system without affecting
any other software. There is no need for these daemons to be running on the same machine.

At the moment the Quagga software was planned, the thread library which comes with GNU/Linux or FreeBSD
had some problems running reliable services such as routing software. The Quagga team decided to avoid
threads at all, preferring a select() approach for multiplexing system events.

Quagga software is divided into daemons. Each daemon run as a separate process and exchanges its data
with the others via a socket based communication. Each process is divided into quagga-threads, a quagga-
thread is a software simulated thread which use the select() approach. Each daemon is linked with the Quagga
library which provides a thread/event scheduler for the running process. The scheduler selects a timer, an
event, a thread or a network operation and runs its related handling procedure. Each running object must be
cooperative with the others, it must explicitly yield to the CPU in order to let the others run in multithread-like
environment.

14.3.3 omniORB integration in Phosphorus

While an ORB is multi-threaded by nature, the Quagga software is single-threaded by design.

In order to integrate omniORB with Quagga, without modifying the whole Quagga software base, a mutex
approach has been selected. The mutex separates the Quagga scheduler from the ORB main loop and let
them run in different time slices. The Quagga scheduler works as usual, serving pending tasks if available. In
the meanwhile the ORB is stuck to the mutex which prevents the ORB and a Quagga tasks to run in parallel.

When the scheduler detects an idle status (no pending threads to serve) unblocks the ORB by releasing the
mutex. The ORB main loop starts running, serving CORBA requests for a specific amount of time. When the
allocated time-slice elapses, the ORB gives back the control to the Quagga scheduler.

In order to implement the described behaviour the CORBA servants must follow the software-contract
described in 14.3.3.4

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

217

14.3.3.1 CORBA clients and servers common calls

Both CORBA clients and CORBA servers (which could be composed by a set of CORBA servant) should call
the library provided corba_init() function at startup and corba_fini() function at shutdown.

The corba_init() function initializes the ORB data structures and resolves initial references to the root POA. The
corba_fini() function is provided for symmetry and should perform clean-up actions if needed.

14.3.3.2 CORBA clients utility library

Client side software should follow a standard initialization phase which is composed by the following calls:

a) corba_init()

b) corba_client_setup(): Retrieves the ORB reference, fetches the involved servant IOR, narrows the
reference and setups relevant data structures

The finalization phase is composed by the following calls:

a) corba_client_shutdown(): Performs clean-up actions if needed

b) corba_client_fini()

14.3.3.3 CORBA server utility library

A Quagga based CORBA server must adhere to the call sequence that follows:

a) corba_init()

b) corba_server_setup(): Retrieves the POA reference, activates the servant and builds the IOR file
describing the servant access point, stores the POA Manager reference for later usage and finally
activates the POA Manager

The finalization phase is composed by the following calls:

a) corba_server_shutdown(): Removes the IOR files which has been generated by corba_server_setup()

b) corba_fini()

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

218

14.3.3.4 CORBA servants requirements

Each servant must use the following skeleton on each method:

type servant::method(parms)
{
 STACK_LOCK();
 …
 STACK_UNLOCK();
}

Code 14-2: CORBA servant requirements

The STACK_LOCK() and STACK_UNLOCK() provide the locking/unlocking mechanism which drives the
CORBA/Quagga behaviour. A missing STACK_LOCK()/STACK_UNLOCK() will cause unpredictable results in
the whole server process

14.4 G²MPLS base Python modules

The founding Python modules developed for the G²MPLS project in WP2 are briefly explained in the following:

baseobj

The baseobj module introduce a number of basic object to be used by the Python-based protocol controllers,
such as: BasicObject: a wrapper for the native Python object with a number of extra features (e.g. logging
facilities); BasicLock and BasicLocksTable: wraps the thread locks to make deadlocks easily debuggable;
BasicTable and ParmsBox: wraps basic dicts with locking facilities, in order to provide a powerful tool to
prevent a simultaneous access to critical objects (e.g. the table of Calls at the CCC or NCC).

bits

Introduces some classes for bitmask and address (node IDs, IPv4, IPv6, NSAP, MAC) manipulation.

corbahelper

An extensive wrapper to ease the creation of omniORB servants and clients. I.e. it provides safe wrappers for
client method invocations (e.g. retrying to read the IOR on transient exceptions), or the powerful and flexible
creation of omniORB servant classes and related methods, with minimum involvement in details of the
omniORB inner workings required from the programmers of protocol controllers.

fsm

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

219

This module implements a flexible and configurable Finite State Machine engine. The FSM architecture is in
line with that specified for the G²MPLS framework (e.g. based on root events and detailed events, and
supporting both inbound and outbound transitions). The FSM has a queue of incoming events that can be
posted in a blocking or non-blocking fashion, and are executed by a thread sleeping on the queue. When
multiple instances of FSM exist (e.g. one per Call), the scalability of the system is greatly enhanced by
configuring the execution of all the transitions with a single thread, rather than multiple threads (one per FSM).

logger

A module implementing tracing facilities, with log classes and differentiated tracing levels for each class.

netutils

Allows to retrieve some info about the SCN interfaces of the G²MPLS controller.

protocol

The classes in this module incorporate some basic functionalities in order to simplify the development of
protocol controllers and protocol objects. In particular, the Protocol class already include a number of functions
related to the logging facility, the initialization and handling of CORBA, timers, network communication and
FSM. Any protocol class derived from this (e.g. the NetworkCallController) will inherit all these functionalities
automatically. The ProtoObject class does the same for protocol objects, such as the Call.

timer

The timer module implements a calendar of timer events where all the timers of a protocol controller are
scheduled. This solution drastically increases the scalability of the timers management: just one timer (i.e.
thread) is needed for the whole calendar independently of the number of scheduled events, compared to the
standard solution where 1 thread exists per each scheduled timer.

udpcomm

Implements an UDP client and server.

xmlmsg

Implements a parser and formatter of XML-based signalling messages.

g2types

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

220

This module includes a number of classes for the management of G²MPLS stuff; e.g. identifiers (Data Link, TE
Link, labels, TNA, LSP, Call, Recovery Bundle, etc.) and clusters of parameters (transport network resources,
LSP parameters, Call parameters, recovery parameters).

14.5 Software daemons

14.5.1 lrmd

This module is responsible for the management of the relationships among TE-links, Data-links, Control
channels and SCN interfaces. The TE-links are the result of a bundling procedure applied to a number of
physical component data-links with the eligibility for being part of the same logical construct.

The functionalities of the LRM comprise:

• Selection and allocation/de-allocation of resources (<Data-link, label>) in TE-link for signalling
purposes,

• Management of the TE-link status and bundling information for topology purposes.

lrmd exposes interfaces to gunirsvpd, g2rsvpted, tnrcd, ospfd, scngwd and g2nccd.

lrmd is not part of Quagga routing suite and is developed from scratch.

14.5.2 scngwd

This module is responsible for the management of the dualism between the Transport Network and Signalling
Network. In transmission, it correlates SDUs sent by the G2MPLS protocols towards TE-link source/destinations
to the actual and active control channel and SCN interface configured on the G2MPLS controllers for that TE-
links pair.

In reception, scngwd selects the protocol instance and TE-link on which the SDUs received from the SCN
interface must be sent to.

The scngwd module is further broken down in two sub-modules as described in Table 14-1.

module sub-module short description

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

221

SCNGW client
(SCNGWC)

Library offering a wrapped socket API, to be linked by
each protocol wanting communication across the SCN.
It acts as an access i/f to the SCNGW server, and has 2
channels with it: 1 for data, 1 for control (e.g. open/close
sockets, etc.) SCNGW

(SCN Gateway)

SCNGW server
(SCNGWS)

Separate process (i.e. a socket manager) handling
(tunnelled) communication through the SCN for one or
more clients. It maps TN resources (TE links) into SCN
resources (control i/fs) via the TE links <-> CCs
association.

Table 14-1: SCNGW breakdown in sub-modules.

scngwd exposes interfaces to gunirsvpd, gennirsvpd, g2rsvpted, ospfd, lrmd.

scngwd is not part of Quagga routing suite and is developed from scratch.

14.5.3 tnrcd

This module is responsible for abstracting the technology specific details of the transport network resources for
control plane use. The main functionalities of the Transport Network Resource Controller are:

• translation and maintenance of the bindings between the technology specific name space for transport
resources (e.g. in DWDM equipments: <port, wavelength>; in TDM: <port, virtual container>; in
Ethernet: <port, VLANs>) and the G2MPLS name space (<data-link, label>)

• translation between the technology specific configurations for transport resources (e.g. cross-
connections, protections, etc.) and the G2MPLS corresponding actions

• binding maintenance among the resources (e.g. cross-connections, bookings, protections/restorations,
etc.).

The tnrcd module is further broken down in two sub-modules as described in Table 14-2.

module sub-module short description

TNRC
(Transport Network
Resource Controller)

TNRC-AP
(TNRC Abstract Part)

Process offering a generic API for the configuration &
monitoring of the TN resources. It will abstract the TN
resource description, and provide an atomic grouping of
actions that might be composed by a set of local
management sub-actions on the equipment.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

222

TNRC-SP
(TNRC Specific Part))

Lower part of the process, loaded as plug-in, and
offering the upper part an API specific to the equipment
considered. It will name resources based on the
underlying TN technology and SwCap. The core part of
the TNRC-SP is likely to be dependent on the controlled
equipment (e.g. based on some proprietary SNMP MIB
sub-tree supported for configuration and monitoring).

Table 14-2: TNRC breakdown in sub-modules.

tnrcd exposes interfaces to lrmd, gunirsvpd, gennirsvpd, g2rsvpted and g2nccd.

tnrcd is not part of Quagga routing suite and is developed from scratch.

14.5.4 ospfd

This module is the OSPF routing protocol extended with GMPLS TE and Grid-GMPLS extensions (derived from
the GLUE schema mapping). The module implements the routing instance for the I-NNI interface between
G2MPLS nodes. Some preliminary E-NNI extensions and control of two instances (the I-NNI’s and the E-NNI’s
one) is also implemented as part of the extensions for G2MPLS interfacing (Task 2.2 - Activity A2.2.2).

ospfd exposes interfaces to lrmd, pcerad and scngwd.

ospfd in phosphorus-g2mpls is extended for G2MPLS with respect to the Quaggav0.99.7 baseline.

14.5.5 g2rsvpted

This module is the RSVP-TE signalling protocol extended with GMPLS TE and Grid-GMPLS extensions
(derived from the JSDL schema mapping). The module implements the I-NNI signalling between G2MPLS
nodes.

g2rsvpted exposes interfaces to lrmd, tnrcd, g2nccd, pcerad and scngwd.

g2rsvpted is not part of Quagga routing suite and is developed from scratch.

14.5.6 gunirsvpd

This module is the UNI RSVP signalling protocol extended with OIF UNI-RSVP and Grid-GMPLS extensions
(derived from the JSDL schema mapping). The module implements the G.UNI signalling between a G2MPLS
user and the node at the edge of a G2MPLS domain.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

223

gunirsvpd exposes interfaces to lrmd, tnrcd, g2nccd and scngwd.

gunirsvpd is not part of Quagga routing suite and is developed from scratch.

14.5.7 gennirsvpd

This module is the E-NNI RSVP signalling protocol extended with OIF ENNI-RSVP and Grid-GMPLS
extensions (derived from the JSDL schema mapping). The module implements the G.E-NNI signalling between
two border nodes of adjacent G2MPLS domains.

gennirsvpd exposes interfaces to lrmd, tnrcd, g2nccd and scngwd.

gennirsvpd is not part of Quagga routing suite and is developed from scratch.

14.5.8 g2nccd

This module is the GNS Transaction and G2MPLS Call Controller. It controls (setup and recovery) the end-to-
end call and in particular the segment implemented by the G2MPLS domain in which it operated.

g2nccd exposes interfaces to lrmd, tnrcd, g2rsvpted, gunirsvpd, gennirsvpd and pcerad.

g2nccd is not part of Quagga routing suite and is developed from scratch.

14.5.9 g2pcerad

This module implements the routing algorithm for the path computation of call segments.

g2pcera exposes interfaces to g2rsvpted, g2nccd and ospfd.

g2pcera is not part of Quagga routing suite and is developed from scratch.

14.5.10 lib

This library contains many common utilities of the Quagga framework that have been extended for G2MPLS
purposes. The core VTY implementation as well as the zebra client/server and the redefinition and control of
zebra pseudo-threads are part of the original Quagga v0.997 baseline. Common GMPLS types and addresses

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

224

as well as some related set/get/print utilities have been added to the Quagga baseline. The library is linked by
all the processes in the phosphorus-g2mpls.

lib in phosphorus-g2mpls is extended for G2MPLS with respect to the Quaggav0.99.7 baseline.

14.5.11 pyg2mpls

This folder is the collection of Python-based protocol controllers (CCC, NCC and RC), plus a number of
common utilities (utils/, g2utils/, xcc/). The protocol controllers are contained in cccd, nccd and rcd,
respectively.

The NCC VTY is implemented in <sw_root>/nccd/.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

225

15 References

As explained in section 1, the references listed here are only those directly functional to this document. For a
list of the references to standards appearing in this document, please point to D2.1, D2.2 and D2.7.

[PH-WP2-D2.1] Phosphorus deliverable D2.1, “The Grid-GMPLS Control Plane architecture”.

[PH-WP2-D2.2] Phosphorus deliverable D2.2, “Routing and Signalling Extensions for the Grid-GMPLS Control

Plane”.

[PH-WP2-D2.6] Phosphorus deliverable D2.6, “Deployment models and solutions of the Grid-GMPLS Control

Plane”.

[PH-WP2-D2.7] Phosphorus deliverable D2.7, “Grid-GMPLS network interfaces”.

[QUAGGA-DOC] The Quagga Software Routing Suite documentation. http://www.quagga.net/docs/docs-info.php

[CORBA] http://www.corba.org/

[omniORB] http://omniorb.sourceforge.net/

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

226

16 Acronyms

AAA Authentication, Authorisation, and Accounting

AAI Authentication and Authorization Infrastructure

ANSI American National Standards Institute

API Application Programming Interface

ARGON Allocation and Reservations in Grid-enabled Optical Networks

ASON Automatically Switched Optical Network

BB Bandwidth Broker

BGRP Border Gateway Reservation Protocol

BoD Bandwidth on Demand

BR Border Router

CE Computing Element

CIM Computer Integrated Manufacturing

COPS Common Open Policy Protocol

CORBA Common Object Request Broker Architecture

CP Control Plane

CPE Customer Premises Equipment

CPU Central Processing Unit

CR-LDP Constraint-based Label Distribution Protocol

DCM Distributed Call and Connection Management

DCN Data Communication Network

DRAC Dynamic Resource Allocation Controller

DVB Digital Video Broadcasting

DWDM Dense Wavelength Division Multiplexing

EGEE Enabling Grids for E-sciencE

EC European Commission

EMS Execution Management Services

E-NNI Exterior NNI

ERO Explicit Route Object

ETSI European Telecommunications Standards Institute

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

227

EU European Union

FCAPS Fault, Configuration, Accounting, Performance, Security

G.CR-LDP G2MPLS CR-LDP

G.OSPF-TE GMPLS OSPF-TE

G.UNI Grid UNI

G.UNI-C G.UNI - Client

G.UNI-N G.UNI - Network

G.RSVP-TE GMPLS RSVP-TE

G²MPLS Grid-GMPLS (enhancements to GMPLS for Grid support)

GE Gigabit Ethernet

GÉANT Pan-European Gigabit Research Network

GGF Global Grid Forum

GHPN Grid High Performance Networking

GIS Grid Information Service

GLUE Grid Laboratory Uniform Environment

GMPLS Generalized MPLS

GNS Grid Network Service

GRAM Grid Resource Allocation and Management

GSMP General Switch Management Protocol

HW Hardware

IANA Internet Assigned Numbers Authority

IDM GÉANT2 Inter-domain Manager

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

I-NNI Interior NNI

IP Internet Protocol

IPR Intellectual Property Right

IPSec IP security

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

IS-IS Intermediate System to Intermediate System

ITU International Telecommunication Union

JSDL Job Submission Description Language

LAN Local Area Network

LDP Label Distribution Protocol

LRMS Local Resource Management System

LSA Link State Advertisement

LSDB Link State Database

LSP Label Switched Path

LSR Label Switch Router

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

228

MAC Media Access Control

MAN Metropolitan Area Network

MP Management Plane

MPLS Multi Protocol Label Switching

MPI Message Passing Interface

NCP Network Control Plane

NJS Network Job Supervisor

NMS Network Management System

NNI Network to Network Interface

NO Network Operator

NREN National Research and Education Network

NRPS Network Resource Provisioning Systems

NSAP Network Service Access Point

NSP Network Service Plane

NTP Network Time Protocol

OAM Operations, Administration and Maintenance

OGF Open Grid Forum

OGSA Open Grid Services Architecture

OIF Optical Internetworking Forum

OS Operating System

OSPF Open Shortest Path First protocol

OSPF-TE OSPF with Traffic Engineering extensions

O-UNI Optical UNI

P2MP Point to Multi Point

PON Passive Optical Network

POSIX Portable Operating System Interface

QoS Quality of Service

RB Recovery Bundle (aka RecoBundle)

RC Routing Controller

RFC Request for Comments

RSVP Resource reSerVation Protocol

RSVP-TE RSVP with Traffic Engineering extensions

RTP Real-time Transport Protocol

SDO Standard Developing Organizations

SE Storage Element

SLA Service Level Agreement

SLS Service Level Specification

SME Small and Medium Enterprise

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

SP Service Provider

SPF Sender Policy Framework

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

229

SW Software

TE Traffic Engineering

TGC Trusted Computing Group

TL-1 Transaction Language 1

TLS Transport Layer Security

TLV Type-Length-Value protocol fields

TMF Tele Management Forum

TO Telecom Operator

TP Transport Plane

UCLP User-Controlled Lightpath Provisioning system

UNI User to Network Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

VLAN Virtual LAN

VPN Virtual Private Network

WAN Wide Area Network

WG Working Group

WP Work Package

WS Web Service

WSON Wavelength Switched Optical Network

XML Extensible Markup Language

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

230

Appendix A Common types

The Phosphorus G2MPLS common types used on the external interfaces among processes are specified in the
<sw_root>/idl/g2mplsTypes.idl file.

It is useful to report this detailed information here, since it can be easily read by humans, and provide an
interesting insight of the overall G²MPLS data model.

A.1 Identifiers

 // Neighbour & adjacency
 typedef Types::uint32 nodeId;
 typedef nodeId adjacencyId;

 // generic address
 typedef Types::uint32 addrIPv4;
 typedef Types::uint32 addrIPv6[4];
 typedef Types::uint32 addrUnnum;
 typedef Types::uint8 addrNSAP[20];
 typedef Types::uint8 addrMAC[6];

// struct addrUnnum {
// nodeId node;
// Types::uint32 addr;
// };

 enum addrType {
 ADDRTYPE_IPV4,
 ADDRTYPE_IPV6,
 ADDRTYPE_UNNUM,
 ADDRTYPE_NSAP,
 ADDRTYPE_MAC
 };

 union addr switch (addrType) {
 case ADDRTYPE_IPV4: addrIPv4 ipv4;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

231

 case ADDRTYPE_IPV6: addrIPv6 ipv6;
 case ADDRTYPE_UNNUM: addrUnnum unnum;
 case ADDRTYPE_NSAP: addrNSAP nsap;
 case ADDRTYPE_MAC: addrMAC mac;
 };

A.2 Label identifier

 enum labelType {
 LABELTYPE_L32,
 LABELTYPE_L60
 };

 union labelId switch (labelType) {
 case LABELTYPE_L32: Types::uint32 label32;
 case LABELTYPE_L60: Types::uint64 label60;
 };

A.3 TE-Link and Data Link

 enum linkIdType {
 LINKIDTYPE_IPV4,
 LINKIDTYPE_IPV6,
 LINKIDTYPE_UNNUM
 };

 union linkId switch (linkIdType) {
 case LINKIDTYPE_IPV4: addrIPv4 ipv4;
 case LINKIDTYPE_IPV6: addrIPv6 ipv6;
 case LINKIDTYPE_UNNUM: addrUnnum unnum;
 };

 typedef linkId TELinkId;
 typedef linkId DLinkId;

 enum adjType {
 ADJTYPE_UNI,
 ADJTYPE_INNI,
 ADJTYPE_ENNI
 };

A.4 TNA identifier

 enum tnaIdType {
 TNAIDTYPE_IPV4,
 TNAIDTYPE_IPV6,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

232

 TNAIDTYPE_NSAP
 };

 union tnaId switch (tnaIdType) {
 case TNAIDTYPE_IPV4: addrIPv4 ipv4;
 case TNAIDTYPE_IPV6: addrIPv6 ipv6;
 case TNAIDTYPE_NSAP: addrNSAP nsap;
 };
 typedef sequence<tnaId> tnaIdSeq;

A.5 Call, Recovery Bundle and LSP identifiers

 enum callIdType {
 CALLIDTYPE_NULL,
 CALLIDTYPE_OPSPEC,
 CALLIDTYPE_GLOBUNIQ
 };

 enum sourceIdType {
 SOURCEIDTYPE_IPV4,
 SOURCEIDTYPE_IPV6,
 SOURCEIDTYPE_NSAP,
 SOURCEIDTYPE_MAC
 };

 union sourceId switch (sourceIdType) {
 case SOURCEIDTYPE_IPV4: addrIPv4 ipv4;
 case SOURCEIDTYPE_IPV6: addrIPv6 ipv6;
 case SOURCEIDTYPE_NSAP: addrNSAP nsap;
 case SOURCEIDTYPE_MAC: addrMAC mac;
 };

 struct segments {
 Types::uint8 intlSeg[3];
 Types::uint32 natlSeg[3];
 };

 struct callIdent {
 callIdType idType;
 segments segs;
 sourceId srcId;
 Types::uint64 localId;
 };

 struct recoBundleIdent {
 nodeId srcAddr;
 nodeId dstAddr;
 Types::uint32 tunId;
 };

 struct lspIdent {
 nodeId dstNodeId;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

233

 nodeId srcNodeId;
 Types::uint32 tunId;
 Types::uint32 extTid;
 Types::uint32 lspId;
 };

A.6 GMPLS extensions

 enum labelState {
 LABELSTATE_FREE,
 LABELSTATE_BOOKED,
 LABELSTATE_XCONNECTED,
 LABELSTATE_BUSY
 };

 enum resourcePosition {
 RESOURCEPOSITION_INGRESS,
 RESOURCEPOSITION_EGRESS
 };

 enum operState {
 OPERSTATE_UP,
 OPERSTATE_DOWN
 };

 enum adminState {
 ADMINSTATE_DISABLED,
 ADMINSTATE_ENABLED
 };

 struct statesBundle {
 operState opState;
 adminState admState;
 };

 enum recoveryType {
 RECOVERYTYPE_UNPROTECTED,
 RECOVERYTYPE_PROTECTION,
 RECOVERYTYPE_PREPLANNED,
 RECOVERYTYPE_OTF,
 RECOVERYTYPE_OTF_REVERTIVE
 };

 enum disjointness {
 DISJOINTNESS_NONE,
 DISJOINTNESS_LINK,
 DISJOINTNESS_NODE,
 DISJOINTNESS_SRLG
 };

 enum switchingCap {
 SWITCHINGCAP_PSC_1, // = 1,
 SWITCHINGCAP_PSC_2, // = 2,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

234

 SWITCHINGCAP_PSC_3, // = 3,
 SWITCHINGCAP_PSC_4, // = 4,
 SWITCHINGCAP_L2SC , // = 51,
 SWITCHINGCAP_TDM , // = 100,
 SWITCHINGCAP_LSC , // = 150,
 SWITCHINGCAP_FSC // = 200
 };

 enum encodingType {
 ENCODINGTYPE_PACKET , // = 1,
 ENCODINGTYPE_ETHERNET , // = 2,
 ENCODINGTYPE_ANSI_ETSI_PDH , // = 3,
 ENCODINGTYPE_RESERVED_1 , // = 4,
 ENCODINGTYPE_SDH_SONET , // = 5,
 ENCODINGTYPE_RESERVED_2 , // = 6,
 ENCODINGTYPE_DIGITAL_WRAPPER, // = 7,
 ENCODINGTYPE_LAMBDA , // = 8,
 ENCODINGTYPE_FIBER , // = 9,
 ENCODINGTYPE_RESERVED_3 , // = 10,
 ENCODINGTYPE_FIBERCHANNEL , // = 11,
 ENCODINGTYPE_G709_ODU , // = 12,
 ENCODINGTYPE_G709_OC // = 13,
 };

 enum genPid {
 GPID_ASYNCH_E4 , // = 5,
 GPID_ASYNCH_DS3_T3 , // = 6,
 GPID_ASYNCH_E3 , // = 7,
 GPID_BIT_SYNCH_E3 , // = 8,
 GPID_BYTE_SYNCH_E3 , // = 9,
 GPID_ASYNCH_DS2_T2 , // = 10,
 GPID_BIT_SYNCH_DS2_T2 , // = 11,
 GPID_ASYNCH_E1 , // = 13,
 GPID_BYTE_SYNCH_E1 , // = 14,
 GPID_BYTE_SYNCH_31DS0 , // = 15,
 GPID_ASYNCH_DS1_T1 , // = 16,
 GPID_BIT_SYNCH_DS1_T1 , // = 17,
 GPID_BYTE_SYNCH_DS1_T1 , // = 18,
 GPID_VC_11_IN_VC_12 , // = 19,
 GPID_DS1_SF_ASYNCH , // = 22,
 GPID_DS1_ESF_ASYNCH , // = 23,
 GPID_DS3_M23_ASYNCH , // = 24,
 GPID_DS3_C_PARITY_ASYNCH , // = 25,
 GPID_VT_LOVC , // = 26,
 GPID_STSSPE_HOVC , // = 27,
 GPID_POS_NOSCRAMBLING_16CRC, // = 28,
 GPID_POS_NOSCRAMBLING_32CRC, // = 29,
 GPID_POS_SCRAMBLING_16CRC , // = 30,
 GPID_POS_SCRAMBLING_32CRC , // = 31,
 GPID_ATM_MAPPING , // = 32,
 GPID_ETHERNET , // = 33,
 GPID_SONET_SDH , // = 34,
 GPID_DIGITAL_WRAPPER , // = 36,
 GPID_LAMBDA , // = 37,
 GPID_ANSI_ETSI_PDH , // = 38,
 GPID_LAPS_X85_X86 , // = 40,
 GPID_FDDI , // = 41,
 GPID_DQDB , // = 42,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

235

 GPID_FIBERCHANNEL_3 , // = 43,
 GPID_HDLC , // = 44,
 GPID_ETH_V2_DIX , // = 45,
 GPID_ETH_802_3 , // = 46,
 GPID_G709_ODUJ , // = 47,
 GPID_G709_OTUK , // = 48,
 GPID_CBR_CBRA , // = 49,
 GPID_CBRB , // = 50,
 GPID_BSOT , // = 51,
 GPID_BSNT , // = 52,
 GPID_IP_PPP_GFP , // = 53,
 GPID_ETHMAC_GFP , // = 54,
 GPID_ETHPHY_GFP , // = 55,
 GPID_ESCON , // = 56,
 GPID_FICON // = 57,
 };

 enum protType {
 PROTTYPE_NONE , // = 0x00,
 PROTTYPE_EXTRA , // = 0x01,
 PROTTYPE_UNPROTECTED , // = 0x02,
 PROTTYPE_SHARED , // = 0x04,
 PROTTYPE_DEDICATED_1TO1 , // = 0x08,
 PROTTYPE_DEDICATED_1PLUS1, // = 0x10,
 PROTTYPE_ENHANCED // = 0x20,
 };

 enum crankbackScope {
 CRANCKBACKSCOPE_NONE ,
 CRANCKBACKSCOPE_E2E ,
 CRANCKBACKSCOPE_BOUNDARY ,
 CRANCKBACKSCOPE_SEGMENTBASED
 };

 enum issuerType {
 ISSUERTYPE_MANAGEMENT_IF,
 ISSUERTYPE_UNI_IF,
 ISSUERTYPE_ENNI_IF
 };

 struct actorInfo {
 issuerType issuer;
 boolean forceCommand;
 };

 enum lspType {
 LSPTYPE_SPC, // Soft permanent connection
 LSPTYPE_PC, // Permanent connection
 LSPTYPE_SC // Switched connection
 };

 enum lspResourceAction {
 LSPRESOURCEACTION_XCONNECT,
 LSPRESOURCEACTION_BOOK
 };

 enum lspRroMode {

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

236

 LSPRROMODE_OFF, // no RRO recording
 LSPRROMODE_TEL_DETAIL, // recoding just up to TE- links
 LSPRROMODE_DL_DETAIL, // recoding just up to Data -links
 LSPRROMODE_ALL // recoding all up to labels
 };
 // Transport Network resource
 struct tnResource {
 TELinkId teLink;
 DLinkId dataLink;
 labelId label;
 };

 struct tnaResource {
 tnaId tna;
 DLinkId dataLink;// only if _v != 0
 labelId label; // only if _v != 0
 };

A.7 Grid extensions

A.7.1 Signalling-specific

 // Grid Site Network Assigned address
 typedef Types::uint32 gsnaId;

 struct rangeSpec {
 boolean valid;
 Types::uint32 lowerBound;
 boolean lbIncluded;
 Types::uint32 upperBound;
 boolean ubIncluded;
 };

 // GRID APPLICATION
 enum gridApplicationType {
 GRIDAPPLICATIONTYPE_UNKNOWN, // = 0x0000,
 GRIDAPPLICATIONTYPE_WISDOM , // = 0x0001,
 GRIDAPPLICATIONTYPE_KODAVIS, // = 0x0002,
 GRIDAPPLICATIONTYPE_TOPS , // = 0x0003,
 GRIDAPPLICATIONTYPE_DDSS , // = 0x0004,
 GRIDAPPLICATIONTYPE_INCA , // = 0x0005,
 GRIDAPPLICATIONTYPE_OTHER // = 0xFFFF,
 };

 struct gridApplication {
 boolean valid;
 gridApplicationType type;
 Types::uint32 mjrRev;
 Types::uint32 mnrRev;
 Types::uint32 bldFix;
 };

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

237

 // GRID HOST ID
 enum gridHostType {
 GRIDHOSTTYPE_UNDEFINED,
 GRIDHOSTTYPE_IPV4,
 GRIDHOSTTYPE_IPV6,
 GRIDHOSTTYPE_NSAP
 };

 union gridHostId switch (gridHostType) {
 case GRIDHOSTTYPE_UNDEFINED: long value;
 case GRIDHOSTTYPE_IPV4: addrIPv4 ipv4;
 case GRIDHOSTTYPE_IPV6: addrIPv6 ipv6;
 case GRIDHOSTTYPE_NSAP: addrNSAP nsap;
 };

 // FS RESOURCES
 enum gridFsName {
 GRIDFSNAME_UNKNOWN, // = 0x00,
 GRIDFSNAME_HOME , // = 0x01,
 GRIDFSNAME_ROOT , // = 0x02,
 GRIDFSNAME_SCRATCH, // = 0x03,
 GRIDFSNAME_TMP , // = 0x04,
 GRIDFSNAME_OTHER // = 0xFF
 };

 enum gridFsType {
 GRIDFSTYPE_UNKNOWN , //= 0x00,
 GRIDFSTYPE_SWAP , //= 0x01,
 GRIDFSTYPE_TEMPORARY , //= 0x02,
 GRIDFSTYPE_SPOOL , //= 0x03,
 GRIDFSTYPE_NORMAL , //= 0x04,
 GRIDFSTYPE_OTHER //= 0xFF
 };

 struct gridFsResources {
 boolean valid;
 gridFsName fsName;
 gridFsType fsType;
 rangeSpec diskSpace;
 string mountPoint;
 string mountSource;
 };

 // SYSTEM CAPABILITIES
 enum gridOsType {
 GRIDOSTYPE_UNKNOWN , //= 0x0000,
 GRIDOSTYPE_MACOS , //= 0x0001,
 GRIDOSTYPE_ATTUNIX , //= 0x0002,
 GRIDOSTYPE_DGUX , //= 0x0003,
 GRIDOSTYPE_DECNT , //= 0x0004,
 GRIDOSTYPE_TRU64_UNIX , //= 0x0005,
 GRIDOSTYPE_OPENVMS , //= 0x0006,
 GRIDOSTYPE_HPUX , //= 0x0007,
 GRIDOSTYPE_AIX , //= 0x0008,
 GRIDOSTYPE_MVS , //= 0x0009,
 GRIDOSTYPE_OS400 , //= 0x000A,
 GRIDOSTYPE_OS_2 , //= 0x000B,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

238

 GRIDOSTYPE_JAVAVM , //= 0x000C,
 GRIDOSTYPE_MSDOS , //= 0x000D,
 GRIDOSTYPE_WIN3X , //= 0x000E,
 GRIDOSTYPE_WIN95 , //= 0x000F,
 GRIDOSTYPE_WIN98 , //= 0x0010,
 GRIDOSTYPE_WINNT , //= 0x0011,
 GRIDOSTYPE_WINCE , //= 0x0012,
 GRIDOSTYPE_NCR3000 , //= 0x0013,
 GRIDOSTYPE_NETWARE , //= 0x0014,
 GRIDOSTYPE_OSF , //= 0x0015,
 GRIDOSTYPE_DC_OS , //= 0x0016,
 GRIDOSTYPE_RELIANT_UNIX , //= 0x0017,
 GRIDOSTYPE_SCO_UNIXWARE , //= 0x0018,
 GRIDOSTYPE_SCO_OPENSERVER , //= 0x0019,
 GRIDOSTYPE_SEQUENT , //= 0x001A,
 GRIDOSTYPE_IRIX , //= 0x001B,
 GRIDOSTYPE_SOLARIS , //= 0x001C,
 GRIDOSTYPE_SUNOS , //= 0x001D,
 GRIDOSTYPE_U6000 , //= 0x001E,
 GRIDOSTYPE_ASERIES , //= 0x001F,
 GRIDOSTYPE_TANDEMNSK , //= 0x0020,
 GRIDOSTYPE_TANDEMNT , //= 0x0021,
 GRIDOSTYPE_BS2000 , //= 0x0022,
 GRIDOSTYPE_LINUX , //= 0x0023,
 GRIDOSTYPE_LYNX , //= 0x0024,
 GRIDOSTYPE_XENIX , //= 0x0025,
 GRIDOSTYPE_VM , //= 0x0026,
 GRIDOSTYPE_INTERACTIVE_UNIX , //= 0x0027,
 GRIDOSTYPE_BSDUNIX , //= 0x0028,
 GRIDOSTYPE_FREEBSD , //= 0x0029,
 GRIDOSTYPE_NETBSD , //= 0x002A,
 GRIDOSTYPE_GNU_HURD , //= 0x002B,
 GRIDOSTYPE_OS9 , //= 0x002C,
 GRIDOSTYPE_MACH_KERNEL , //= 0x002D,
 GRIDOSTYPE_INFERNO , //= 0x002E,
 GRIDOSTYPE_QNX , //= 0x002F,
 GRIDOSTYPE_EPOC , //= 0x0030,
 GRIDOSTYPE_IXWORKS , //= 0x0031,
 GRIDOSTYPE_VXWORKS , //= 0x0032,
 GRIDOSTYPE_MINT , //= 0x0033,
 GRIDOSTYPE_BEOS , //= 0x0034,
 GRIDOSTYPE_HP_MPE , //= 0x0035,
 GRIDOSTYPE_NEXTSTEP , //= 0x0036,
 GRIDOSTYPE_PALMPILOT , //= 0x0037,
 GRIDOSTYPE_RHAPSODY , //= 0x0038,
 GRIDOSTYPE_WINDOWS_2000 , //= 0x0039,
 GRIDOSTYPE_DEDICATED , //= 0x003A,
 GRIDOSTYPE_OS_390 , //= 0x003B,
 GRIDOSTYPE_VSE , //= 0x003C,
 GRIDOSTYPE_TPF , //= 0x003D,
 GRIDOSTYPE_WINDOWS_R_ME , //= 0x003E,
 GRIDOSTYPE_CALDERA_OPEN_UNIX , //= 0x003F,
 GRIDOSTYPE_OPENBSD , //= 0x0040,
 GRIDOSTYPE_WINDOWS_XP , //= 0x0042,
 GRIDOSTYPE_Z_OS , //= 0x0043,
 GRIDOSTYPE_OTHER //= 0xFFFF,
 };

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

239

 enum gridCpuArch {
 GRIDCPUARCH_UNKNOWN , //= 0X00,
 GRIDCPUARCH_SPARC , //= 0X01,
 GRIDCPUARCH_POWERPC , //= 0X02,
 GRIDCPUARCH_X86 , //= 0X03,
 GRIDCPUARCH_X86_32 , //= 0X04,
 GRIDCPUARCH_X86_64 , //= 0X05,
 GRIDCPUARCH_PARISC , //= 0X06,
 GRIDCPUARCH_MIPS , //= 0X07,
 GRIDCPUARCH_IA64 , //= 0X08,
 GRIDCPUARCH_ARM , //= 0X09,
 GRIDCPUARCH_OTHER //= 0XFF,
 };

 struct gridOsInfo {
 boolean valid;
 gridOsType type;
 Types::uint32 mjrRev;
 Types::uint32 mnrRev;
 Types::uint32 bldFix;
 };

 struct gridSysCap {
 boolean valid;
 gridOsInfo os;
 gridCpuArch cpuArch;
 boolean exclusiveAccess;
 };

 // DATA STAGING
 enum gridStagingCreationFlag {
 GRIDSTAGINGCF_UNKNOWN , //0x1
 GRIDSTAGINGCF_OVERWRITE , //0x1
 GRIDSTAGINGCF_APPEND , //0x2
 GRIDSTAGINGCF_DONTOVERWRITE //0x4
 };

 struct gridDataStaging {
 boolean valid;
 gridFsName fsName;
 gridStagingCreationFlag cf;
 boolean delOnTermination;
 string fileName;
 string source;
 string target;
 };

 struct gridParams {
 gridApplication application; // #01
 gridHostId candHost; // #02
 gridFsResources fileSystemRes; // #03
 gridSysCap systemCaps; // #04
 rangeSpec indCpuSpeed; // #05
 rangeSpec indCpuTime; // #06
 rangeSpec indCpuCount; // #07
 rangeSpec indNetBw; // #08
 rangeSpec indPhyMem; // #09

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

240

 rangeSpec indVirMem; // #10
 rangeSpec indDiskSpace; // #11
 rangeSpec totCpuTime; // #12
 rangeSpec totCpuCount; // #13
 rangeSpec totPhyMem; // #14
 rangeSpec totVirMem; // #15
 rangeSpec totDiskSpace; // #16
 rangeSpec totResCount; // #17
 gridDataStaging dataStaging; // #18
 gsnaId gridSite; // #19
 };

A.7.2 Routing-specific

 struct geoCoords {
 boolean valid;
 Types::uint32 latResolution;
 Types::uint64 latitute;
 Types::uint32 lonResolution;
 Types::uint64 longitude;
 };

 struct gridSiteParams {
 string name;
 geoCoords location;
 nodeId peRouterId;
 };

 typedef Types::uint32 gridSubNodeId;

 enum gridSubNodeType {
 GRIDSUBNODETYPE_UNKNOWN,
 GRIDSUBNODETYPE_SERVICE,
 GRIDSUBNODETYPE_COMPUTINGELEMENT,
 GRIDSUBNODETYPE_SUBCLUSTER,
 GRIDSUBNODETYPE_STORAGEELEMENT
 };

 struct gridSubNodeIdent {
 gridSubNodeId id;
 gridSubNodeType type;
 };
 typedef sequence<gridSubNodeIdent> gridSubNodeIden tSeq;

 struct gridSubNodes {
 gridSubNodeIdentSeq services;
 gridSubNodeIdentSeq compElems;
 gridSubNodeIdentSeq subClusters;
 gridSubNodeIdentSeq storageElems;
 };

 enum gridServiceType {
 SERVICE_UNKNOWN ,
 ORG_GLITE_WMS ,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

241

 ORG_GLITE_RGMA_LATESTPRODUCER ,
 ORG_GLITE_RGMA_STREAMPRODUCER ,
 ORG_GLITE_RGMA_DBPRODUCER ,
 ORG_GLITE_RGMA_CANONICALPRODUCER ,
 ORG_GLITE_RGMA_ARCHIVER ,
 ORG_GLITE_RGMA_CONSUMER ,
 ORG_GLITE_RGMA_REGISTRY ,
 ORG_GLITE_RGMA_SCHEMA ,
 ORG_GLITE_RGMA_BROWSER ,
 ORG_GLITE_RGMA_PRIMARYPRODUCER ,
 ORG_GLITE_RGMA_SECONDARYPRODUCER ,
 ORG_GLITE_RGMA_ONDEMANDPRODUCER ,
 ORG_GLITE_VOMS ,
 ORG_GLITE_FIREMANCATALOG ,
 ORG_GLITE_SEINDEX ,
 ORG_GLITE_METADATA ,
 ORG_GLITE_CHANNELMANAGEMENT ,
 ORG_GLITE_FILETRANSFER ,
 ORG_GLITE_FILETRANSFERSTATS ,
 ORG_GLITE_CHANNELAGENT ,
 ORG_GLITE_KEYSTORE ,
 ORG_GLITE_FAS ,
 ORG_GLITE_GLITEIO ,
 SRM ,
 GSIFTP ,
 ORG_EDG_LOCAL_REPLICA_CATALOG ,
 ORG_EDG_REPLICA_METADATA_CATALOG ,
 ORG_EDG_SE ,
 IT_INFN_GRIDICE ,
 MYPROXY ,
 GUMS ,
 GRIDCAT ,
 EDU_CALTECH_CACR_MONALISA ,
 OPENSSH ,
 MDS_GIIS ,
 BDII ,
 RLS ,
 DATA_LOCATION_INTERFACE ,
 PBS_TORQUE_SERVER ,
 PBS_TORQUE_MAUI ,
 UNICORE_CORE_TARGETSYSTEMFACTORY ,
 UNICORE_CORE_TARGETSYSTEM ,
 UNICORE_CORE_STORAGEMANAGEMENT ,
 UNICORE_CORE_FILETRANSFER ,
 UNICORE_CORE_JOBMANAGEMENT ,
 UNICORE_CORE_REGISTRY ,
 UNICORE_WORKFLOW_WORKFLOWFACTORY ,
 UNICORE_WORKFLOW_WORKFLOWMANAGEMENT ,
 UNICORE_WORKFLOW_SERVICEORCHESTRATOR ,
 UNICORE_WORKFLOW_GRIDRESOURCEINFORMATIONSERVICE,
 UNICORE_CISINFORMATIONPROVIDER ,
 SERVICE_OTHER
 };

 struct gridServiceInfo {
 boolean valid;
 gridServiceType type;
 Types::uint32 mjrRev;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

242

 Types::uint32 mnrRev;
 Types::uint32 bldFix;
 };

 enum gridServiceState {
 GRIDSERVICESTATE_UNKNOWN,
 GRIDSERVICESTATE_OK,
 GRIDSERVICESTATE_WARNING,
 GRIDSERVICESTATE_CRITICAL,
 GRIDSERVICESTATE_OTHER
 };

 struct gridServiceParams {
 gridServiceInfo data;
 gridServiceState state;
 gridHostId endPointAddr;
 };

 enum gridLrmsType {
 GRIDLRMSTYPE_UNKNOWN,
 GRIDLRMSTYPE_OPENPBS,
 GRIDLRMSTYPE_LSF ,
 GRIDLRMSTYPE_CONDOR ,
 GRIDLRMSTYPE_BQS ,
 GRIDLRMSTYPE_CONDORG,
 GRIDLRMSTYPE_FBSNG ,
 GRIDLRMSTYPE_TORQUE ,
 GRIDLRMSTYPE_PBSPRO ,
 GRIDLRMSTYPE_SGE ,
 GRIDLRMSTYPE_NQE ,
 GRIDLRMSTYPE_FORK ,
 GRIDLRMSTYPE_OTHER
 };

 struct gridLrmsInfo {
 boolean valid;
 gridLrmsType type;
 Types::uint32 mjrRev;
 Types::uint32 mnrRev;
 Types::uint32 bldFix;
 };

 enum gridCeSeState {
 GRIDCESESTATE_UNKNOWN ,
 GRIDCESESTATE_QUEUING ,
 GRIDCESESTATE_PRODUCTION,
 GRIDCESESTATE_CLOSED ,
 GRIDCESESTATE_DRAINING
 };

 struct gridJobsState {
 boolean valid;
 Types::uint32 freeJobSlots; // just 16 lsbs
 gridCeSeState state;
 };

 struct gridJobsStats {
 boolean valid;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

243

 Types::uint32 runningJobs;
 Types::uint32 waitingJobs;
 Types::uint32 totalJobs;
 };

 struct gridJobsTimePerf {
 boolean valid;
 Types::uint32 estimatedResponseTime;
 Types::uint32 worstResponseTime;
 };

 struct gridJobsTimePolicy {
 boolean valid;
 Types::uint32 maxWallclocktime;
 Types::uint32 maxObtainableWallclockTime;
 Types::uint32 maxCpuTime;
 Types::uint32 maxObtainableCpuTime;
 };

 struct gridJobsLoadPolicy {
 boolean valid;
 Types::uint32 maxTotalJobs;
 Types::uint32 maxRunningJobs;
 Types::uint32 maxWaitingJobs;
 Types::uint32 assignedJobSlots; // 16 lsbs
 Types::uint32 maxSlotsPerJobs; // 16 lsbs
 Types::uint8 priority;
 boolean preemptionFlag;
 };

 struct JobSlotsCalendarEvent {
 Types::uint32 unixTime;
 Types::uint32 JobSlots; // just 16 lsbs
 };

 typedef sequence<JobSlotsCalendarEvent> JobSlotsCa lendarSeq;

 struct gridCEParams {
 gridLrmsInfo lrmsInfo;
 gridHostId hostAddr;
 Types::uint32 gatekeeperPort;
 string jobManager;
 string dataDir;
 gridSubNodeId defaultStorageElemId;
 gridJobsState jobsState;
 gridJobsStats jobsStats;
 gridJobsTimePerf jobsTimePerf;
 gridJobsTimePolicy jobsTimePolicy;
 gridJobsLoadPolicy jobsLoadPolicy;
 JobSlotsCalendarSeq freeJobSlotsCalendar;
 };

 struct gridCpuCount {
 Types::uint32 physical;
 Types::uint32 logical;
 };

 struct subClusterCalendarEvent {

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

244

 Types::uint32 unixTime;
 gridCpuCount cpuCount;
 };

 typedef sequence<subClusterCalendarEvent> subClust erCalendarSeq;

 struct gridCpuInfo {
 boolean valid;
 gridCpuCount cpuCounts;
 gridCpuArch cpuArch;
 };

 struct gridMemoryInfo {
 boolean valid;
 Types::uint32 ramSize;
 Types::uint32 virtualMemorySize;
 };

 struct gridSubClusterParams {
 gridCpuInfo cpu;
 gridOsInfo os;
 gridMemoryInfo memory;
 gridApplication software;
 string softwareEnvironmentSetup;
 subClusterCalendarSeq subClusterCalendar;
 };

 enum gridStorageArch {
 GRIDSTORAGEARCH_UNKNOWN ,
 GRIDSTORAGEARCH_DISK ,
 GRIDSTORAGEARCH_TAPE ,
 GRIDSTORAGEARCH_MULTIDISK,
 GRIDSTORAGEARCH_OTHER
 };

 struct gridStorageInfo {
 boolean valid;
 gridStorageArch arch;
 gridCeSeState state;
 Types::uint32 accessProtocolsMask;
 Types::uint32 controlProtocolsMask;
 };

 struct gridStorageSize {
 boolean valid;
 Types::uint32 total;
 Types::uint32 used;
 };

 enum gridStorageRetentionPolicy {
 GRIDSTORAGERETENTIONPOLICY_UNKNOWN ,
 GRIDSTORAGERETENTIONPOLICY_CUSTODIAL,
 GRIDSTORAGERETENTIONPOLICY_OUTPUT ,
 GRIDSTORAGERETENTIONPOLICY_REPLICA
 };

 enum gridStorageAccessLatency {

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

245

 GRIDATORAGEACCESSLATENCY_UNKNOWN ,
 GRIDATORAGEACCESSLATENCY_ONLINE ,
 GRIDATORAGEACCESSLATENCY_NEARLINE,
 GRIDATORAGEACCESSLATENCY_OFFLINE
 };

 enum gridStorageExpirationMode {
 GRIDSTORAGEEXPIRATIONMODE_UNKNOWN ,
 GRIDSTORAGEEXPIRATIONMODE_NEVER_EXPIRE ,
 GRIDSTORAGEEXPIRATIONMODE_WARN_WHEN_EXPIRED ,
 GRIDSTORAGEEXPIRATIONMODE_RELEASE_WHEN_EXPIRED
 };

 struct gridStorageAreaInfo {
 boolean valid;
 Types::uint32 totalOnlineSize;
 Types::uint32 freeOnlineSize;
 Types::uint32 reservedTotalOnlineSize;
 Types::uint32 totalNearlineSize;
 Types::uint32 freeNearlineSize;
 Types::uint32 reservedNearlineSize;
 gridStorageRetentionPolicy retentionPolicy;
 gridStorageAccessLatency accessLatency;
 gridStorageExpirationMode expirationMode;
 };

 struct gridStorageCount {
 Types::uint32 freeOnlineSize;
 Types::uint32 logicalCpus;
 };

 struct seCalendarEvent {
 Types::uint32 unixTime;
 gridStorageCount storageCount;
 };

 typedef sequence<seCalendarEvent> seCalendarSeq;

 struct gridSEParams {
 gridStorageInfo storageInfo;
 gridStorageSize onlineSize;
 gridStorageSize nearlineSize;
 string storageAreaName;
 string storageAreaPath;
 gridStorageAreaInfo storageAreaInfo;
 seCalendarSeq seCalendar;
 };

A.8 GNS call parameters

 struct callParams {
 string name;
 Types::uint32 startTime;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

246

 Types::uint32 endTime;
 string jobName; // GNS Call
 string jobProject; // GNS Call
 //nodeId destNid;
 //endPoint iEp; // ing endpt
 //endPoint eEp; // egr endpt
 };

A.9 Recovery parameters

 struct recoveryParams {
 recoveryType recType;
 disjointness disjType;
 };

 enum lspRole {
 LSPROLE_UNDEFINED,
 LSPROLE_WORKER,
 LSPROLE_BACKUP
 };

A.10 LSP parameters

 struct lspParams {
 lspType type;
 lspRole role;
 switchingCap swCap;
 encodingType encType;
 genPid gpid;
 Types::uint32 bw; // encoded IEEE FP
 Types::uint32 setupPrio;
 Types::uint32 holdingPrio;
 Types::uint32 excludeAny;
 Types::uint32 includeAny;
 Types::uint32 includeAll;
 protType linkProtMask;
 crankbackScope crankback;
 Types::uint32 maxCbackRetriesSrc;
 Types::uint32 maxCbackRetriesIntmd;
 lspResourceAction action;
 lspRroMode rroMode;
 Types::uint32 refreshInterval;
 boolean activateAck;
 Types::uint32 rapidRetransmInterval;
 Types::uint32 rapidRetryLimit;
 Types::uint32 incrementValueDelta;
 };

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

247

A.11 ERO

 struct eroItem {
 nodeId node;
 TELinkId teLink;
 DLinkId upstreamDataLink;
 DLinkId downstreamDataLink;
 labelId upstreamLabel;
 labelId downstreamLabel;
 boolean loose;
 };

 typedef sequence<eroItem> eroSeq;

A.12 LRM specific

 typedef sequence<TELinkId> TELinkIdSeq;
 typedef sequence<DLinkId> DLinkIdSeq;

 struct TELinkParameters {
 statesBundle states;
 // XXX ADD TE info
 };

 struct DLinkParameters {
 statesBundle states;
 switchingCap swCap;
 encodingType encType;
 Types::uint32 maxBandwidth;
 Types::uint32 maxResBandwidth;
 Types::uint32 availBandwidthPer Prio[8];
 Types::uint32 maxLSPbandwidth[8];
 Types::uint32 minLSPband width;
 };

 struct TELinkData {
 TELinkId localId;
 TELinkId remoteId;
 nodeId neighbour;
 TELinkParameters parms;
 };

 typedef sequence<TELinkData> TELinkData Seq;

 struct DLinkData {
 DLinkId localId;
 DLinkId remoteId;
 DLinkParameters parms;
 };

 typedef sequence<DLinkData> DLinkDataS eq;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

248

A.13 TNRC specific

 enum xcDirection {
 XCDIR_UNIDIRECTIONAL,
 XCDIR_BIDIRECTIONAL,
 XCDIR_BCAST
 };

 enum tnrcResult {
 TNRC_RESULT_NOERROR,
 TNRC_RESULT_EQPTDOWN,
 TNRC_RESULT_PARAMERROR,
 TNRC_RESULT_NOTCAPABLE,
 TNRC_RESULT_BUSYRESOURCES,
 TNRC_RESULT_INTERNALERROR,
 TNRC_RESULT_GENERICERROR
 };

A.14 G2.PCE-RA specific

 typedef sequence<Types::uint32> areaSeq;

 enum nodeType {
 NODETYPE_UNKNOWN,
 NODETYPE_NETWORK,
 NODETYPE_GRID
 };

 struct nodeIdent {
 nodeId id;
 nodeType type;
 };
 typedef sequence<nodeIdent> nodeIdentSeq;

 struct netNodeParams {
 boolean isDomain;
 statesBundle state;
 Types::uint32 colors;
 areaSeq areas;
 };

 enum linkType {
 LINKTYPE_UNKNOWN,
 LINKTYPE_TE,
 LINKTYPE_TE_SDHSONET,
 LINKTYPE_TE_G709,
 LINKTYPE_TE_WDM
 };

 enum linkMode {
 LINKMODE_UNKNOWN ,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

249

 LINKMODE_P2P_UNNUMBERED ,
 LINKMODE_P2P_NUMBERED ,
 LINKMODE_MULTIACCESS ,
 LINKMODE_ENNI_INTERDOMAIN,
 LINKMODE_ENNI_INTRADOMAIN
 };

 struct iscParamsGen {
 switchingCap swCap;
 encodingType encType;
 Types::uint32 maxLSPbandwidth[8];
 };

 struct iscParamsPsc {
 switchingCap swCap;
 encodingType encType;
 Types::uint32 maxLSPbandwidth[8];
 Types::uint32 minLSPbandwidth;
 Types::uint32 interfaceMTU; // 16 lsbs
 };

 struct iscParamsTdm {
 switchingCap swCap;
 encodingType encType;
 Types::uint32 maxLSPbandwidth[8];
 Types::uint32 minLSPbandwidth;
 Types::uint8 indication;
 };

 union isc switch (switchingCap) {
 case SWITCHINGCAP_PSC_1:
 case SWITCHINGCAP_PSC_2:
 case SWITCHINGCAP_PSC_3:
 case SWITCHINGCAP_PSC_4:
 iscParamsPsc psc;
 case SWITCHINGCAP_TDM :
 iscParamsTdm tdm;
 case SWITCHINGCAP_L2SC :
 case SWITCHINGCAP_LSC :
 case SWITCHINGCAP_FSC :
 iscParamsGen gen;
 };
 typedef sequence<isc> iscSeq;

 typedef Types::uint32 availBwPerPrio[8];

 struct teLinkCalendarEvent {
 Types::uint32 unixTime;
 availBwPerPrio availBw;
 };

 typedef sequence<teLinkCalendarEvent> teLinkCalend arSeq;

 typedef sequence<Types::uint32> srlgSeq;

 struct teLinkIdent {
 nodeId localNodeId;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

250

 TELinkId localId;
 nodeId remoteNodeId;
 TELinkId remoteId;
 linkType type;
 };
 typedef sequence<teLinkIdent> teLinkIdentSeq;

 struct teLinkComParams {
 linkMode mode;
 Types::uint32 adminMetric;
 Types::uint32 teMetric;
 Types::uint32 teColorMask;
 Types::uint8 teProtectionTypeMask;
 Types::uint32 teMaxBw;
 Types::uint32 teMaxResvBw;
 };

 struct freeCTPEntry {
 Types::uint8 sigType;
 Types::uint32 ctps; // 24 lsbs
 };
 typedef sequence<freeCTPEntry> freeCTPSeq;

 struct teLinkTdmParams {
 Types::uint32 hoMuxCapMask;
 Types::uint32 loMuxCapMask;
 Types::uint32 transparencyMask;
 Types::uint32 blsrRingId;
 };

 struct teLinkLscG709Params {
 Types::uint32 odukMuxCapMask;
 };

 struct teLinkWdmAmplifierEntry {
 Types::uint32 gain;
 Types::uint32 noiseFigure;
 };
 typedef sequence<teLinkWdmAmplifierEntry> amplifie rsSeq;

 struct teLinkLscWdmParams {
 Types::uint32 dispersionPMD;
 Types::uint32 spanLength;
 amplifiersSeq amplifiers;
 };

 typedef sequence<Types::uint8> bitmapSeq; // numL ambdas/32 +1

 struct teLinkWdmLambdasBitmap {
 // in ITU DWDM format
 Types::uint32 baseLambda; // ITU DWDM format
 Types::uint32 numLambdas; // 16 lsbs
 bitmapSeq bitmap;
 };

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

251

Appendix B Automatic FSM skeleton generation

This tool provides a framework for the human-readable definition of Finite State Machines (FSM) and automatic
generation of the skeleton code for its implementation. The tool also provides a Graphviz .dot output file, which
can be used to produce a graphical representation of FSM states and transitions events to improve readability.
Some of the G2MPLS FSMs have been briefly described in the sections above.

The FSM automatic generation tool is a framework based on three main parts:

• Configuration file: describes states, events and transitions of the FSM.
• Template file: the core of the generation tool, it is responsible of reading the configuration file and

generating the skeleton code according to design pattern strategy for state pattern.
• Generated code: both core generated files, that must not be modified and the partial skeleton files,

where users must add the specific code for state transitions.

The following sections describe a case-study to generate a really simple FSM, made of four states and three
events.

B.1 Configuration file

If the graphviz-file is specified the tool provides a Graphviz .dot file to generate a traditional graphical
representation of the FSM. If the start-state is not set, the first state is the beginning state.

The event description allows both the definition of simple root_events (that can be mapped 1:1 with the derived
ones) and complex root_events that can be split into derived ones at run time, according to specific transitions
code. In the last case a support virtual state is created.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

252

FSM definition

st/ev event1 event2 event3

stateI state1 state2 state3
state1 state1 - -
state2 - state2 -
state3 - - state3

{ FSM }

name = TEST_FSM
definition-file = test.def
graphviz-file = test.dot
include-name = test.h
start-state = stateI

Events

{ Events }

root_event123 = event1, event2, event3

States

{ States }

State = stateI
 event1 -> state1
 event2 -> state2
 event3 -> state3

State = state1
 event1 -> state1

State = state2
 event2 -> state2

State = state3
 event3 -> state3

B.2 Template file

Template file is the core file in charge of generating the skeleton of FSM according to State pattern.

The State pattern is a solution to the problem of how to make behaviour depend on state. The main steps are:

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

253

• Define a "context" class to present a single interface to the outside world.
• Define a State abstract base class that holds all the transition of the state machine.
• Represent the different "states" of the state machine as derived classes of the State base class.
• Define state-specific behaviour in the appropriate State derived classes.
• Maintain a pointer to the current "state" in the "context" class.
• The “context” class does nothing more that immediately delegate to the current “state”.
• To change the state of the state machine, change the current "state" pointer.

The State pattern does not specify where the state transitions will be defined. The choices are two: the
"context" object, or each individual State derived class. The advantage of the latter option is ease of adding
new State derived classes. The disadvantage is each State derived class has knowledge of (coupling to) its
siblings, which introduces dependencies between subclasses.

The FSM skeleton generation tool uses the first approach, storing all the transitions in a Matrix template class
shown in Code 16-1.

#ifndef FSMGEN_UTILITY
#define FSMGEN_UTILITY

#include <iostream>
#include <stdio.h>
#include <string>
#include <map>
#include <list>
#include <stdlib.h>

/** ***************************/
/* Utility - Matrix class */
/** ***************************/

template <class ROW, class COLUMN, class DATA>
class Matrix {
public:
 Matrix() { }
 ~Matrix() { }

 //friend class Fsm;

 // Copy operator
 Matrix(const Matrix<ROW, COLUMN, DATA>& m) { matri x_ = m.matrix_; }

 //
 // Type definitions
 //
 typedef ROW * rowIter;
 typedef const ROW * const_rowIter;
 typedef COLUMN * colIter;
 typedef const COLUMN * const_colIter;
 typedef DATA * dataIter;
 typedef const DATA * const_dataIter;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

254

 //
 // Iterator support
 //
 rowIter begin(void);
 const_rowIter begin(void) const;
 rowIter end(void);
 const_rowIter end(void) const;
 rowIter next(rowIter rowIt);
 const_rowIter next(const_rowIter rowIt) const;
 colIter begin(rowIter rowIt);
 const_colIter begin(const_rowIter rowIt) const;
 colIter end(rowIter rowIt);
 const_colIter end(const_rowIter rowIt) const;
 colIter next(rowIter rowIt, colIter colIt);
 const_colIter next(const_rowIter rowIt, const_colI ter colIt) const;

 // Return the number of deleted cells within the r ow
 size_t removeRow(const ROW& row);

 // Return the number of deleted cells within the c olumn
 size_t removeCol(const COLUMN& column);

 // Return the number (1 or 0) of deleted data for this pair row/column
 size_t remove(const ROW& row, const COLUMN& column);

 // Return the number of deleted data
 size_t remove(const DATA& data);

 bool remove(dataIter dIt);

 void insert(const ROW& row, const COLUMN& column, const DATA& data);

 dataIter find(const ROW& row, const COLUMN& column);

 // Return the number of data
 size_t size(void) const;

 bool empty(void) const;

 // Assignment operator
 Matrix<ROW, COLUMN, DATA>& operator=(const Matrix< ROW,COLUMN,DATA>& o);

 std::map<COLUMN, DATA>& operator[](const ROW s);

 friend std::ostream& operator<<(std::ostream& s, c onst Matrix& m);

private:
 std::map< ROW, std::map<COLUMN, DATA> > matrix_;
};

Code 16-1: Matrix class

A table-driven approach to design finite state machines is a good choice to specify state transitions but, in this
case, it is more difficult to add actions that come with the state transitions.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

255

B.3 Generated code

There are two kind of generated files:

� the core ones, shown in Code 16-2, and

the skeleton to be filled in, shown in #ifndef TEST _H
#define TEST_H

#include <iostream>
#include <stdio.h>
#include "test_gen.h"

class state1_i : public fsm::base_TEST_FSM::state1
{
 public:
 fsm::base_TEST_FSM::nextEvFor_root_event123_t root _event123(void* context);
 void after_event1_from_virt_state1(void * context) ;
 void after_event1_from_virt_stateI(void * context) ;
};

class stateI_i : public fsm::base_TEST_FSM::stateI
{
 public:
 fsm::base_TEST_FSM::nextEvFor_root_event123_t root _event123(void* context);
};

class state3_i : public fsm::base_TEST_FSM::state3
{
 public:
 void after_event3_from_virt_stateI(void * context) ;
 fsm::base_TEST_FSM::nextEvFor_root_event123_t root _event123(void* context);
 void after_event3_from_virt_state3(void * context) ;
};

class state2_i : public fsm::base_TEST_FSM::state2
{
 public:
 void after_event2_from_virt_stateI(void * context) ;
 fsm::base_TEST_FSM::nextEvFor_root_event123_t root _event123(void* context);
 void after_event2_from_virt_state2(void * context) ;
};

class virt_state1_i : public fsm::base_TEST_FSM::vi rt_state1
{
 public:
 void after_root_event123_from_state1(void * contex t);
 bool event1(void* context);
};

class virt_stateI_i : public fsm::base_TEST_FSM::vi rt_stateI
{
 public:
 void after_root_event123_from_stateI(void * contex t);
 bool event1(void* context);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

256

 bool event3(void* context);
 bool event2(void* context);
};

class virt_state3_i : public fsm::base_TEST_FSM::vi rt_state3
{
 public:
 void after_root_event123_from_state3(void * contex t);
 bool event3(void* context);
};

class virt_state2_i : public fsm::base_TEST_FSM::vi rt_state2
{
 public:
 void after_root_event123_from_state2(void * contex t);
 bool event2(void* context);
};

#endif // TEST_GEN

� Code 16-3.

namespace fsm {

#ifndef NAMESPACE_BASE_TEST_FSM
#define NAMESPACE_BASE_TEST_FSM

#include <iostream>
#include <stdio.h>
#include <string>
#include <map>
#include <list>
#include <stdlib.h>

/** ***************************/
/* Finite State Machine */
/** ***************************/
 /*************************************/
 /* Finite State Machine - Core */
 /*************************************/
 namespace base_TEST_FSM {

 enum nextEvFor_root_event123_t {
 TEST_FSM_from_root_event123_to_InvalidEvent = 0,
 TEST_FSM_from_root_event123_to_event1,
 TEST_FSM_from_root_event123_to_event2,
 TEST_FSM_from_root_event123_to_event3,
 };

 class State {
 public:
 State(std::string name = "Base state");
 virtual ~State(void);

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

257

 std::string name(void);

 // On event
 virtual bool event1(void * context);
 virtual bool event2(void * context);
 virtual bool event3(void * context);
 virtual nextEvFor_root_event123_t root_event123(void * context) {

 // After event from state
 virtual void after_root_event123_from_state1(voi d * context);
 virtual void after_event1_from_virt_state1(void * context);
 virtual void after_root_event123_from_stateI(voi d * context);
 virtual void after_event1_from_virt_stateI(void * context);
 virtual void after_event3_from_virt_stateI(void * context);
 virtual void after_event2_from_virt_stateI(void * context);
 virtual void after_root_event123_from_state3(voi d * context);
 virtual void after_event3_from_virt_state3(void * context);
 virtual void after_root_event123_from_state2(voi d * context);
 virtual void after_event2_from_virt_state2(void * context);

 private:
 std::string name_;
 };

 /*
 * Classes that MUST be derived!!! - START
 */
 class state1_i;
 class stateI_i;
 class state3_i;
 class state2_i;

 class virt_state1_i;
 class virt_stateI_i;
 class virt_state3_i;
 class virt_state2_i;

 class state1 : public State {
 public:
 state1() :
 State(std::string("state1"));
 virtual ~state1();

 virtual fsm::base_TEST_FSM::nextEvFor_root_event 123_t
 r oot_event123(void* context) = 0;

 virtual void after_event1_from_virt_state1(void * context) = 0;

 virtual void after_event1_from_virt_stateI(void * context) = 0;
 };

 class stateI : public State {
 public:
 stateI() :
 State(std::string("stateI"));

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

258

 virtual ~stateI();

 virtual fsm::base_TEST_FSM::nextEvFor_root_event 123_t
 r oot_event123(void* context) = 0;
 };

 class state3 : public State {
 public:
 state3() :
 State(std::string("state3"));
 virtual ~state3();

 virtual void after_event3_from_virt_stateI(void * context) = 0;

 virtual fsm::base_TEST_FSM::nextEvFor_root_event 123_t
 r oot_event123(void* context) = 0;

 virtual void after_event3_from_virt_state3(void * context) = 0;

 };

 class state2 : public State {
 public:
 state2() :
 State(std::string("state2"));
 virtual ~state2();

 virtual void after_event2_from_virt_stateI(void * context) = 0;

 virtual fsm::base_TEST_FSM::nextEvFor_root_event 123_t
 r oot_event123(void* context) = 0;

 virtual void after_event2_from_virt_state2(void * context) = 0;
 };

 class virt_state1 : public State {
 public:
 virt_state1() :
 State(std::string("virt_state1"));
 virtual ~virt_state1();

 virtual void after_root_event123_from_state1(voi d * context) = 0;

 virtual bool event1(void* context) = 0;
 };

 class virt_stateI : public State {
 public:
 virt_stateI() :
 State(std::string("virt_stateI"));
 virtual ~virt_stateI();

 virtual void after_root_event123_from_stateI(voi d * context) = 0;

 virtual bool event1(void* context) = 0;

 virtual bool event3(void* context) = 0;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

259

 virtual bool event2(void* context) = 0;
 };

 class virt_state3 : public State {
 public:
 virt_state3() :
 State(std::string("virt_state3"));
 virtual ~virt_state3();

 virtual void after_root_event123_from_state3(voi d * context) = 0;

 virtual bool event3(void* context) = 0;
 };

 class virt_state2 : public State {
 public:
 virt_state2() :
 State(std::string("virt_state2"));
 virtual ~virt_state2();

 virtual void after_root_event123_from_state2(voi d * context) = 0;

 virtual bool event2(void* context) = 0;
 };

 /*
 * Classes that MUST be derived!!! - END
 */

 class BaseFSM {
 public:
 enum traceLevel_t {
 TRACE_DBG = 0,
 TRACE_LOG,
 TRACE_INF,
 TRACE_WRN,
 TRACE_ERR
 };

 BaseFSM(traceLevel_t level = TRACE_DBG);
 virtual ~BaseFSM(void);

 std::string name(void);
 traceLevel_t traceLevel(void);

 void traceLevel(traceLevel_t level) { level_ = l evel; }

 void dbg(std::string text);
 void log(std::string text);
 void inf(std::string text);
 void wrn(std::string text)
 void err(std::string text);

 private:
 traceLevel_t level_;
 protected:
 std::string name_;
 };

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

260

 /*
 * Class for checking FSM integrity
 */
 class GenericFSM : public BaseFSM {
 public:
 GenericFSM(traceLevel_t level = TRACE_DBG);
 virtual ~GenericFSM(void) { }

 bool startModify(void);
 bool endModify(void);

 typedef void (* callback_t) (std::string from_st ate,
 std::string to_state,
 std::string on_event,
 void * context);

 // States
 bool addState(std::string state);
 bool remState(std::string state);

 // Events
 bool addEvent(std::string event);
 bool remEvent(std::string event);

 // Transitions
 bool addTransition(std::string from,
 std::string to,
 std::string event);
 bool remTransition(std::string from,
 std::string to,
 std::string event);

 // General
 bool setStartState(std::string state);

 private:
 bool check(void);

 struct state_data_t {
 callback_t pre;
 callback_t post;
 callback_t in;
 };

 Matrix<std::string,
 std::string,
 std::string> transitions_ ;
 std::map<callback_t, void *> contexts_;
 std::map<std::string, state_data_t> states_;
 std::list<std::string> events_;
 bool changeInProg ress_;
 std::string startState_;
 };

 class Fsm : public GenericFSM {
 public:

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

261

 /* add/rem of states/events/callback for
 * checking FSM consistency
 */
 Fsm(traceLevel_t level = TRACE_DBG)
 throw(std::string);
 virtual ~Fsm(void);

 friend std::ostream& operator<<(std::ostream& s ,
 const Fsm& f);

 bool event1(void * context);
 bool event2(void * context);
 bool event3(void * context);

 nextEvFor_root_event123_t root_event123(void * c ontext);

 State * currentState(void);
 bool go2prevState(void);

 private:
 enum states_t {
 TEST_FSM_state1,
 TEST_FSM_stateI,
 TEST_FSM_state3,
 TEST_FSM_state2,
 TEST_FSM_virt_state1,
 TEST_FSM_virt_stateI,
 TEST_FSM_virt_state3,
 TEST_FSM_virt_state2,

 };

 enum events_t {
 TEST_FSM_event1,
 TEST_FSM_event2,
 TEST_FSM_event3,
 TEST_FSM_root_event123,

 };

 friend std::ostream& operator<<(std::ostream& s,
 const states_t& st);

 friend std::ostream& operator<<(std::ostream& s,
 const events_t& ev);

 states_t currentStat e_;
 states_t prevState_;
 std::map<states_t, State *> states_;
 Matrix<states_t, events_t, states_t> nextState_;
 };
 }
#endif // NAMESPACE_TEST_FSM

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

262

 /*************************************/
 /* Finite State Machine - Wrapper */
 /*************************************/

#ifndef NAMESPACE_TEST_FSM
#define NAMESPACE_TEST_FSM

#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <string>
#include <map>
#include <list>
#include <iostream>

 namespace TEST_FSM {

 class virtFsm {
 public:
 virtFsm(base_TEST_FSM::BaseFSM::traceLevel_t
 level = base_TEST_FSM::BaseFSM ::TRACE_DBG)
 throw(std::string);
 virtual ~virtFsm(void);

 friend std::ostream& operator<<(std::ostream& s ,
 const virtFsm& f);

 enum root_events_t {
 TEST_FSM_root_event123,
 };

 void post(root_events_t ev, void * context, bool enqueue = false);
 std::string currentState(void);

 private:
 void runPendingWork(void);

 void root_event123(void * context);

 typedef struct {
 root_events_t ev;
 void * context;
 } data_event_t;

 base_TEST_FSM::Fsm * fsm_;
 std::list<data_event_t *> events_;
 };

 }
#endif // NAMESPACE_TEST_FSM

}

#endif // FSMGEN_H

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

263

Code 16-2: Core generated file.

#ifndef TEST_H
#define TEST_H

#include <iostream>
#include <stdio.h>
#include "test_gen.h"

class state1_i : public fsm::base_TEST_FSM::state1
{
 public:
 fsm::base_TEST_FSM::nextEvFor_root_event123_t root _event123(void* context);
 void after_event1_from_virt_state1(void * context) ;
 void after_event1_from_virt_stateI(void * context) ;
};

class stateI_i : public fsm::base_TEST_FSM::stateI
{
 public:
 fsm::base_TEST_FSM::nextEvFor_root_event123_t root _event123(void* context);
};

class state3_i : public fsm::base_TEST_FSM::state3
{
 public:
 void after_event3_from_virt_stateI(void * context) ;
 fsm::base_TEST_FSM::nextEvFor_root_event123_t root _event123(void* context);
 void after_event3_from_virt_state3(void * context) ;
};

class state2_i : public fsm::base_TEST_FSM::state2
{
 public:
 void after_event2_from_virt_stateI(void * context) ;
 fsm::base_TEST_FSM::nextEvFor_root_event123_t root _event123(void* context);
 void after_event2_from_virt_state2(void * context) ;
};

class virt_state1_i : public fsm::base_TEST_FSM::vi rt_state1
{
 public:
 void after_root_event123_from_state1(void * contex t);
 bool event1(void* context);
};

class virt_stateI_i : public fsm::base_TEST_FSM::vi rt_stateI
{
 public:
 void after_root_event123_from_stateI(void * contex t);
 bool event1(void* context);
 bool event3(void* context);
 bool event2(void* context);
};

class virt_state3_i : public fsm::base_TEST_FSM::vi rt_state3
{

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

264

 public:
 void after_root_event123_from_state3(void * contex t);
 bool event3(void* context);
};

class virt_state2_i : public fsm::base_TEST_FSM::vi rt_state2
{
 public:
 void after_root_event123_from_state2(void * contex t);
 bool event2(void* context);
};

#endif // TEST_GEN

Code 16-3: Skeleton generated file.

The .dot file is shown in Code 16-4 and can be used to have a canonical graphical representation of the FSM,
as shown in Figure 16-1.

digraph finite_state_machine {
 ordering=in;
 concentrate=true;
 rankdir=TB;
 ranksep=1.25;
 node[height = 1.3];
 node [fontsize=12 fixedsize=true shape=circle c olor=lightsteelblue3 style=filled];
 edge [fontsize=9];

 state1 -> state1 [label = "event1"];
 stateI -> state1 [label = "event1"];
 stateI -> state3 [label = "event3"];
 stateI -> state2 [label = "event2"];
 state3 -> state3 [label = "event3"];
 state2 -> state2 [label = "event2"];
}

Code 16-4: test.dot graphviz file.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

265

Figure 16-1: Test FSM.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

266

Appendix C TNRC Specific Part for ADVA FSP
3000RE-II

C.1 API Data structures

This section specifies the TNRC_SP API for operation on LSC ADVA FSP 3000RE-II device.

typedef unsigned int tnrcsp_lsc_evmask_t; /* values TBD */
typedef unsigned short tnrcsp_lsc_eqplane_t;

typedef enum {
 TNRCSP_LISTTYPE_UNSPECIFIED,
 TNRCSP_LISTTYPE_RESOURCES
} tnrcsp_list_type_t;

typedef enum {
 TNRC_SP_LSC_OLD,
 TNRC_SP_LSC_XCVR
} tnrcsp_lsc_eqtype_t;

typedef enum {
 TNRCSP_LSC_XCSTATE_RESERVED,
 TNRCSP_LSC_XCSTATE_ACTIVE,
 TNRCSP_LSC_XCSTATE_FAILED
} tnrcsp_lsc_xc_state_t;

typedef struct {
 tnrc_portid_t portid;
 label_t labelid;
 tnrc_operstate_t oper_state;
 tnrc_adminstate_t admin_state;
 tnrcsp_lsc_evmask_t events;
} tnrcsp_lsc_event_t;

typedef struct {
 tnrc_portid_t portid;
} tnrcsp_lsc_resource_id_t;

typedef struct {
 tnrc_operstate_t oper_state;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

267

 tnrc_adminstate_t admin_state;
 tnrcsp_lsc_evmask_t last_event;
 tnrcsp_lsc_eqtype_t equip_type;
 tnrcsp_lsc_eqplane_t equip_plane;
} tnrcsp_lsc_resource_detail_t;

Note: SLIST_HDR is an header implementing a simple list, and contains the pointers to the next element in the
list. TBD immediately in a separate document about global design specifications.

C.2 Summary of TNRC_SP LSC ADVA API functions

• tnrcsp_lsc_advafsp_make_xc
• tnrcsp_lsc_advafsp_destroy_xc
• tnrcsp_lsc_advafsp_reserve_xc
• tnrcsp_lsc_advafsp_unreserve_xc
• tnrcsp_lsc_advafsp_register_async_cb
• tnrcsp_lsc_advafsp_get_resource_list
• tnrcsp_lsc_advafsp_get_resource_details
• tnrcsp_lsp_advafsp_get_labels

C.3 Detailed specification of TNRC_SP LSC ADVA API

functions

The following functions should be included in the API:

XC creation

tnrcsp_result_t
tnrcsp_lsc_advafsp_make_xc(tnrcsp_handle_t *handlep, tnrc_portid_t
portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction, tnrc_boolean_t
virtual, tnrc_boolean_t activate, tnrcsp_response_cb_t response_cb, void
*response_cxt, tnrcsp_notification_cb_t async_cb, void *async_cxt)

Parameters
handlep Out generic handler, generated by the TNRC SP and kept by the

TNRC AP
portid_in In ingress port id
portid_out In egress port id
direction In directionality of the XC (unidir and bidir)
virtual In non-physical XC; for future usage (e.g. adoption of existing

XCs)
activate In turn a couple of reserved ports into a XC
response_cb In pseudo-synchronous callback function provided by the TNRC

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

268

AP, to be called when the operation has been completed
response_cxt In response context provided by the TNRC AP, to be returned in

the response callback
async_cb In asynchronous notification function provided by the TNRC AP,

to be called whenever something asyn occurs on the XC or
some of its elements

async_cxt In asynchronous context provided by the TNRC AP, to be
returned in the async notification callback

Description
This function will create the XC, with the following behaviour:

� It returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device

� Later, when the XC has been completed or failed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

� XC creation is composed from few TL1 commands sequence,

� If XC creation failed, all resources are released, and device should be in the same state as
before XC creation,

� Correctness of XC creation is checked at the end of action,

� XC activation (activate=True) will success only if there was XC reservation called before,

� Any future event related to the XC or one of its components (e.g. ports) will be reported to the
TNRC AP with the asynchronous callback. ADVA uses TL1 autonomous messages to inform
about events and alarms.

Used TL1 commands
ASC-CHANNEL Assign channel Normal situation
RST-CHANNEL Restore channel Normal situation if XC activation
RTRV-CHANNEL Retrieve channel Normal situation

RMV-CHANNEL Remove channel
Exceptional situation if XC
activation

DLT-CHANNEL Delete channel Exceptional situation
Synchronous function results
TNRCSP_RESULT_NOERROR Connected, logged in and arguments are valid
TNRCSP_RESULT_EQPTLINKDOWN No TCP session to device or not logged in
TNRCSP_RESULT_PARMERROR Not valid arguments
Pseudo-synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value
TNRCSP_RESULT_BUSYRESOURCES Resources not available
TNRCSP_RESULT_INTERNALERROR Unrecognized action failure

TNRCSP_RESULT_GENERICERROR
Device denies to process an action (but arguments are
valid and resources are available)

XC removal
tnrcsp_result_t
tnrcsp_lsc_advafsp_destroy_xc(tnrcsp_handle_t *handlep,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

269

tnrc_portid_t portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction,
tnrc_boolean_t virtual, tnrc_boolean_t deactivate, tnrcsp_response_cb_t
response_cb, void *response_cxt)

Parameters
handlep Out generic handler, generated by the TNRC SP and kept by the

TNRC AP
portid_in In ingress port id
portid_out In egress port id
direction In directionality of the XC (unidir and bidir)
virtual In non-physical XC removal; for future usage (e.g. release of

existing XCs)
deactivate In turn an XC into a couple of reserved ports
response_cb In pseudo-synchronous callback function provided by the TNRC

AP, to be called when the operation has been completed
response_cxt In response context provided by the TNRC AP, to be returned in

the response callback
Description
This function will destroy the XC, with the following behaviour:

� It returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

� Later, when the XC removal has been completed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

� XC deletion is composed from few TL1 commands sequence,

� In case of any unsuccessful processing of command the release of resources is continued,

� XC deactivation (deactivate=True) will success only if there was active XC,

� Correctness of XC deletion is checked at the end of action.

Used TL1 commands
RMV-CHANNEL Remove channel Normal situation
DLT-CHANNEL Delete channel Normal situation
RTRV-CHANNEL Retrieve channel Normal situation
Synchronous function results
TNRCSP_RESULT_NOERROR Connected, logged in and arguments are valid
TNRCSP_RESULT_EQPTLINKDOWN No TCP session to device or not logged in
TNRCSP_RESULT_PARMERROR Not valid arguments
Pseudo-synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value
TNRCSP_RESULT_INTERNALERROR Unrecognized action failure

TNRCSP_RESULT_GENERICERROR
Device denies to process an action (but arguments are
valid)

XC reservation
tnrcsp_result_t
tnrcsp_lsc_advafsp_reserve_xc(tnrcsp_handle_t *handlep,
tnrc_portid_t portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

270

tnrc_boolean_t virtual, tnrcsp_response_cb_t response_cb, void
*response_cxt)

Parameters
handlep Out generic handler, generated by the TNRC SP and kept by the

TNRC AP
portid_in In ingress port id
portid_out In egress port id
direction In directionality of the XC (unidir and bidir)
virtual In non-physical XC; for future usage (e.g. adoption of existing

XCs)
response_cb In pseudo-synchronous callback function provided by the TNRC

AP, to be called when the operation has been completed
response_cxt In response context provided by the TNRC AP, to be returned in

the response callback
Description
This function will reserve the XC, with the following behaviour:

� It returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

� Later, when the XC reservation has been completed or failed, the TNRC SP will come back to
the TNRC AP using the response callback (if any) and context, and delivering the result of the
operation,

� XC reservation is composed from few TL1 commands sequence,

� If XC reservation failed, all resources are released, and device should be in the same state as
before XC creation,

� Correctness of XC reservation is checked at the end of action.

Used TL1 commands
ASC-CHANNEL Assign channel Normal situation
RTRV-CHANNEL Retrieve channel Normal situation
DLT-CHANNEL Delete channel Exceptional situation
Synchronous function results
TNRCSP_RESULT_NOERROR Connected, logged in and arguments are valid
TNRCSP_RESULT_EQPTLINKDOWN No TCP session to device or not logged in
TNRCSP_RESULT_PARMERROR Not valid arguments
Pseudo-synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value
TNRCSP_RESULT_BUSYRESOURCES Resources not available
TNRCSP_RESULT_INTERNALERROR Unrecognized action failure

TNRCSP_RESULT_GENERICERROR
Device denies to process an action (but arguments are
valid and resources are available)

XC unreservation

tnrcsp_result_t
tnrcsp_lsc_advafsp_unreserve_xc(tnrcsp_handle_t *handlep,
tnrc_portid_t portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction,
tnrc_boolean_t virtual, tnrcsp_response_cb_t response_cb, void

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

271

*response_cxt)
Parameters
handlep Out generic handler, generated by the TNRC SP and kept by the

TNRC AP
portid_in In ingress port id
portid_out In egress port id
direction In directionality of the XC (unidir and bidir)
virtual In non-physical XC removal; for future usage (e.g. release of

existing XCs)
response_cb In pseudo-synchronous callback function provided by the TNRC

AP, to be called when the operation has been completed
response_cxt In response context provided by the TNRC AP, to be returned in

the response callback
Description
This function will unreserve the XC, with the following behaviour:

� It returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

� Later, when the XC removal has been completed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

� XC unreservation is composed from few TL1 commands sequence,

� In case of any unsuccessful processing of command the release of resources is continued,

� XC unreservation will success only if XC is not active,

� Correctness of XC unreservation is checked at the end of action.

Used TL1 commands
DLT-CHANNEL Delete channel Normal situation
RTRV-CHANNEL Retrieve channel Normal situation
Synchronous function results
TNRCSP_RESULT_NOERROR Connected, logged in and arguments are valid
TNRCSP_RESULT_EQPTLINKDOWN No TCP session to device or not logged in
TNRCSP_RESULT_PARMERROR Not valid arguments
Pseudo-synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value
TNRCSP_RESULT_INTERNALERROR Unrecognized action failure

TNRCSP_RESULT_GENERICERROR
Device denies to process an action (but arguments are
valid)

Register events
notification

tnrcsp_result_t
tnrcsp_lsc_advafsp_register_async_cb(tnrcsp_lsc_event_t *events,
unsigned int num)

Parameters
events In List of events to be notified to the TNRC AP; each event item

focuses on a port and reports about states (operational,
administrative) and occurred events (using a bitmask)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

272

Num In number of events
Description
This function will register events to be notified to TNRC AP; Notification mechanism is invoked
asynchronously by the TNRC SP when:

• TL1 autonomous alarm notification appear,

• operation state occur,

• administration state occur.

The administrative and operational status are periodically polled and states are compared with
registered values.
This function doesn’t use any TL1 command.
Synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_PARMERROR Wrong argument value
TNRCSP_RESULT_INTERNALERROR Unrecognized action failure

Fetching of
resources list

tnrcsp_result_t
tnrcsp_lsc_advafsp_get_resource_list(tnrcsp_lsc_resource_id_t
**resource_listp, unsigned int* num)

Parameters
resource_listp Out to be returned as pointer to the list of resource ids
num Out number of returned resource ids
Description
This function allows to fetch the list of underlying resources. Each resource will be assigned an id by
the TNRC_SP. The resource identifier is composed from Access Identifier code (AID) of card.
For example: AID = 1-1-13 (“bay-shelve-slot“) then port id = 010113 (each value is represented by
2 digits). This transformation generates unique ids and it is easily reversible.
Example of available resources in the one of PSNC’s devices named ‘Cracow’:

Card description AID of card Port ID
OLD in Plane 0 1-1-8 10108
XCVR/XPDR in Plane
0

1-1-9 10109

OLD in Plane 1 1-1-13 10113
XCVR/XPDR in Plane
1

1-1-14 10114

XCVR/XPDR in Plane
1

1-1-16 10116

This function doesn’t send any TL1 command. It used gathered information by periodically send
RTRV-EQPT-ALL command.
Synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost

Fetching of
details about a
specific resource

tnrcsp_result_t
tnrcsp_lsc_advalsp_get_resource_detail(tnrcsp_lsc_resource_id_t
resource_id, tnrcsp_lsc_resource_detail_t *resource_detailp)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

273

Parameters
resource_id In identifier of the resource whose details are fetched
resource_detailp Out to be returned as pointer to the structure of resource details
Description
This function allows to fetch the details of a specific resource. The details contains information
about:

o equipment plane (plane 0, plane 1),

o equipment type (OLD, XCVR/XPDR),

o current administrative state (disabled, enabled),

o current operational state (disabled, enabled),

o last event.

ADVA Add/Drop Multiplexer architecture information (wavelength, equipment plane and type) are
needed because not all couple of resources can be crossconnected. A crossconnection is possible
only for scenarios presented in the table bellow:

Ingress resource Egress resource Connection type
Equipment type Equipment

plane
Equipment type Equipment

plane
Pass-through OLD 0 OLD 1

Drop OLD 0 XCVR/XPDR 0
Pass-through OLD 1 OLD 0

Drop OLD 1 XCVR/XPDR 1
Add XCVR/XPDR 0 OLD 0
Add XCVR/XPDR 1 OLD 1

There is also second condition for crossconnection possibility – labels (wavelengths) for both
resources must be the same.
Administrative state depends on PrimaryState returned by device:

Administrative State PrimaryState Description
IS In-service
IS-ANR In-service, abnormal
IS-ANRST In-service, abnormal and restricted
IS-NR In-service, normal
IS-RST In-service, restricted

TNRC_ADMINSTATE_ENABLED

MA Management
OSS Out-of-service
OSS-AU Out-of-service, autonomous
OOS-AUMA Out-of-service, autonomous and

management
OOS-AURST Out-of-service, autonomous and restricted
OOS-MA Out-of-service, management

TNRC_ADMINSTATE_DISABLED

OOS-MAANR Out-of-service, management and abnormal

Operational state depends on SecondaryState returned by device:

Administrative State SecondaryState Description
TNRC_OPERSTATE_ENABLED ACT Active

ASWDL Automatic Software Download
DGN Diagnostic

TNRC_OPERSTATE_DISABLED

DSBLD Data Sync

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

274

FLT Fault
LPBK-FAC Loopback Facility
LPBK-TERM Loopback Terminal
MISM Mismatched
NALM No Alarm
PRBS PRBS test
SGEO Supporting entity outage
STBY Supporting entity outage
SWDL Software download
TCAI TCA Inhibited
TUNE Indicates laser is in the process of turning

on
UAS Unassigned
UEQ Unequipped

Last event present last non-alarm or alarm condition. Alarm values are presented in the error table
section of annex. Non-alarm events are not listed yet (lack in documentation).

This function doesn’t send any TL1 command. It used gathered information by periodically send
RTRV-EQPT-ALL command.

Synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value

Fetching of
crossconnections
list

tnrcsp_result_t
tnrcsp_lsc_advalsp_get_label_list(tnrcsp_resource_id_t
resource_id, label_t** label_listp, unsigned int* num)

Parameters
resource_id In identifier of the resource whose labels are fetched
label_listp Out to be returned as pointer to the list of labels
num Out number of returned resource ids
Description
 ADVA TL1 commands use Channel ID for any operation. Channel ID and corresponding
wavelength is presented in the table:

Channel ID Wavelength Channel ID Wavelength Channel ID Wavelength
20 1561.42 nm 34 1550.12 nm 48 1538.98 nm
21 1560.61 nm 35 1549.32 nm 49 1538.19 nm
22 1559.79 nm 36 1548.52 nm 50 1537.40 nm
23 1558.98 nm 37 1547.72 nm 51 1536.61 nm
24 1558.17 nm 38 1546.92 nm 52 1535.82 nm
25 1557.36 nm 39 1546.12 nm 53 1535.04 nm
26 1556.56 nm 40 1545.32 nm 54 1534.25 nm
27 1555.75 nm 41 1544.53 nm 55 1533.47 nm
28 1554.94 nm 42 1543.73 nm 56 1532.68 nm
29 1554.13 nm 43 1542.94 nm 57 1531.90 nm
30 1553.33 nm 44 1542.14 nm 58 1531.12 nm

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

275

31 1552.52 nm 45 1541.35 nm 59 1530.33 nm
32 1551.72 nm 46 1540.56 nm
33 1550.92 nm 47 1539.77 nm

However, Channel ID is specific identifier for ADVA device only. To be equipment independent
ADVA TNRC SP API uses generic label format introduced by [draft-otani-labels]. Label value
corresponding to channel ids is presented in the table:

Channel ID Label value Channel ID Label value Channel ID Label value
20 687865867 34 671088643 48 671088657
21 687865866 35 671088644 49 671088658
22 687865865 36 671088645 50 671088659
23 687865864 37 671088646 51 671088660
24 687865863 38 671088647 52 671088661
25 687865862 39 671088648 53 671088662
26 687865861 40 671088649 54 671088663
27 687865860 41 671088650 55 671088664
28 687865859 42 671088651 56 671088665
29 687865858 43 671088652 57 671088666
30 687865857 44 671088653 58 671088667
31 671088640 45 671088654 59 671088668
32 671088641 46 671088655
33 671088642 47 671088656

This function doesn’t send any TL1 command. It used gathered information by periodically send
RTRV-EQPT-ALL command.
Synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value

C.4 ADVA FSP 3000RE-II device

C.4.1 Overview

The FSP 3000RE-II is Reconfigurable Optical Add/Drop Multiplexer (ROADM). The FSP 3000RE-II offers
scalable means to support a broad range of services. On the line-side, they can receive and transmit up to 40
protected wavelengths. On the tributary-side, they can drop up to four line-protected wavelengths, eight line-
unprotected wavelengths, or a combination of both. The interfaces of these tributaries range from SONET/
SDH, to Gigabit Ethernet, to reshaping, regenerating, and retiming (3R) transparent Service Interface Module
(SIM). The FSP 3000RE-I/FSP 3000RE-II shelf consists of a combination of optical line drivers (OLDs),
transponders (XPDRs), transceivers (XCVRs), SIMs, optical protection switches (OPS), Transponder
Protection Modules (XPMs), shelf processors (SPs), and other circuit packs on a chassis/ backplane. The
ADVA FSP 3000RE-II is shown on Figure 16-2.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

276

Figure 16-2: ADVA FSP 3000RE-II device.

From perspective of Phosphorus project, the more interesting is optical device architecture presented on Figure
16-3 . It is composed of two planes containing one OLD, one or few XCVRs and one ROADM filter. The DWDM
fiber is connected always to OLD. Currently all PSNC ADVA have 40 channels in DWDM link (100GHz spacing
between channels, wavelength from 192.00 to 195.90 THz). There are 2 planes so device can work with 2
DWDM links. There can be configured crossconnection for each lambda that enables light passing between
OLDs. The other possibility is Add/Drop configuration at each eROADM separately that enables lambda
dropping or adding to XCVRs. Each plane can have different number of transceivers (from one to four XCVRs).

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

277

Figure 16-3: ADVA FSP 3000RE-II architecture.

The ADVA TNRC SP takes care of configuring filters in eROADMs by PASS-THRU, ADD or DROP operations.
Example of configured connections is shown of Figure 16-4, where Plane 0 has 3 transceivers (channels:
34,41,59), Plane 1 has 2 transceivers (channels: 50, 59). There are configured in the way:

• 3 pass-through connections for channel 1 (Plane 0<->1) and channel 2 (Plane 0->1),
• 3 drop connections for channel 34 and 59 in Plane 0 and channel 59 in Plane 1,
• 3 add connections for channels 34 and 41 in Plane 0 and channel 59 in Plane 1.

Each connection is unidirectional. To configure bidirectional connection there is a need to configure two
connection for both direction in independently. From configuration point of view, OLD equipments have 2 port:
RX and TX. XCVR has always one bidirectional port: RX/TX.

DWDM
to/from
network

DWDM
to/from
network

Pass
through

Plane 1 Plane 0

eROADM eROADM
OLD OLD

Add/Drop Add/Drop

X
C
V
R

X
C
V
R

X
C
V
R

X
C
V
R

X
C
V
R

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

278

Figure 16-4: ADVA FSP 3000RE-II eROADM connections configuration (AID are “bay-shelve-slot-port”).

C.4.2 Implementation details

For device configuration it is used TL1-RAW (port 3082) or TL1-TELNET (port 3083). The ADVA SP opens one
permanent TCP session and sends TL1 login command.

Crossconnect operations are not fast. They need from one to few seconds to complete, because of channel
equalization process. One operation takes much more time to be completed. It is bidirectional xc activation
which is also part of make_xc operation. Because of long XC operation time, all XC operation are processed in
non-blocking way. The rest of functions are blocking functions.

The list of operation times is listed in the table:

Operation Type Operation time
login - 1-5 sec

unidirectional 1-5 sec make_xc
bidirectional 15-21 sec

destroy_xc unidirectional 2-10 sec

AID=1-1-8-2

AID=1-1-8-1 AID=1-1-13-2

AID=1-1-13-1

eROADM PLANE 0 eROADM PLANE 1

AID=1-1-9-1
channel 34

AID=1-1-10-1
channel 59

AID=1-1-11-1
Channel 41

AID=1-1-15-1
Channel 59

AID=1-1-16-1
Channel 50

Channel 20

Channel 59

Channel 20

Channel 59

…

…

…

…

Channel 20

Channel 59

Channel 20

Channel 59

ADD

ADD

ADD DROP

DROP

DROP

PASS-THRU (Chanel 1)

PASS-THRU (Chanel 2)

PASS-THRU (Chanel 1)

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

279

bidirectional 4-11 sec
unidirectional 1-2 sec reserve_xc
bidirectional 1-2 sec
unidirectional 1-2 sec unreserve_xc
bidirectional 1-3 sec
unidirectional 1-4 sec activate_xc
bidirectional 16-21 sec
unidirectional 1-2 sec deativate_xc
bidirectional 2-3 sec

register_async_vb - << 1sec
get_resource_list - << 1sec
get_resource_detail - << 1sec
get_xc_list - << 1sec
flush_list - << 1 sec

The TNRC ADVA SP is composed of several cooperative threads:

Thread name Duration Count Description
TNRCSP_ADVA permanent 1 create TL1 listing thread and check connection to

device status
if there is no TCP session then open the TCP
session and login

• the thread is able to periodical sending of
retrieving TL1 commands, information are
written to the internal data structures by
TNRCSP_adva_listen thread

TNRCSP_adva_listen almost
permanent

1 listen the incoming TL1 messages:
acknowledgments, responses and autonomous
messages
match responses which commands and activates
finite state machine related to the command
write information about device equipment to
internal data structures
calls asynchronous callbacks for fault notifications

external AP thread
calling ADVA SP
operation

unblocking
(very
short)

0..* validate arguments

check device connectivity

in case of xc operation, activate finite state
machine corresponding the operation and return
initial operation result

in case of information retrieving, look internal SP
data structure and return needed information

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

280

return operation result

The common data structures available inside different threads are protected by lock object.

The threads cooperation sequences in case of XC creation, fault notification are presented on Figure 16-5.

Figure 16-5: TNRC SP ADVA sequence diagram for XC creation and fault notification.

The threads cooperation sequences in case of retrieving of resource details are presented on Figure 16-6.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

281

Figure 16-6: TNRC SP ADVA sequence diagram for information retrieve (get_resource_list,
get_resource_detail, get_label_list).

All crossconnect operations are presented in form of finite state machines. Diagrams of these state machines
are presented on Figure 16-7, Figure 16-8, Figure 16-9, and Figure 16-10.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

282

Figure 16-7: TNRC SP ADVA make xc finite state machine (‘Destroy xc’ is entry point to destroy xc finite state
machine).

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

283

Figure 16-8: TNRC SP ADVA destroy xc finite state machine (‘Unreserve xc’ is entry point to unreserve xc finite
state machine).

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

284

Figure 16-9: TNRC SP ADVA reserve xc finite state machine (‘Unreserve xc’ is entry point to unreserve xc finite
state machine).

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

285

Figure 16-10: TNRC SP ADVA unreserve xc finite state.

C.4.3 TL1 commands

ACT-USER Activate User (Login)

Description
This command is used to set up a session (i.e. login) to the specified Network
Element.

Input format
ACT-USER:[TID]:<uid>:CTAG::<pid>;
example : ACT-USER::user:6334::****;
uid

The User Identifier, or login ID.

Input parameters
pid

The Private Identifier, or password.

Output parameters

respCode CMPLD – Completed successfully,
DENY – Action denied,
DELAY – Successful delayed action activation,
PRTL – Partially successful response,
RTRV – multiple parts successful response (last part with
CMPLD).

ASG-CHANNEL Assign Channel

Description
This command creates a connection between an egress port (to a OLD or
XCVR, etc.).

Input format ASG-

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

286

CHANNEL:[<tid>]::<ctag>::<ingressPortAID>,<egressPortAID>,<channelID>,<
connectionType>;
example : ASG-CHANNEL:::353431::1-1-8-1,1-1-13-2,20,PASSTHRU;
ingressPortAID

AID of the ingress OLD, XCVR, or XPDR port (Bay-Shelf-
Slot-Port format). For ADD connections, the ingress AID
should be a XCVR or XPDR port, and for DROP or
PASSTHRU connections, the ingress AID should be an
OLD input (Rx) port.

egressPortAID

AID of the egress OLD, XCVR, or XPDR port (Bay-Shelf-
Slot-Port format). For ADD or PASSTHRU connections,
the egress AID should be an OLD output (Tx) port, and for
DROP connections, the egress AID should be a XCVR or
XPDR port.

channelID

Channel number (20-59) or corresponding wavelength
(xxxx.xx), in nanometers.

Input parameters

connectionType Identifies the type of connection. Valid values are:

• ADD,

• DROP,

• PASSTHRU.

Output parameters

respCode CMPLD – Completed successfully,
DENY – Action denied,
DELAY – Successful delayed action activation,
PRTL – Partially successful response,
RTRV – multiple parts successful response (last part with
CMPLD).

RST-CHANNEL Restore Channel

Description
This command places a channel associated with an OLD or XCVR/XPDR
port in-service

Input format
RST-CHANNEL:[<tid>]:<aid>:<ctag>::<channelID>;
example :RST-CHANNEL:WEST01:1-1-8-2:CT01::20;
aid

AID of the egress OLD or XCVR/XPDR port (Bay-Shelf-
Slot-Port format). Input parameters

channelID

Channel number (20-59) or corresponding wavelength
(xxxx.xx), in nanometers.

Output parameters

respCode CMPLD – Completed successfully,
DENY – Action denied,
DELAY – Successful delayed action activation,
PRTL – Partially successful response,
RTRV – multiple parts successful response (last part
with CMPLD).

RMV-CHANNEL Remove Channel

Description
This command places a channel associated with an OLD or XCVR/XPDR
port out-of-service

Input format RMV-CHANNEL:[<tid>]:<aid>:<ctag>::<channelID>;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

287

example :RMV-CHANNEL:WEST01:1-1-8-2:CT01::20;
aid

AID of the egress OLD or XCVR/XPDR port (Bay-Shelf-
Slot-Port format). Input parameters

channelID

Channel number (20-59) or corresponding wavelength
(xxxx.xx), in nanometers.

Output parameters

respCode CMPLD – Completed successfully,
DENY – Action denied,
DELAY – Successful delayed action activation,
PRTL – Partially successful response,
RTRV – multiple parts successful response (last part
with CMPLD).

DLT-
CHANNEL

Delete Channel

Description

This command deletes a connection between an ingress port (from an OLD or
XCVR,etc.) and an egress port (to an OLD or XCVR, etc.). The command only requires
the egress port be specified.
If the FORCE option is specified, the connection is deleted regardless of state.

Input
format

DLT-
CHANNEL:[<tid>]::<ctag>::<ingressPortAID>,<egressPortAID>,<channelID>,,[<force>];
example :DLT-CHANNEL:NODE-1::CT01::,1-1-13-2,20;
ingressPortAID

Not Supported - AID of the ingress OLD, XCVR, or XPDR port
(Bay- Shelf-Slot-Port format). For ADD connections, the
ingress AID should be a XCVR or XPDR port, and for DROP or
PASSTHRU connections, the ingress AID should be an OLD
input (Rx) port.

egressPortAID

AID of the egress OLD, XCVR, or XDPR port (Bay-Shelf-Slot-
Port format). For ADD or PASSTHRU connections, the egress
AID should be an OLD output (Tx) port, and for DROP
connections, the egress AID should be a XCVR or XPDR port.

channelID

Channel number (20-59) or corresponding wavelength
(xxxx.xx), in nanometers.

Input
parameters

force Indicates whether deletion may over-ride channel ownership
and state. Valid values are:

TRUE or FALSE. Default is FALSE.

Output
parameters

respCode CMPLD – Completed successfully,
DENY – Action denied,
DELAY – Successful delayed action activation,
PRTL – Partially successful response,
RTRV – multiple parts successful response (last part with
CMPLD).

RTRV-CHANNEL Delete Channel

Description

This command retrieves attributes of a channel associated with an egress
OLD,
XCVR, or XPDR port. If the channel ID is omitted, then attributes for all
assigned channels are retrieved.

Input format RTRV-CHANNEL:[<tid>]:[<aid>]:<ctag>::[<channelID>];

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

288

example : RTRV-CHANNEL:WEST01:1-1-13-2:CT01::;
aid

Identifies the AID of the egress OLD port (for ADD or
PASSTHRU connections), or egress XCVR/XPDR port
(for DROP connections). The AID field can be omitted or
specified as ALL to retrieve all assigned channels.

Input parameters

channelID

Channel number (20-59) or corresponding wavelength
(xxxx.xx), in nanometers.

respCode CMPLD – Completed successfully,
DENY – Action denied,
DELAY – Successful delayed action activation,
PRTL – Partially successful response,
RTRV – multiple parts successful response (last part
with CMPLD).

ingressAid AID of the ingress port
egressAid AID of the egress port
channelID Channel number: 20-59
wavelength Wavelength of the channel (xxxx.xx nm)
connectionType

Identifies the type of connection. Valid values:

 ADD
 DROP
 PASSTHRU.

connectionStatus
Status of the connection. Values are:

 Connected-OOS
 EQ-in-progress
 Equalized-IS
 EQ-High
 EQ-Low
 EQ-LOL
 EQ-Failure
 EQ-Failure-APR

owner
Owner (creator) of the connection. Values are:
 NONE
 CLI
 MPLS
 SNMP
 TL1
 WEB
 ROOT
 UNKNOWN

Output parameters

status
Channel status. Valid values: IS or OOS

RTRV-EQPT-ALL Retrieve Equipment All

Description
The RTRV-EQPT-ALL command is used to retrieve basic information
about all provisioned circuit-packs on the NE.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

289

Input format
RTRV-EQPT-ALL:[TID]::CTAG;
example :RTRV-EQPT-ALL:FUTURE1::12345;

Input parameters None

respCode CMPLD – Completed successfully,
DENY – Action denied,
DELAY – Successful delayed action activation,
PRTL – Partially successful response,
RTRV – multiple parts successful response (last part
with CMPLD).

aid

Identifies the entity in the NE to which the command
pertains. For the EQPT commands, the AID should
specify the location identifier (in bay-shelf-slot format) for
a particular circuit-pack on the NE. aid is the AID
Inventory.
as ALL to retrieve all assigned channels.

typeid
The circuit-pack type or name. This is an alphanumeric
string of up to 16
characters. typeid is a string.

alarmadminstate The alarm reporting state for this circuit pack. Alarm
admin state is of type EnabledDisabled. [DISABLED,
ENABLED]

primarystate
The primary circuit-pack state. Primary state is of type
PrimaryState.

secondarystate
The secondary circuit-pack state. Secondary state is of
type SecondaryState.

regenmode
The regeneration mode for the circuit-pack. This is
provisionable for XPDR cards. Valid values are:

 q DISABLED
 q ENABLED
 q ENABLED-OPS
 q ENABLED-OTN

portcontrol The port-control mode for the circuit-pack. This is
provisionable for XDPR cards. Port control mode is of
type PortControl. [NORMAL, OVERRIDE]

channelID
The channel associated with the XCVR, XPDR, or EWM
circuit-pack. This is provisionable only for EWM circuit-
packs.

wavelength
The wavelength of the channel associated with the
XCVR, XPDR, or EWM circuit-pack. This is
provisionable only for EWM circuit-packs. wavelength is
a character string with format: xxxx.xx nm.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

290

C.4.4 TL1 autonomous messages

REPT ALM Report Alarm

Description

This is an autonomously generated alarm. It reports the onset or clearing of a
condition that requires immediate attention. Trouble events occurring in the
Network Element (NE) are classified as alarmed or non-alarmed events. In
general, an alarmed event causes a standing condition and has immediate or
potential impact on the operation or performance of the entity. Some form of
maintenance effort is required to restore normal operation or performance of
the entity after the event has occurred.
The string "rr" is used to designate a number of possible options, outlined
below.

Input format None

Output format REPT ALM <rr>: Report Alarm <rr>
aid [COMPONENT] aid is the AID Component.
ntfcncde The notification code for the message. ntfcncde is of

type NotificationCode.
conditiontype CONDITIONTYPE conditiontype is of type

ConditionType.
srveff The effect on service caused by the standing or alarm

condition. It can be either SA or
NSA. srveff is of type ServiceEffect.

ocrdat The location associated with a particular command. locn
is of type Location. locn is optional.

dirn DIRN dirn is a string. dirn is optional.

Output parameters

conddescr \"CONDDESCR\" conddescr is a string. The condition
description is of format description of ConditionType for
a raise of alarm and description of ConditionType
Cleared for a alarm clear.

REPT EVT Report Event

Description

This is an autonomously generated message. It reports a non-alarmed event.
Trouble events occuring in the Network Element (NE) are classified as
alarmed or non-alarmed events. The event being reported may change the
status or occurrence of an irregularity, which by itself is not severe enough to
warrant an alarm notification. One example of this is a performance threshold
crossing. This message may also be used to report the recovery from off-
normal or trouble conditions that were reported initially via REPT^EVT. This
is done using the <condtype> sent by the original event report and using the
value CL for <condeff>. Condeff is not supported in 5.0 release.
The string "rr" is used to designate a number of possible options, outlined
below.

Input format None

Output format REPT EVT rr: Report Event rr
aid [COMPONENT] aid is the AID Component. Output parameters
eventtype EVENTTYPE eventtype is a string.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

291

srveff SRVEFF srveff is a string.
ocrdat Date when the specific event or violation occurred.

ocrdat is a string.
ocrtm Time when the specific event or violation occurred.

ocrtm is a string.
locn LOCN locn is a string. locn is optional.
dirn DIRN dirn is a string. dirn is optional.
conddescr \"CONDDESCR\" conddescr is a string.

C.4.5 Error codes

ConditionType Description

ADMIN Alarm Administration Status
AGENT-FAIL Agent Failure
AIS Alarm Indication Signal
AIS-L Alarm Indication Signal - Line
AIS-P Alarm Indication Signal Present on Path Layer
AIS-S Alarm Indication Signal Present on Section Layer
AISSYNCPRI Primary Sync AIS
AISSYNCSEC Secondary Sync AIS
APR-ADJ-FAIL APR Adjust Fail
APR-ACT APR Is Active
APS Automatic Protection Switch In Effect
ASE-TBL-FAIL Build ASE Calibration Table Failure
AUTOPROV Shelf Lost Database and In Auto Provisioning Mode
BACKREFLECTION Back Reflection Error
BATT Battery Failure
BAYBATT_A Bay Battery A Failed
BAYBATT_B Bay Battery B Failed
BAYBRKER Bay Breaker Triggered
BAYBRKER_A Bay Breaker A Tripped
BAYBRKER_B Bay Breaker B Tripped
BDI-P Backward Defect Indication on Path
BDI-S Backward Defect Indication on Section
BEI-P Backward Error Indication on Path
BEI-S Backward Error Indication on Section
BRKER-A Breaker A Tripped
BRKER-B Breaker B Tripped
CLKFAIL0 Clock Failure from Plane 0
CLKFAIL1 Clock Failure from Plane 1
CLKPROTFAIL Clock Protection Failure
COMMLINK-0 Communications Link on Plane 0 down to SP
COMMLINK-1 Communications Link on Plane 1 down to SP
COMM-LOA COMM/Loss of Association
COMMLINK Communications Link Failure to SP
CP-FLT Circuit Pack Fault
CP-INT-MISM Circuit Pack Int. Mismatch

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

292

CP-MISM Circuit Pack Mismatch
CP-UNEQ Circuit Pack Unequipped
CVS Coding Violations-Section
DATALOL Data Loss Of Light
DSK-LOW Disk Low
DUAL-SECURITY Dual Security
DUP-ID Duplicate NE ID
DUP-NAME Duplicate NE Name
EDFA-GAIN-HI EDFA Gain High
EDFA-GAIN-LOW EDFA Gain Low
EDFA-INP-B-HI Second Stage Input High
EDFA-INP-B-LO Second Stage Input Low
EDFA-INP-HI EDFA Input Power High
EDFA-INP-LO EDFA Input Power Low
EDFA-LP-HI EDFA Laser Power High
EDFA-LP-LO EDFA Laser Power Low
EDFA-LP-A-HI A/EDFA Laser Power High
EDFA-LP-A-LO A/EDFA Laser Power Low
EDFA-LP-B-HI B/EDFA Laser Power High
EDFA-LP-B-LO B/EDFA Laser Power Low
EDFA-MIDST-HI EDFA Mid-Stage High
EDFA-MIDST-LO EDFA Mid-Stage Low
EDFA-OP-A-HI A/EDFA Optical Power High
EDFA-OP-A-LO A/EDFA Optical Power Low
EDFA-OUT-HI EDFA Output Power High
EDFA-OUT-LO EDFA Output Power Low
EDFAPOWERLO EDFA Power Low
ESS Error Seconds-Section
EVS Encoding Violations-Section
EXOSCSW Excessive OSC Switching
FANFAIL1 Fan Unit 1 not Operating
FANFAIL2 Fan Unit 2 not Operating
FANFAIL3 Fan Unit 3 not Operating
FANFAIL4 Fan Unit 4 not Operating
FANFAIL5 Fan Unit 5 not Operating
FANFAIL6 Fan Unit 6 not Operating
FANCOMMFAIL Fan Communication Failure
FLASHFAIL Write To Flash Failed
FPGAMISM FPGA Mismatch
FRCD-0 Forced Switch to Plane 0
FRCD-1 Forced Switch to Plane 1
FRCDSWTOPRI Forced Sync Reference Switch To Primary
FRCDSWTOSEC Forced Sync Reference Switch To Secondary
FRNGSYNCCG In Freerun Timining Mode
GAIN-TILT-FAIL EDFA Gain Tilt Fail
GAINHI Gain High
GAINLO Gain Low
HITEMP Shelf High Temperature
HIVOLT-A Rectifier A High Voltage
HIVOLT-B Rectifier B High Voltage

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

293

HKIN Housekeeping Input
HKIN1 Housekeeping Input 1
HKIN2 Housekeeping Input 2
HKIN3 Housekeeping Input 3
HKIN4 Housekeeping Input 4
HKOUT Housekeeping Output
HLDOVRSYNC In Holdover Timing Mode
IAE-S Incoming Alignment Error on Section
IDPFAIL IDProm Cannot be Read
IPVIOL IP Violation
LBCHI High Laser Bias Current
LBC-A-HI A/Laser Bias Current High
LBC-A-LO A/Laser Bias Current Low
LBC-B-HI B/Laser Bias Current High
LBC-B-LO B/Laser Bias Current Low
LBC-DATA-HI Data/Laser Bias Current High
LBC-DATA-LO Data/Laser Bias Current Low
LBC-OSC-HI OSC/Laser Bias Current High
LBC-OSC-LO OSC/Laser Bias Current Low
LBCLO Laser Bias Current Low
LCK-P Lock Signal Received on Path
LINEUP-UNKNOWN SWDL Lineup Unknown
LINKFAIL Link Synchronization Failure
LKOUT Protection Switch Lockout
LKOUT-0 Protection Switch Lockout on Plane 0
LKOUT-1 Protection Switch Lockout on Plane 1
LMC-HI Laser Modulation Current High
LMC-LO Laser Modulation Current Low
LOA Loss Of Association
LOCKOUTOFREF Lockout Of Reference
LOF Loss Of Frame
LOF-0 Loss Of Frame on Plane 0
LOF-1 Loss Of Frame on Plane 1
LOFREQ Loss Of Frequency
LOFSYNCPRI LOF Sync Primary
LOFSYNCSEC LOF Sync Secondary
LOI Loss Of Input
LOI-0 Loss Of Input Failure – 0
LOI-1 Loss Of Input Failure - 1
LOL Loss of Light
LOM Loss of Multiframe
LOP Loss of Pointer
LOS Loss Of Signal
LOS-0 Loss Of Signal on Plane 0
LOS-1 Loss Of Signal on Plane 1
LOSCHARSYNC Loss of Character Sync
LOSSYNCPRI Primary Sync Loss of Signal
LOSSYNCSEC Secondary Sync Loss of Signal
LOTEMP Shelf Low Temperature
LOWVOLT-A Rectifier A Low Voltage

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

294

LOWVOLT-B Rectifier B Low Voltage
LPAHI A/Laser Power High
LPALO A/Laser Power Low
LPBHI B/Laser Power High
LPBLO B/Laser Power Low
LPBK-F Facility Loopback Initiated (Far-End)
LPBK-T Terminal Loopback Initiated (Near-End)
LPHI Laser Power High
LPLO Laser Power Low
LSROVR Laser Safety Override
LTAHI A/Laser Temperature High
LTALO A/Laser Temperature Low
LTBHI B/Laser Temperature High
LTBLO B/Laser Temperature Low
LTHI Laser Temperature High
LTLO Laser Temperature Low
MANSWTOPRI Manual Sync Reference Switch To Primary
MANSWTOSEC Manual Sync Reference Switch To Secondary
MANUAL-0 Manual Switch to Plane 0
MANUAL-1 Manual Switch to Plane 1
MEM-LOW Memory Low
MISCON Equipment Misconfiguration
MSA-OPR-HI A/EDFA Mid-Stage RX Optical Power High
MSA-OPR-LO A/EDFA Mid-Stage RX Optical Power Low
NO-ASE-TBL No ASE Calibration Table
NO-GAIN-CALIB No Calibration Gain
OCI-P Open Connection Indication on Path
OIF Optical Input Failure
OLP-HI Optical Line Power High
OLP-LO Optical Line Power Low
OPR-DATA-HI Data/Optical RX Power High
OPR-DATA-LO Data/Optical RX Power Low
OPR-OSC-HI OSC/Optical RX Power High
OPR-OSC-LO OSC/Optical RX Power Low
OPRLO Low Optical Power Received
OPRHI High Optical Power Received
OPT-DATA-HI Data/Optical TX Power High
OPT-DATA-LO Data/Optical TX Power Low
OPT-OADM-HI TX Optical Power To OADM High
OPT-OADM-LO TX Optical Power To OADM Low
OPT-OSC-HI OSC/Optical TX Power High
OPT-OSC-LO OSC/Optical TX Power Low
OPT-SFLMT EDFA Output Power Exceeds Safety Limit
OPTLO Low Optical Power Transmitted
OPTHI High Optical Power Transmitted
OSCCGF OSC Configuration Unsupported
OSCFLT Communication Failure on OSC Channel
OSCLFR OSC Loss of Frame
OSCLOA OSC Loss Of Association
OSCLOL OSC Loss Of Light

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

295

OSCTXDISABLED OCS TX Power Disabled
OSCWS OSC Wiring Suspect
OVERBW Overbandwidth
PEFAIL-0 Power Equalization Failure At Plane 0
PEFAIL-1 Power Equalization Failure At Plane 1
PLM-P Payload Mismatch on Path
PRBS-LINE PRBS Line Initiated
PRILOCKOUTREF Primary Lockout Reference
PT-FLT SFP/XFP Port is in a Fault State
PT-MISM SFP/XFP Port Does Not Match
PT-UNEQ SFP/XFP Port is Removed/Missing
PT-UNKNOWN SFP/XFP Port is Unknown
PUMP-SHUTDOWN Pump Shutdown
RFI-L Remote Failure Indication - Line
RINV Rate is Invalid
RLOS Remote Loss Of Signal
RMPROTCMD Remote Command Fail
ROOR Rate Out of Range
RX-ERR Receive Error
SD Signal Degrade
SD-0 Signal Degrade Plane 0
SD-1 Signal Degrade Plane 1
SD-ODU ODU Signal Degrade
SEC-VOIL Invalid IP or ICMP Packets Received
SECLOCKOUTREF Secondary Lockout Reference
SEFS Severely Errored Frame-Section
SEFSS Severely Errored Frame Seconds - Section
SER-UNKN Shelf Serial Number Invalid
SESS Severely Errored Seconds-Section
SETPRIREFFAIL Set Primary Clock Fail
SETSECREFFAIL Set Secondary Clock Fail
SF-0 Signal Failure on Plane 0
SF-1 Signal Failure on Plane 1
SH-UNEQ Shelf Unequipped
SHBATT-A Shelf Battery A Failed
SHBATT-B Shelf Battery B Failed
SPPROTFAIL SP Protection Is Not Available
SSF Severe Signal Failure
SW-ACTV Unsuccessful Activation of Software
SW-MISM Incorrect Software Load
SW-TRNF Unsuccessful Transfer of Software
SWCOMPL Automatic Protection Switching Complete
SWDL-FAIL Unsuccessful Download of Software
SWFAIL-0 Protection Switch Unsuccessful to Plane 0
SWFAIL-1 Protection Switch Unsuccessful to Plane 1
TIM-P Trail Trace Identifier Mismatch on the Path Layer
TIM-S Trail Trace Identifier Mismatch on Section
TLTLO Low Transmit Laser Temperature
TLTHI High Transmit Laser Temperature
VOA-ATT-HI VOA Attenuation High

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

296

VOA-ATT-LO VOA Attenuation Low
WTR Wait To Restore

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

297

Appendix D TNRC Specific Part for Calient
DiamondWave FiberConnect

In this section we provide the specifications for the TNRC_SP software design for the Calient which was
developed and implemented by developers at PSNC and UEssex. The software provides various functionalities
and capabilities that allows the Calient Optical Cross connect (TN equipment) located at UEssex to be
dynamically and remotely controlled. We also provide an analysis the software design and architecture of the
software looking at the uses case and state diagrams used during the development. This document also
provides the supported TNRC_SP APIs in accordance the earlier released specification document, providing
the supported data structures and variables. Finally we then provide an appendix decribing all possible error
codes.

D.1 Calient TNRC_SP Software Design

This section describes the data structures and API available for communication between the TNRC_AP and
TNRC_SP.

D.1.1 Data structures

typedef unsigned int tnrcsp_handle_t;

typedef enum {
 TNRCSP_RESULT_NOERROR = 0,
 TNRCSP_RESULT_EQPTLINKDOWN,
 TNRCSP_RESULT_PARMERROR,
 TNRCSP_RESULT_NOTCAPABLE,
 TNRCSP_RESULT_BUSYRESOURCES,
 TNRCSP_RESULT_INTERNALERROR,
 TNRCSP_RESULT_GENERICERROR
} tnrcsp_result_t;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

298

typedef void (*tnrcsp_response_cb_t)(tnrcsp_handle_ t *handle, tnrcsp_result_t result,
void *cxt);

typedef void (*tnrcsp_notification_cb_t)(tnrcsp_han dle_t *handle,
tnrcsp_fsc_resource_id_t **failed_resource_listp, v oid *cxt);

typedef unsigned int tnrcsp_fsc_evmask_t; /* values TBD, depending on the hw */

typedef struct {
 SLIST_HDR event_list;

 tnrc_portid_t portid;
 tnrc_operstate_t oper_state;
 tnrc_adminstate_t admin_state;
 tnrcsp_fsc_evmask_t events;
} tnrcsp_fsc_event_t;

typedef struct {
 SLIST_HDR resource_list;

 tnrc_portid_t portid;
} tnrcsp_fsc_resource_id_t;

typedef struct {
 tnrc_portid_t portid;
 tnrc_operstate_t oper_state;
 tnrc_adminstate_t admin_state;
 tnrcsp_fsc_evmask_t last_event;
 /* other values TBD */
} tnrcsp_fsc_resource_detail_t;

typedef enum {
 TNRCSP_LISTTYPE_UNSPECIFIED,
 TNRCSP_LISTTYPE_RESOURCES
} tnrcsp_list_type_t;

D.1.2 Detailed specification of TNRC_SP FSC API functions

The following functions should be included in the API:

XC creation

tnrcsp_result_t
tnrcsp_fsc_calient_make_xc (tnrcsp_handle_t *handlep, tnrc_portid_t
portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction, tnrc_boolean_t
activate, tnrcsp_response_cb_t response_cb, void *response_cxt,
tnrcsp_notification_cb_t async_cb, void *async_cxt)

Parameters
handlep Out generic handler, generated by the TNRC SP and kept by the

TNRC AP
portid_in In ingress port id
portid_out In egress port id
direction In directionality of the XC (unidir and bidir)
activate In turn a couple of reserved ports into a XC

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

299

response_cb In pseudo-synchronous callback function provided by the TNRC
AP, to be called when the operation has been completed

response_cxt In response context provided by the TNRC AP, to be returned in
the response callback

async_cb In asynchronous notification function provided by the TNRC AP,
to be called whenever something asyn occurs on the XC or
some of its elements

async_cxt In asynchronous context provided by the TNRC AP, to be
returned in the async notification callback

Description
This function will create the XC, with the following behaviour:

� It returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device

� Later, when the XC has been completed or failed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

� XC creation is composed from few TL1 commands sequence,

� If XC creation failed, all resources are released, and device should be in the same state as
before XC creation,

� Correctness of XC creation is checked at the end of action,

� XC activation (activate=True) will success only if there was XC reservation called before,

� Any future event related to the XC or one of its components (e.g. ports) will be reported to the
TNRC AP with the asynchronous callback. Calient uses TL1 autonomous messages to inform
about events and alarms.

Used TL1 commands
ACT-CRS Reserve XC Normal situation
ENT-CRS Activate XC Normal situation if XC activation
RTRV-CRS Retrieve XC Normal situation

CANC-CRS Unreserve XC
Exceptional situation if XC
activation

DLT-CRS Delete XC Exceptional situation
Synchronous function results
TNRCSP_RESULT_NOERROR Connected, logged in and arguments are valid
TNRCSP_RESULT_EQPTLINKDOWN No TCP session to device or not logged in
TNRCSP_RESULT_PARMERROR Not valid arguments
Pseudo-synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value
TNRCSP_RESULT_BUSYRESOURCES Resources not available
TNRCSP_RESULT_INTERNALERROR Unrecognized action failure

TNRCSP_RESULT_GENERICERROR
Device denies to process an action (but arguments are
valid and resources are available)

XC removal tnrcsp_result_t

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

300

tnrcsp_fsc_calient_destroy_xc (tnrcsp_handle_t handlep, tnrc_portid_t
portid_in, tnrc_portid_t portid_out, tnrc_boolean_t virtual, tnrc_boolean_t
deactivate, tnrcsp_response_cb_t response_cb, void *response_cxt)

Parameters
handlep Out generic handler, generated by the TNRC SP and kept by the

TNRC AP
portid_in In ingress port id
portid_out In egress port id
direction In directionality of the XC (unidir and bidir)
deactivate In turn an XC into a couple of reserved ports
response_cb In pseudo-synchronous callback function provided by the TNRC

AP, to be called when the operation has been completed
response_cxt In response context provided by the TNRC AP, to be returned in

the response callback
Description
This function will destroy the XC, with the following behaviour:

� It returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

� Later, when the XC removal has been completed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

� XC deletion is composed from few TL1 commands sequence,

� In case of any unsuccessful processing of command the release of resources is continued,

� XC deactivation (deactivate=True) will success only if there was active XC,

� Correctness of XC deletion is checked at the end of action.

Used TL1 commands
CANC-CRS Unreserve XC Normal situation
DLT-CRS Delete XC Normal situation
RTRV-CRS Retrieve XC Normal situation
Synchronous function results
TNRCSP_RESULT_NOERROR Connected, logged in and arguments are valid
TNRCSP_RESULT_EQPTLINKDOWN No TCP session to device or not logged in
TNRCSP_RESULT_PARMERROR Not valid arguments
Pseudo-synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value
TNRCSP_RESULT_INTERNALERROR Unrecognized action failure

TNRCSP_RESULT_GENERICERROR
Device denies to process an action (but arguments are
valid)

XC reservation

tnrcsp_result_t
tnrcsp_fsc_calient_reserve_xc (tnrcsp_handle_t *handlep, tnrc_portid_t
portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction, tnrc_boolean_t
virtual, tnrcsp_response_cb_t response_cb, void *response_cxt)

Parameters

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

301

handlep Out generic handler, generated by the TNRC SP and kept by the
TNRC AP

portid_in In ingress port id
portid_out In egress port id
direction In directionality of the XC (unidir and bidir)
response_cb In pseudo-synchronous callback function provided by the TNRC

AP, to be called when the operation has been completed
response_cxt In response context provided by the TNRC AP, to be returned in

the response callback
Description
This function will reserve the XC, with the following behaviour:

� It returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

� Later, when the XC reservation has been completed or failed, the TNRC SP will come back to
the TNRC AP using the response callback (if any) and context, and delivering the result of the
operation,

� XC reservation is composed from few TL1 commands sequence,

� If XC reservation failed, all resources are released, and device should be in the same state as
before XC creation,

� Correctness of XC reservation is checked at the end of action.

Used TL1 commands
ACT-CRS Reserve XC Normal situation
RTRV-CRS Retrieve XC Normal situation
DLT-CRS Delete XC Exceptional situation
Synchronous function results
TNRCSP_RESULT_NOERROR Connected, logged in and arguments are valid
TNRCSP_RESULT_EQPTLINKDOWN No TCP session to device or not logged in
TNRCSP_RESULT_PARMERROR Not valid arguments
Pseudo-synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value
TNRCSP_RESULT_BUSYRESOURCES Resources not available
TNRCSP_RESULT_INTERNALERROR Unrecognized action failure

TNRCSP_RESULT_GENERICERROR
Device denies to process an action (but arguments are
valid and resources are available)

XC unreservation

tnrcsp_result_t
tnrcsp_fsc_calient_unreserve_xc (tnrcsp_handle_t *handlep,
tnrc_portid_t portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction,
tnrc_boolean_t virtual, tnrcsp_response_cb_t response_cb, void
*response_cxt)

Parameters
handlep Out generic handler, generated by the TNRC SP and kept by the

TNRC AP
portid_in In ingress port id

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

302

portid_out In egress port id
direction In directionality of the XC (unidir and bidir)
response_cb In pseudo-synchronous callback function provided by the TNRC

AP, to be called when the operation has been completed
response_cxt In response context provided by the TNRC AP, to be returned in

the response callback
Description
This function will unreserve the XC, with the following behaviour:

� It returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

� Later, when the XC removal has been completed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

� XC unreservation is composed from few TL1 commands sequence,

� In case of any unsuccessful processing of command the release of resources is continued,

� XC unreservation will success only if XC is not active,

� Correctness of XC unreservation is checked at the end of action.

Used TL1 commands
DLT-CRS Delete XC Normal situation
RTRV-CRS Retrieve XC Normal situation
Synchronous function results
TNRCSP_RESULT_NOERROR Connected, logged in and arguments are valid
TNRCSP_RESULT_EQPTLINKDOWN No TCP session to device or not logged in
TNRCSP_RESULT_PARMERROR Not valid arguments
Pseudo-synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value
TNRCSP_RESULT_INTERNALERROR Unrecognized action failure

TNRCSP_RESULT_GENERICERROR
Device denies to process an action (but arguments are
valid)

Register events
notification

tnrcsp_result_t
tnrcsp_fsc_calient_register_async_cb (tnrcsp_fsc_event_t *events)

Parameters
events In List of events to be notified to the TNRC AP; each event item

focuses on a port and reports about states (operational,
administrative) and occurred events (using a bitmask)

Num In number of events
Description
This function will register events to be notified to TNRC AP; Notification mechanism is invoked
asynchronously by the TNRC SP when:

• TL1 autonomous alarm notification appear,

• operation state occur,

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

303

• administration state occur.

The administrative and operational status are periodically polled and states are compared with
registered values.
This function doesn’t use any TL1 command.
Synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_PARMERROR Wrong argument value
TNRCSP_RESULT_INTERNALERROR Unrecognized action failure

Fetching of
resources list

tnrcsp_result_t
tnrcsp_fsc_calient_get_resource_list (tnrcsp_fsc_resource_id_t
**resource_listp)

Parameters
resource_listp Out to be returned as pointer to the list of resource ids
num Out number of returned resource ids
Description
This function allows to fetch the list of underlying resources. Each resource will be assigned an id by
the TNRC_SP. The resource identifier is composed from Access Identifier code (AID) of card.
For example: AID = 1.1.8 (“bay-shelve-slot“) then port id = 118. This transformation generates
unique ids and its is easily reversible.
This function doesn’t send any TL1 command. It used gathered information by periodically sending
a loop of RTRV-PORT for each port continually.
Synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost

Fetching of
details about a
specific
resource

tnrcsp_result_t
tnrcsp_fsc_calient_get_resource_detail (tnrcsp_fsc_resource_id_t
resource_id, tnrcsp_fsc_resource_detail_t *resource_detailp)

Parameters
resource_id In identifier of the resource whose details are fetched
resource_detailp Out to be returned as pointer to the structure of resource details
Description
This function allows to fetch the details of a specific resource. The details contains information
about:

o current administrative state (disabled, enabled),

o current operational state (disabled, enabled),

o last event.

There is also second condition for crossconnection possibility – labels (wavelengths) for both
resources must be the same.
Administrative state depends on PrimaryState returned by device:

Administrative State PrimaryState Description
IS In-service TNRC_ADMINSTATE_ENABLED
IS-ANR In-service, abnormal

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

304

IS-ANRST In-service, abnormal and restricted
IS-NR In-service, normal
IS-RST In-service, restricted
UMA Under Management
OSS Out-of-service
OSS-AU Out-of-service, autonomous
OOS-AUMA Out-of-service, autonomous and

management
OOS-AURST Out-of-service, autonomous and restricted
OOS-MA Out-of-service, management

TNRC_ADMINSTATE_DISABLED

OOS-MAANR Out-of-service, management and abnormal

Operational state depends on SecondaryState returned by device:

Administrative State SecondaryState Description
TNRC_OPERSTATE_ENABLED ACT Active

ASWDL Automatic Software Download
DGN Diagnostic
DSBLD Data Sync
FLT Fault
LPBK-FAC Loopback Facility
LPBK-TERM Loopback Terminal
MISM Mismatched
NALM No Alarm
PRBS PRBS test
SGEO Supporting entity outage
STBY Supporting entity outage
SWDL Software download
TCAI TCA Inhibited
TUNE Indicates laser is in the process of turning on
UAS Unassigned

TNRC_OPERSTATE_DISABLED

UEQ Unequipped

Last event present last non-alarm or alarm condition. Alarm values are presented in the error table
section of annex. Non-alarm events are not listed yet (lack in documentation).

This function doesn’t send any TL1 command. It used gathered information by periodically sending
a loop of RTRV-PORT for each port continually

Synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value

Fetching of
crossconnections
list

tnrcsp_result_t
tnrcsp_fsc_calient_save_xc_list (tnrcsp_resource_id_t resource_id,
unsigned int* num)

Parameters
resource_id In identifier of the resource whose labels are fetched
label_listp Out to be returned as pointer to the list of labels
num Out number of returned resource ids

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

305

Description

This function doesn’t send any TL1 command. It used gathered information by periodically send
RTRV-CRS command.

Synchronous function results
TNRCSP_RESULT_NOERROR Action processed successfully
TNRCSP_RESULT_EQPTLINKDOWN TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value

Flushing of lists
tnrcsp_result_t
tnrcsp_fsc_calient_flush_list(tnrcsp_list_type_t list_type, void *list)

Parameters
list_type In Type of the list to be flushed (might be left unspecified)
list In Pointer
Description
This function allows to free a generic simple list of elements previously returned by the TNRC_SP. If the
freeing is simple (i.e. no nested pointers), then the list type could be unspecified.

D.2 Calient TNRC_SP Software Implementation

D.2.1 TNRC_SP use-case scenarios

In order to fully develop the TNRC_SP, various considerations and assumptions were made based on the
specification documents TNRC specification documents. These assumptions describe the functionality and
characteristics as follows:

a) implementing the specific actions on the hardware, by means of any available and suitable management
interface (e.g. TL1, SNMP, CLI).

b) decoupling the mechanisms of the lower management from the upper layers (i.e. TNRC_AP):

i. decoupling of blocking/unblocking sync/async communication,

ii. decoupling of objects or sessions identifiers,

c) perform any final translation from the semantics and object identifiers passed by the TNRC_AP into those
needed to communicate with the hardware.

d) hide away from TNRC_AP some unneeded peculiarities of the underlying transport network equipment;
e.g. the port in an FSC switch might be organized in rack, shelf, and port, and the port unique ids on the

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

306

device could be made of these 3 identifiers. The G2MPLS, and the TNRC_AP on behalf of it, are not
interested in these details, and just need to use a unique port id (built as the TNRC_SP likes). Of course,
some exceptions to this rule might exist and they need to be taken into account, and this will be discussed
and addressed case by case.

Based on these requirements a use case diagram has been developed to explain the various
commands that are supported on the Calient OXC. This diagram is shown in

Figure 16-11 and it explains in human readable terms what is expected from both the TNRC_AP and the
Calient OXC. The TNRC_SP will basically offer the upper part (TNRC_AP) an API specific to the equipment
considered, in this case the Calient OXC. It will name resources based on the underlying TN technology and
SwCap (Switching Capability) which in the Calient is Fibre switching. The core part of the TNRC_SP is highly
dependent on the Calient OXC’s controlling agent in which TL1, TL1-RAW and SNMP are supported to
configure, manage and monitor the OXC. The Calient OXC can also receive the required function (commands)
using TL1 commands language via Telnet and Serial interfaces.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

307

Figure 16-11: Uses Case Diagram for the TNRC_SP.

We have chosen to use the TL1 command language in conjunction with Telnet interface because of speed,
respective modularity, flexibility and ease of integration. Further details on the integration of the TLI agent,
Telnet interface and the TNRC_SP will be provided later in the document. The main functions to be
implemented are:

• Make XC
• Destroy XC
• Reserve XC
• Unreserve XC
• Register Asynchronous Call Back
• Get Resource list
• Get Resource Details
• Flush Resources.

To further explain the functions described in the use case, individual functions are described based on the
command that will be sent, the response expected and the actions to be executed between the TNRC_AP,
TNRC_SP and Calient OXC.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

308

D.2.1.1 Make XC

This command allows cross-connections to be performed. Although the Calient OXC supports the reservation
of XC in order to activate it at a later time, our implementation of the TNRC_SP doesn not support this
function. This can be easily integrated to the TNRC_SP if needed in the future.

ENT-CRS Entering Connection
Description This command creates a new connection between two ports.

Input format

ENT-CRS:[TID]:<srcPort>,<dstPort>:[CTAG]::
[<groupName>],[<connType>],[<connName>],[<waveband>],
[<force>];
example :
agent> ent-crs::0.12b.8,0.12b.5:::calient,1way,sf_la;
calient 02-11-01 13:36:29
M 0 COMPLD
/* ENT-CRS OK. 0.12b.8>0.12b.5 */
;
srcPort This parameter specifies the port used for the connection.

srcPort must be specified.
dstPort This parameter specifies the port used for the destination.

dstPort must be specified.
groupName This parameter specifies the name of the group who is

serviced by a
connection. The group name consists between 1 to 35
alphanumeric
characters, including special characters such as periods
(.) and underscores
(_).

groupName is optional.
connType This parameter specifies the direction of a connection.

Options are:
- 1way for unidirectional
- 2way for bidirectional
connType is optional.

connName This parameter specifies the connection name, consists of
up to 35
alphanumeric characters. The conn_name must be
unique within a customer
group, and you cannot use duplicate connection names
for the same
customer.
connName is optional.

Input parameters

wavebandwaveb
and

This parameter specifies the waveband constraint when
making a connection.
Options are:
- WBand (default) for wavelengths between 1260 and
1625 nm
- CBand for wavelength between 1530–1565 nm
- LBand for wavelength between 1565–1610 nm

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

309

- XLBand for wavelength between 1610–1625 nm
- OBand for wavelength between 1260–1360 nm
waveband is optional.

force This parameter specifies if all specified parameters can
be forced onto
member ports. Options are:
- N (default) indicates only the applicable parameters
(those which have
not been previously overridden) are provisioned onto
member ports.
- Y indicates all parameters are forced onto the member
ports of a port
group.
force is optional.

Output parameters

respCode CMPLD – Completed successfully,
DENY – Action denied,
DELAY – Successful delayed action activation,
PRTL – Partially successful response,
RTRV – multiple parts successful response (last part with
CMPLD).

ENEQ
No hardware present for that connection

IDNV 1. Invalid Data. Invalid (hardware not present) or
unsupported equipment.
2. Invalid Port descriptor. Card might have been
deleted.

Error Codes

SRCN

Port already in connection. Connection already exists.

Details:

The cross-connections are completed in less than one second and the responses are displayed back to the TLI
agent prompt immediately.

D.2.1.2 Destroy XC

This command permanently deletes cross-connections on the Calient OXC. Once the XC has been deleted the
resources involved are no longer reserved and they become available immediately. Although the Calient
supports a functionality to only deactivate the XC but not delete it, we do not currently support this function in
the TNRC_SP implementation.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

310

DLT-CRS Deleting Connection

Description
This command deletes an existing connection, removing it from the
DiamondWave equipment database.

Input format

DLT-CRS:[TID]:[<srcPort>,<dstPort>]:[CTAG]::<circuitId>;
example :
agent> dlt-crs:::::0.3a.4-0.4a.3;
calient 01-07-25 17:39:08
M 0 COMPLD
;
srcPort This parameter specifies the port used for the connection.

srcPort must be specified.
dstPort This parameter specifies the port used for the destination.

dstPort must be specified.
Input parameters

circuitId This parameter specifies the connection ID to delete.
circuitId must be specified.

Output parameters

respCode CMPLD – Completed successfully,
DENY – Action denied,
DELAY – Successful delayed action activation,
PRTL – Partially successful response,
RTRV – multiple parts successful response (last part with
CMPLD).

IDNV
Customer Name or Circuit does not exist

IIFM 1. Invalid format of customer_name or circuitId
string
2. Invalid format of eqptId

Error Codes

RCIN
Requested CircuitID does not exist

Details:

The deletion of a cross-connection is also completed in less than one second and the responses are displayed
back to the TLI agent prompt immediately. It is also important to know that at least a pair of the circuit id,
groupName or connName must be used in the TL1 command

D.2.1.3 Reserve XC

This command is used to reserve ports for cross connections which could be activated sometime in the future

ACT-CRS Activating Connections

Description

This command reactivates a cross connection that had previously been
deactivated by the CANC-CRS command. This command moves the
connection from an under management state (AS_UMA) to an in-service state
(AS_IS).

Input format ACT-CRS:[TID]:[<srcPort>,<dstPort>]:[CTAG]::<circuitId>;

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

311

example :
agent>act-crs:::::0.3a.1>0.4a.1;
calient 01-08-01 10:00:44
M 0 COMPLD
;
srcPort This parameter specifies the port used for the connection.

srcPort must be specified.
dstPort This parameter specifies the port used for the destination.

dstPort must be specified.
Input parameters

circuitId This parameter specifies the connection ID to delete.
circuitId must be specified.

Output parameters

respCode CMPLD – Completed successfully,
DENY – Action denied,
DELAY – Successful delayed action activation,
PRTL – Partially successful response,
RTRV – multiple parts successful response (last part with
CMPLD).

IDNV

Customer Name or Circuit does not exist

IIFM
Invalid format of customer_name or circuitId string

Error Codes

RCIN
Requested Circuit ID does not exist

Details:

The reservation of a cross-connection is also completed in less than one second and the responses are
displayed back to the TLI agent prompt immediately. It is also important to know that at least a pair of the circuit
id, groupName or connName must be used in the TL1 command

D.2.1.4 Unreserve XC

This command is used to unreserve ports that has been previous reserved or to deactivate and existing cross
connection. Although the existing cross connection is deactivated, it is not deleted from the system.

CANC-
CRS:

Cancelling Connections

Description

This command cancels (deactivates) a previously active connection, moving
the connection state from in-service (AS_IS) to under management
(AS_UMA). While in an AS_UMA state, the connection still functions
normally; however, alarms are not logged. When a connection is deactivated,
all outstanding alarms associated with the connection are cleared.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

312

Input format

CANC-CRS:[TID]:[<srcPort>,<dstPort>]:[CTAG]::<circuitId>;
example :
agent>canc-crs:::::0.3a.4>0.4a.3;
calient 01-08-23 13:02:56
M 0 COMPLD
;
srcPort This parameter specifies the port used for the connection.

srcPort must be specified.
dstPort This parameter specifies the port used for the destination.

dstPort must be specified.
Input parameters

circuitId This parameter specifies the connection ID to delete.
circuitId must be specified.

Output parameters

respCode CMPLD – Completed successfully,
DENY – Action denied,
DELAY – Successful delayed action activation,
PRTL – Partially successful response,
RTRV – multiple parts successful response (last part with
CMPLD).

IDNV

Customer Name or Circuit does not exist

IIFM

Invalid format of customer_name or circuitId string

RCIN

Requested CircuitID does not exist

Details:

The deactivation of a cross-connection is also completed in less than one second and the responses are
displayed back to the TLI agent prompt immediately. It is also important to know that at least a pair of the circuit
id, groupName or connName must be used in the TL1 command

D.2.1.5 Event Notification

The event notification is handled by parsing the autonomous messages that are received from the switch .
These Autonomous messages are used to report alarms, configuration changes, or condition changes. Many of
these messages, such as those relating to alarm conditions, are spontaneously triggered by the NE itself
without intervention.

REPT Report Alarm

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

313

ALM:

Description
This message cannot be issued from the console. It is displayed on the
console
after receipt from the TL1 agent.

Output format

Example:
agent 02-12-04 13:01:35
** 15 REPT ALM ENV
"0.11b:MJ,T-ADC,NSA,02-12-04,13-01-35,,:\"AlarmId=42:
Description=ADC Bus Errors detected\""
;;

REPT
DBCHG:

Report Database Change

Description

This message cannot be issued from the console. It is displayed on the
console
after receipt from the TL1 Agent. This autonomous message reports
immediately to the operational service DiamondWave database changes that
have occurred as a result of commands to change
- equipment provisioning or configuration
- the value of the TID or SID
- the value of the keywords defined in the common block or specific block

Output format

Example:
agent> set-sid:::::calient;
calient 02-12-04 13:01:14
A 11 REPT DBCHG
"DATE=02-12-04,TIME=13-01-14,SOURCE=0,
USERID=admin,DBCHGSEQ=7:SET-SID:calient"
;

 Report Event Messages

Description

There are two types of event messages:
- REPT EVT SECU: Report Event Security
- REPT EVT COM: Report Event Commons
These messages cannot be issued from the console. They are displayed on
the
console after receipt from the TL1 agent. These autonomous messages result
in a display of a DiamondWave event on the console. For example,

Output format

Examples:
calient 02-11-25 11:18:25
A 350 REPT EVT SECU
"admin:SEC-LOGON,TC,02-11-25,11-18-25,,,,:\"User login\""
;
calient 02-12-04 13:01:35

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

314

A 14 REPT EVT COM
"0.11b:MON-MJ,TC,02-12-04,13-01-35,,,,:\"Monitor major
threshold crossed\""
;

D.2.1.6 Get Resource List

This command probes for the available resources on the Calient OXC. Although the Calient uses single
commands for the probing of lists such as XCs and alarms, there is no single command that probes for the
amount of available resources and their current states. To support this functionality we use a loop to retrieve
individual ports and the cumulative result of the loop is presented to the TNRC_AP.

RTRV-PORT Retrieving Port Information
Description This command retrieves port information.

Input and Output
format

Input: RTRV-PORT:[TID]:<eqptId>:[CTAG]::[<owner>],[<portcategory>];
Output:
SID DATE TIME
M CTAG COMPLD
"<AID>:<portType>,<inOwner>,<outOwner>:
[INOPTDEGR=<inoptdegr>], [INOPTCRIT=<inoptcrit>],
[OUTOPTDEGR=<outoptdegr>], [OUTOPTCRIT=<outoptcrit>],
[INOPTHI=<inopthi>], [ATTNMODE=<attnmode>],
[OUTPOWER=<outpower>],[VARIANT=<variant>],[ALIAS=<alias>],
[IN_AS=<inAS>],[IN_OS=<inOS>],[IN_OC=<inOC>],
[OUT_AS=<outAS>], [OUT_OS=<outOS>], [OUT_OC=<outOC>]"
;
example :
agent> rtrv-port::0.18.1;
TL1AGENT 04-12-08 00:31:05
M 0 COMPLD
"0.18.1:OAONR,TRANSIT, NONE:INOPTDEGR=-15.00, INOPTCRIT=-
18.00,OUTOPTDEGR=-23.00, OUTOPTCRIT=-26.00,INOPTHI=13.00,,
ALIAS=TEST,POWERMODE=CONSTOUTPUT,OUTPOWER=0.00,VARI
ANT=0.50,INAS=IS,INOS=RDY,INOC=OK,OUTAS=OOS-NP,
OUTOS=OOS, OUTOC=OK, PORTID=1205761"
;
eqptId This parameter specifies the port ID to modify. For

example, 0.13a.
owner This parameter specifies the ownership of connection.

Options are:
- trib (tributary) indicates the port is used in an optical
network
connection
- none indicates the port is used in a local node cross
connection

Input parameters

portcategory This parameter specifies the port category. Options are:
- all displays all ports
- free displays the ports that are not used in any

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

315

connection
PORTTYPE This parameter specifies the type of the port (card type).
INOPTDEGR This parameter specifies the input optical power

threshold.
INOPTCRIT This parameter specifies the input optical power monitor

critical threshold.
The range is –35 dBm to 15 dBm. Default is –18.0 dBM.

OUTOPTDEG
R

This parameter specifies the output optical power monitor
degraded
threshold for the light through the active switch matrix.
The range is –35
dBm to 20 dBm. Default is –23.0 dBM.

OUTOPTCRIT This parameter specifies the output optical power monitor
critical threshold for
the light through the active switch matrix. The range is –
40 dBm to 15 dBm.
Default is –26.0 dBM.

INOPTHI This parameter specifies the input optical power monitor
high threshold for the
light through the active switch matrix. The range is –10
dBm to 20 dBm.
Default is 20.0 dBM.

ATTNMODE This parameter specifies the attenuation mode for the
VOA application.

OUTPOWER For IO cards with a power gain feature, this parameter
specifies the target
output power for the port. This parameter is applicable
only to a port
configured as constant output.
Setting is in increments of +dBm based on the granularity
setting of the
variant. The range is -30dBm to 15dBm. For example, the
setting 1.5
increases optical power gain 1.5dBm.
outpower is optional.

VARIANT This parameter specifies the attenuation threshold
ranging between 0–15 dB.
The default is 0.5 dB. The range is 0.5dB to 10dB.
variant is optional.

ALIAS This parameter specifies an assumed name created for
the port.

INAS This parameter specifies the input administrative state.
INOS This parameter specifies the input operational state.
INOC This parameter specifies the input operational capability.
OUTAS This parameter specifies the output administrative state.
OUTOS This parameter specifies the output operational state.

Output parameters

OUTOC This parameter specifies the output operational capability.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

316

D.2.1.7 Get Resource Details

The command retrieves the properties of a particular resource. The same command for the get resource detail
as explained earlier is used but without the loop.

D.2.1.8 Flush Resources

At the moment, this command is not quite clear. We are not sure, if it is to clear all alarms in the system or it is
to stop the notifications of events. This is been flagged to be discussed within the group.

D.2.2 TNRC_SP_Calient Generic Descriptions

The diagram below provides an overview of the processes and threads that were implemented in the Calient
TNRC_SP software. The software is made up two major threads in which one is used for listening and the other
for interacting with the switch.

The diagram in Figure 16-12. also shows the structure and the integration of the functions recommended in the
TNRC_SP specification document. As explained earlier on we are using the TL1 command language integrated
with the Telnet communication interface. The TNRC_SP architecture is divided into four broad categories
described below.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

317

Figure 16-12: Process and threads sequential diagram.

• On start : TNRC_AP creates an instance of TNRC_SP_Calient
○ Each instance :

— Establishes a Telnet client session for life time of the instance.
— Implements a Telnet client listener thread (TNRC_Listening_Thread) for life time of the

instance.
— Implements TNRC_AP_Parser method.
— To parse TNRC_AP commands.

○ Up to 8 concurrent instances can be created. This is because the Calient Telnet server is limited to
only 8 parallel sessions.

• On process : each TNRC_AP_Call (i.e. Make_XC,Destroy _XC, Reserve XC, Unreserve XC) calls
TNRC_Parser method:
○ Sends Ack to TRNC_AP.
○ Creates an independent thread for each call.
○ Each thread :

— Sends associated Telnet command with a unique tag.
— Starts a “no response” timer.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

318

— Waits for Ack from TNRC_Listening_Thread.
— Implements pseudo-synchronous notification method:
(1) On “no response” timer expiry notify TNRC_AP.
(2) On Ack from TNRC_Listening_Thread notify TNRC_AP.
(3) On Nack from TNRC_Listening_Thread notify TNRC_AP.

— Thread dies after notification or timeout.

The state diagrams for the commands are shown in Figure 16-13, Figure 16-14, Figure 16-15 and Figure
16-16.

Figure 16-13: State Diagram for Make XC.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

319

Figure 16-14: State Diagram for Destroy XC.

Figure 16-15: State Diagram for Reserve Resources.

Grid-GMPLS high-level system design

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

320

Figure 16-16: State Diagram for Un-reserve Resources.

• On process : register_async_cb initiates the event notification registration:
○ Registers the associated events.
○ Sends Ack to TRNC_AP.

• On Process : Telnet client listener thread (TNRC_Listening_Thread) monitors (listens) Telnet client

socket:
○ TNRC_Listening_Thread:

— Listens to message broadcasted by Telnet server agent in Calient.
— Implements a message parsing method:
(1) Lookup for registered events/alarms.
(2) Notify TNRC_AP with the registered events (register_async_cb).
(3) Send call each response to its associated (tag) source thread.

<END-OF-DOCUMENT>

