034115
PHOSPHORUS

Lambda User Controlled Infrastructure for EuropBasearch

Integrated Project

. . . **)q.*
Strategic objective: x
Research Networking Testbeds * *

xR
Deliverable reference number: D.2.3

Grid-GMPLS high-level system design

Due date of deliverable: 2008-03-31
Actual submission date: 2008-03-31
Document code: Phosphorus-WP2-D2.3

Start date of project:

Duration:
October 1, 2006

30 Months

Organisation name of lead contractor for this deliverable: Nextworks (NXW)

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)
Dissemination Level

PU Public
PP
RE
CO

v

Restricted to other programme participants (including the Commission Services)

Restricted to a group specified by the consortium (including the Commission Services)
Confidential, only for members of the consortium (including the Commission Services)

Grid-GMPLS high-level system design

Abstract

This document reports the software architecture of the main network elements of the Grid-enabled GMPLS Control Plane.

Functional entities are specified in terms of interfaces, both internal to a G?MPLS network element and external (i.e. towards other peering
network elements).

Moreover, for each components of a G?MPLS network element, a detailed breakdown of functionalities, data model, finite state machines
and exported APIs is provided in terms of code/pseudo-code excerpts, in order to assemble a generalized but possibly detailed guide for
the G®MPLS software developers.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

Grid-GMPLS high-level system design

List of Contributors

Giacomo Bernini NXW Damian Parniewicz PSNC
Gino Carrozzo NXW Artur Juszczyk PSNC
Nicola Ciulli NXW Eduard Escalona UESSEX
Giodi Giorgi NXW Reza Nejabati UESSEX
Francesco Salvestrini NXW Adetola Orepdope UESSEX
Adam Kaliszan PSNC Oliver Waldrich FHG-SCAI
Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

Grid-GMPLS high-level system design

Table of Contents

l

Project:

Executive Summary
Objectives and Scope
Terminology

High-level system design of G*MPLS network elements

3.1 G°MPLS Edge Controller
3.1.1 Main functionalities
3.1.2 External interfaces
3.1.3 Internal interfaces

3.2 G°MPLS Core Controller
3.2.1 Main functionalities
3.2.2 External interfaces
3.2.3 Internal interfaces

3.3 G°MPLS Border Controller
3.3.1 Main functionalities
3.3.2 External interfaces
3.3.3 Internal interfaces

3.4 G.UNI Gateway (G.UNI-GW)
3.4.1 Main functionalities
3.4.2 External interfaces
3.4.3 Internal interfaces

3.5 G.E-NNI Gateway (G.ENNI-GW)

Transport Network Resource Controller (TNRC)
4.1 TNRC basics
4.2 TNRC data model

4.2.1 TNRC_Master instance

4.2.2 TNRC_AP instance

4.2.3 Eqptinstance

4.2.4 Board instance

Phosphorus

Deliverable Number: D.2.3

Date of Issue:
EC Contract No.:
Document Code:

31/03/08
034115
Phosphorus-WpP2-D2.3

13

14

17

18
22
22
23
24
26
26
26
27
30
30
30
31
34
34
34
35
36

37
37
38
39
41
42
43

Grid-GMPLS high-level system design

4.2.5 Portinstance 45
4.2.6 Resource instance 46
4.2.7 Plugin Container (Pcontainer) instance 48
4.2.8 Plugin instance 48
4.2.9 ApiQueue instance 51
4.2.10 Action instance 51
4.2.11 XC instance 53
4.3 TNRC Abstract Part 55
4.3.1 TNRC Abstract Part configuration API 55
4.3.2 TNRC Abstract Part external API 57
4.3.3 TNRC Abstract Part action specific API 59
4.4 TNRC Specific Part 60
4.4.1 TNRC Specific Part API 60
4.5 TNRC Action FSM 60
45.1 Example transitions 66
5 Link Resource Manager (LRM) 69
5.1 LRM basics 69
5.2 LRM Data Model 69
5.2.1 LRM instance 70
5.2.2 SCN Interface instance 71
5.2.3 Control Channel instance 71
5.2.4 Adjacency instance 72
5.2.5 TE-Link instance 72
5.2.6 Data-Link instance 74
5.3 LRM configuration API 75
5.4 LRM external API 77
6 SCN Gateway (SCNGW) 79
6.1 SCNGW basics 79
6.2 SCNGW client 81
6.3 SCNGW server 84
6.3.1 SCNGW server data structures 84
6.3.2 SCNGW server external API 87
7 G”.RSVP-TE 89
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

Grid-GMPLS high-level system design

7.1 G2.RSVP-TE data model 90
7.11 G2RSVPTE instance 91
7.1.2 Session instance 92
7.1.3 LSP instance 93
7.1.4 Interface instance 97
7.2 G2.RSVP-TE internal API 98
7.3 G2.RSVP-TE external API 101
7.4 G2.RSVP-TE LSP FSM 103
7.4.1 Example transitions 111
7.5 G2.RSVP-TE parsing and formatting 112
8 Call Controllers 117
8.1 CC shared objects and functions (xCC) 117
8.1.1 xCC data model 118
8.1.2 xCC (CCC/NCC) External API 120
8.1.3 xCC Signalling Interfaces 124
8.2 G2.NCC - The Grid-GMPLS Network Call Controller 128
8.2.1 G2NCC basics 128
8.2.2 G2.NCC software overview 128
8.2.3 G2NCC data model 130
8.24 G2NCC Call FSM 132
8.3 G2.CCC - The Grid-GMPLS Client Call Controller 139
8.3.1 G2.CCC basics 139
8.3.2 G2.CCC software overview 139
8.3.3 G2.CCC data model 141
8.34 G2CCC Call FSM 142
9 Recovery Controller (RC) 147
9.1 Recovery Controller basics 147
9.2 Recovery Controller software overview 148
9.3 Recovery Controller data model 149
9.4 RC Recovery Bundle FSM 151
9.5 Recovery Controller External APIs 158
10 G’MPLS Path Computation Engine Routing Algorithm (G*PCE-RA) 162
10.1 G’.PCE-RA basics 162
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

Grid-GMPLS high-level system design

10.2 Topology view in G*.PCE-RA 164
10.3 G®PCE-RA data model 166
10.3.1 G’.PCE-RA instance 167
10.3.2 GNScalls 168
10.3.3 Connections 169
10.3.4 Topology 169
10.3.5 Nodes 170
10.3.6 TNAs 176
10.3.7 TE Links 176
10.4 G®PCE-RA internal API 179
10.4.1 Topology update in G°.PCE-RA 179
10.4.2 Computation of routes in G°.PCE-RA 186
10.5 G®PCE-RA external API 190
10.5.1 Topology API 190
10.5.2 Computation API 196
11 G.UNI-GW Adapter Design Specification 199
11.1 G.UNI-GW Adapter Transactions 199
11.1.1 WSAG - WS-G.UNI Adapter — G.UNI-C RSVP PC (Signalling) 200
11.2 G.UNI-GW adapter Implementation 206
11.2.1 File descriptions 207
11.3 Example 207
12 G.UNI and G.E-NNI RSVP-TE 208
13 G2.0SPF-TE (I-NNI, E-NNI and UNI-N/C) 209
14 Software structure 210
14.1 Configuration process 210
14.1.1 The configuration process from the user perspective 210
14.1.2 The configuration process from the developer perspective 212
14.2 Process start-up and monitoring 212
14.3 Inter-process communication 214
14.3.1 omniORB 215
14.3.2 Quagga daemons and threads 216
14.3.3 omniORB integration in Phosphorus 216
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

Grid-GMPLS high-level system design

14.4 G2MPLS base Python modules
14.5 Software daemons
145.1 Irmd
14.5.2 scngwd
14.5.3 tnrcd
14.5.4 ospfd
14.5.5 g2rsvpted
14.5.6 gunirsvpd
14.5.7 gennirsvpd
14.5.8 g2nccd
14.5.9 g2pcerad
14.5.10 lib
14.5.11 pyg2mpls
15 References
16 Acronyms
Appendix A Common types
Al Identifiers
A2 Label identifier
A3 TE-Link and Data Link
A4 TNA identifier
A5 Call, Recovery Bundle and LSP identifiers
A.6 GMPLS extensions
A7 Grid extensions
A.7.1 Signalling-specific
A.7.2 Routing-specific
A.8 GNS call parameters
A.9 Recovery parameters
A.10 LSP parameters
A1l ERO
A.12 LRM specific
A.13 TNRC specific
A.14 G°.PCE-RA specific
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code:

Phosphorus-WpP2-D2.3

l

218
220
220
220
221
222
222
222
223
223
223
223
224

225

226

230
230
231
231
231
232
233
236
236
240
245
246
246
247
247
248
248

Grid-GMPLS high-level system design

Appendix B Automatic FSM skeleton generation
B.1 Configuration file
B.2 Template file
B.3 Generated code
Appendix C TNRC Specific Part for ADVA FSP 3000RE-II
C1 API Data structures
C.2 Summary of TNRC_SP LSC ADVA API functions
C.3 Detailed specification of TNRC_SP LSC ADVA API functions
C.4 ADVA FSP 3000RE-II device
C.4.1 Overview
C.4.2 Implementation details
C.4.3 TL1 commands
C.4.4 TL1 autonomous messages
C.4.5 Error codes
Appendix D TNRC Specific Part for Calient DiamondWave FiberConnect
D.1 Calient TNRC_SP Software Design
D.1.1 Data structures
D.1.2 Detailed specification of TNRC_SP FSC API functions
D.2 Calient TNRC_SP Software Implementation
D.2.1 TNRC_SP use-case scenarios
D.2.2 TNRC_SP_Calient Generic Descriptions
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code:

Phosphorus-WpP2-D2.3

251
251
252
255

266
266
267
267
275
275
278
285
290
201

297
297
297
298
305
305
316

Grid-GMPLS high-level system design

List of Figures

Figure 3-1: Generic functional decomposition of GZMPLS CONtrollers.ueiiiiiiiiiiiiece e 18
Figure 3-2: GAMPLS NEtWOTK EIEMENTS.e ittt e e e ettt e e e e e e e et e e e e e e e e e e nbeneeeeans 20
Figure 3-3: The G°MPLS Network Control Plane with gateway functional elements.ccccocieiiiiiiiiiieeeeeenn. 21
Figure 3-4: Internal components of the G2ZMPLS Edge CoNtroller...........ooccuviiiiiiii it 25
Figure 3-5: Internal components of the G2ZMPLS Core CONtroller.cciiiiiiiiiieee e e e 29
Figure 3-6: Internal components of the G2ZMPLS Border COntroller.cccvvviiiiee i 33
Figure 3-7: G.UNI Gateway (G.UNI-GW) breakdown into main COMPONENLES.ccccvvriiieeeeeiiiiiireeee e e e ssiveeeeas 35
1o 10 =R e I N1 L@ = = 1 Lo o = USSP 39
Figure 4-2: TNRC actions finite state MacChine..........cccuuiiiiiii e 65
Figure 4-3: TNRC action FSM: example transitions in case of successfully make cross-connection.................. 67
Figure 4-4: action FSM: example transitions in case of successfully destroy cross-connection................cc........ 68
Figure 5-1: LRM Data MOGEL.uueiiiiiiiiiieiiii ettt e ettt e e e e e e e bbbt e e e e e e e aannbseeeeeaeeseannaeeeeeas 70
Figure 6-1: SCNGW MOAUIE STIUCTUIE. ...ttt e e e ettt e e e e e e e e e e b be e e e e e e e e e annbeeeeaaeeeaaanreneeeeans 80
Figure 7-1: The base G2.RSVP-TE data MOUEL. ..ottt e e e 90
Figure 7-2: G?MPLS LSP fiNite StAt€ MACKINEoeveeieeeeeeceeeeeeeeee ettt ee e een s 110
Figure 7-3: Example of GZMPLS LSP SIGNAIING SEIUD......cvoveeeeeeeeeeeeeeeeeeeeeeeeeee s e e eeeseseseeee e es s s e e eneneees 112
Figure 7-4: parsing and formatting SKEICH.euiiii i 113
Figure 8-1: The base XCC data MOUE!c..uuiiiiiie et e e e e e e e e e e e e e e s e ss st areeeaeeaeannnees 119
Figure 8-2: G2 NCC threads SIIUCLUIEuviiiiieiiee et ie e e e e s st e e e e s e st e e e aae e e s antaeaeeraaeassnnsrnnneeeeeessannnees 130
1o [=T S B T N N[O @ = = I 2 o Lo = SR 131
FIQure 8-4: G2INCC CaAll FSIM. ...ttt et e e e e e ettt ettt e e e e e s e nbabeeeeaaeeeaannbaneeaaaeeseannnnees 138
Figure 8-5: G2.CCC threads SIIUCLUIEeeiiiiiiiiee ettt e ettt e e e et e e e e e e e e e e bbb e eeaaeeeaannbaseeaaaeeseannnees 140
Figure 8-6: G2.CCC At MOUEL.......ooiiie ettt e e e e ettt e e e e e e e bbb e e eeaae e e aannbeeeeeaaeeseannnnees 141
FIQUIe 8-7: G2 CCC CaAll FSIM. ...ttt et e e e e e ettt et e e e e e e e n bbb e eeeaaeeeaannbnneeaaaeeseannnnees 146
Figure 9-1: RC thrE@dS SIIUCTUIEeeiiiie ittt et e e e e et et e et e e e e e s anbabeeeeaaeaeaannbsseeaaaeeseannnnees 149
Figure 9-2: RC data MOAEL ...ttt et e e e ettt e e e e e e s e aa b et e e e e e e s e nbebeeeeaaeeeannrneeeens 150
Figure 9-3: ReCOVEIY BUNGIE FSIMoiiiiiiiiiiieiiie ettt e ettt e e e e e st e e e e e e e e s e bt e e e e e e e e snnstnnneaeeeeseannnees 157
Figure 10-1: The G*.PCE-RA COMPONENt DrE@K-UOWN.o.oueeeeeeeeeeeeeeeeeeeeeeeee e e e e s e e e en s 163
Figure 10-2: Mixed topology with three domains, inter and intra-domain te-links and Grid sites....................... 164
Figure 10-3: G*>.PCE-RA representation of the previous mixed toPOIOGY.oveereereeeeeeeereeeeeeeeeeeneneen 165
Figure 10-4: The base GZ.PCE-RA data MOUEL...........ceveeeeeeeeeeeeeeeeeeeeeeeeeeee et e e s e s e en s 166
Figure 10-5: G*>.PCE-RA constrained DijKStra PSEUAO-COUE.c.ovrveeieeeeeeeeeeeeeeeeeeeeeeeeee e ere e eee e eneneeen 186
Figure 10-6: ACtioNS 0N @ CAIIROULE(). ..eeiieiiiiiiiiiiiee ettt e ettt e e e e e s et e e e e e e e e aannbnneeeaaeeeeannnnees 188
Figure 10-7: Actions on a computeDISJOINTROULE().ueeeiieeeeiiiiiiii ettt e e e e e e e e e e e e e e snneeeeeeas 189
Figure 10-8: Actions on a computeMaxDiSJOINTROULES(). ...eeeeeiiiurrriiiiee et e e e e e e e et e e e e e e e enneeeeeeas 190
Figure 11-1: The GUNI-GW breakdown and transactions localization.ccccccoiiiiiiiiiiiiiiiiiiee e, 200
Figure 11-2: GUNI-GW OPEration fIOW.c..uuiiiiiieee ettt e e e e e e e e e e e e e annneees 206
Figure 14-1: Phosphorus G2MPLS COOE SIIUCIUIE.uuiiiieeiiiiiiiieeie e e s e st ee e e e e e s ee e e e e e s snnnreeee e e e e s snnnanenees 211
1o 10 G Rt I =) B s 1 SR 265
Figure 16-2: ADVA FSP 3000RE-I GEVICE.uuuiiiieeiiiiiiiiiiiee e sttt e s e sttt e e e e e s s en e e e e e s s nbntee e e e e e e s annrnnnees 276
Figure 16-3: ADVA FSP 3000RE-I @rChit@CIUIE.ccuuiiiieie ettt s e e e rre e e e e e e s annrneeee s 277
Figure 16-4:. ADVA FSP 3000RE-Il eROADM connections configuration (AID are “bay-shelve-slot-port”)....... 278
Figure 16-5: TNRC SP ADVA sequence diagram for XC creation and fault notification.cccccceevvvnnnnnen. 280
Figure 16-6: TNRC SP ADVA sequence diagram for information retrieve (get_resource_list,
get_resource_detail, get_1abhel lISt).ueiiiiiii e a e e e 281
Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

10

Grid-GMPLS high-level system design

Figure 16-7: TNRC SP ADVA make xc finite state machine (‘Destroy xc’ is entry point to destroy xc finite state

[F=Td 11 0= TR PRSP 282
Figure 16-8: TNRC SP ADVA destroy xc finite state machine (‘Unreserve xc’ is entry point to unreserve xc finite
S r= L0 0 =Tl 1 0 1=) PR PTPPRRR 283
Figure 16-9: TNRC SP ADVA reserve xc finite state machine (‘Unreserve xc’ is entry point to unreserve xc finite
LS 2= L= 00 0 = X 1 1=) PR 284
Figure 16-10: TNRC SP ADVA unreserve XC fiNite State.cccuviiiiieiiiiiieieee e 285
Figure 16-11: Uses Case Diagram for the TNRC _SP.ooiii it r e 307
Figure 16-12: Process and threads sequential diagram............cccuuiiiieeiiiiiiieiie e 317
Figure 16-13: State Diagram fOr MaKe XC.ovi it e e e e e s e e e e e s s st e e e e e e e s annraaeees 318
Figure 16-14: State Diagram fOr DESIIOY XC......uviiieiiiiiiieiiee e e e ceiiiie e e e et e st ee e e e e e ss s sataaeeaaaessanntaraeeraeessannnannnees 319
Figure 16-15: State Diagram for RESErVe RESOUICES.coiii ittt e e e 319
Figure 16-16: State Diagram for UN-reSEerve RESOUICES.ooiuuiiiiiiie ittt e e e 320
Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

11

Grid-GMPLS high-level system design

List of Tables

Table 3-1: G?MPLS Edge Controller eXterNal iNtEIFACES.c.ovveeeeeeeeeeeeeeeeeeeeeeeeeeeeeereresee e e en s eeeeeens 23
Table 3-2: GZMPLS Edge Controller interNal INEIACES.ovoveeeeeeeeeeeeeeeeeeeeeee e ee e eees s ee e en s eeeenens 24
Table 3-3: GZMPLS Core CONtroller €XLEIMAl INMTEITACES voveeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeneeses 27
Table 3-4: GZMPLS Core CONtroller INtEINAI INEEITACES.veveeeeeeeeeeeeeeeeeeeeeeeeeeee e e ee et e e e s et eesseseeeeeseseeeeeesesaan 28
Table 3-5: GZMPLS Border CoNntroller @XtErNAl INTEITACES.o.eveveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeseseeeeeseseeeeseseeaas 31
Table 3-6: GZMPLS Border CONtroller iNterNal INEEITACES.ooveveeeeeeeeeeeeeeeeeeeee e e eeeeeeeeereee e s s eeeeeseseeeesesesaan 32
Table 3-7: G.UNI Gateway external INTErfaCES.uiiiiii ettt a e e e eeaa e an 34
Table 3-8: G.UNI Gateway internal iINTErfaCES.ooi i e e e e e e e e eneeeeeeeeas 35
Table 4-1: TNRC breakdown iN SUD-MOAUIES.ouuniiiiii et e et e e e e e st e e e e e e e eaaaeeeees 38
Table 4-2: TNRC ACHON FSM: STALES. ...ccuuuuiiiiiiiieiiiie e e et e e e e e e ettt e e s e e et e eetaaaeeeeeeeeassba s eseesseessssansaseaesennts 63
Table 4-3: TNRC Action FSM: @VeNnts and rOOt EVENLS.uuuuiiiiiiiiiiiiiie i eeeeeeeete s e e e s e e s e e e s sessabaa e e eeeseeesees 64
Table 6-1: SCNGW breakdown into two SUB-MOAUIES.uuiiiiiiiiie e e e eeeaaes 80
Table 7-1: Mapping between internal and external GZ.RSVP-TE APL.......c.coviiiiiiiiiieeee e 103
Table 7-2: GZRSVP-TE LSP FSIM: SEAESuuuuiiiiiiiiiiie et eee ettt e e e e ettt s e e e e e s e ee b e e e e e s e eeasabseseassessbabansaeeaees 108
Table 7-3: G2ZRSVP-TE LSP FSM: OO0t BVENLS......cuuuuieiiiiiiieeee et e ettt e e e e e e e et s e e s s e e atba s e e e e ssessbaanseeeaees 109
Table 8-1: GZINCC Call FSIM: STALESuuiiiiieie i et et e ettt e et e e et et e e e et e eesata e sesaaa e sssaassesstaeeensaneaees 136
Table 8-2: GZINCC Call FSM: OOt BVENESuiiiit ettt et e e et e e e e et e e e s et e s esaa s e s ssaesesetaesansanseeees 137
Table 8-3: GZ.CCC Call FSIM: STALESuuiiiiiieie ettt e e et e e e et e e e et et s ee e et e e esataesesaaa s esesaasesatassensaneeees 144
Table 8-4: GZ.CCC Call FSM: OOt BVENESuuiiiit ettt e et e e et e e e e et e e e s at e s esaa s e s ssaa s esataesessaneeees 145
Table 9-1: RC Recovery Bundle FSM: SEAtES.......ooiiiiiiiiiiieee ettt ettt e e e e e e e e e e e e s e anneeaeeeas 154
Table 9-2: RC Recovery Bundle FSM: FOOt @VENTSuuiiiieiiiiiiiiiie et e e e s st e e e e e e e starae e e e e e s e annnaeaeees 156
Table 14-1: SCNGW breakdown in SUD-MOAUIES.ciiiiiiiieeeeie et e e e e e e aba s e e e e e 221
Table 14-2: TNRC breakdown in SUD-MOGUIES.uuiiiiiiiiiiee et e et e e e e e s eeabaa s e eeaes 222
Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

12

Grid-GMPLS high-level system design

o Executive Summary

This document reports the high-level software architecture of the main network elements of the Grid-enabled
GMPLS Control Plane. The final purpose is to provide a reference on the G°MPLS software modules, their
expected functionalities and core structure for the main use by Phosphorus developers.

The actual scope of the document is stated in section 1, which provides the guiding information on how to read
and use the whole document.

Section 2 introduces into the used terminology and refers to the acronyms list in section 16.

Section 3 describes the actual and implemented high-level software design of the G2MPLS controllers (Edge,
Core and Border Controllers); the rest of the document goes beyond it in order to offer a needed insight on the
developed software, according to the overall scope of the deliverable.

Sections 4 to 13 reports on the software design of each single component in the G2MPLS stack: the TNRC, the
LRM, the SCNGW, the G2RSVP-TE, the G2.OSPF-TE the Call Controllers (CCC and NCC), the Recovery
Controller, the G2.PCE-RA, the G.UNI and G.E-NNI RSVPs, the G.UNI and G.E-NNI OSPFs, and the G.UNI
GW.

Finally, section 14 discusses the software structure of the phosphorus-g2mpls open source code, including
some software-architectural details on the stack.

A set of appendixes introduces further details that could have been cumbersome if aggregated in previous
sections. Appendix A reports software details on the G2MPLS data model. Appendix B describes the software
utilities to automate and streamline the generation of protocol Finite State Machines starting from human-
readable specifications. Finally, appendixes C and D reports the software design of the TNRC SPs for the
reference equipment to be controlled by G2MPLS in the Phosphorus project (ADVA FSP 3000RE-II and the
Calient DiamondWave FiberConnect, respectively).

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

13

Grid-GMPLS high-level system design

1 Objectives and Scope

Foreword: this deliverable just refers to architectural and functional concepts of GMPLS and G2MPLS, but it
does not explain them in depth. For a support on the basics, please refer to the architectural and protocol-
specific documents already delivered by WP2 (D2.1, D2.2, D2.7 and, for some matters, D2.6). Furthermore, in
order to keep the document focused on its scope, all the references to standards (by IETF, ITU-T and OIF), be
them either normative or informational, are not listed again here, but are pointed to their corresponding listing in
D2.1, D2.2 and D2.7.

This document reports the high-level software design of the Grid-enabled GMPLS Control Plane stack.
However, this document has been originally planned at the end of the first round of development process (i.e.
before any integration and testing) and is intended to contain much more than just a high-level software design.
Indeed, this document is a detailed report about the G2MPLS software developed in the first 18 months of the
Phosphorus project. With this scope, it includes:

= a level of information that is comparable to an a posteriori high-level software design (i.e. already
implemented and preliminarily tested), not adopting the formalism (e.g. UML) needed when the design
is a priori, and have to drive subsequent developments. For a greater efficiency, this form of design
was produced during the developments themselves, thus not decoupling the system design phase (and
teams) from the development counterparts. In other words, the reported design already includes the
upgrades and fixes that occur when it goes through the real development process.

= An insight in the developed software, with varying levels of detail (according to the needs of each
particular piece of software). The view might range from a high-level functional description up to the
discussion of specific algorithms (e.g. for the PCE).

= In general, any sort of information that could make this deliverable a solid reference document about
the G2MPLS software in the future, both for who contributed to the developments, and who will be
using and modifying the Open Source Software released after it.

For the latter reason (need to be a quick and effective reference for the code), the style and mood of this
document is less tutorial and verbose than that adopted in the architectural deliverables (D2.1, D2.2, D2.7 and
D2.6).

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

14

Grid-GMPLS high-level system design

Details that go beyond the listed specifications will derive from the completion of the development activities and
the release of the G°MPLS prototypes. In fact, this document is intended as a basic general reference that will
integrate the official GMPLS architectural documents (D2.1 and D2.6) and provide some detailed descriptions
of the G°MPLS prototypes that will be delivered by WP2. Further details will be provided by the planned
prototype deliverables, D2.5 and D2.10.

The network elements are characterized based on their roles in the G°MPLS network, their functionalities and
the interfaces they expose, both externally (toward other network elements) and internally (between their
different functional entities). For this reason, there is not a single G2MPLS stack software architecture, but a
number of them, one for each G2MPLS node configuration and role in the network (see section 3). The
proposed and implemented software structure is composed of functionally complete and independent modules,
which allows flexible integration, gradual development and could potentially be extended with modules by other
developers.

However, the functional modules and components (protocol daemons, inter-process communication, utilities,
etc.) of all these architecture converge into a common set, which make up the so-called G2MPLS stack. In other
words, the G2MPLS is not a running set of processes and threads, but the collection of the software pieces that,
properly installed and configured, allow to create and run specific GE2MPLS Controllers (Edge, Core and Border,
as specified in D2.1).

An additional note concerns the subjects (modules) of the reported software design (sections 4 to 13). As a
matter of fact, the scope and content of the developed software and, consequently, of this document, go much
beyond what planned for WP2 in the Phosphorus Description of Work. That planning assumed to start from an
existing Open Source GMPLS stack; however, at the start of the developments no stack was matching the
Phosphorus functional requirements. This condition was among the technical risks analyzed during the project
setup, and a backup plan was already available, and promptly implemented: contributing extra effort to WP2
and developing the needed components to set an adequate starting point for the G2 developments.

Building a house from scratch has some relevant benefits, ultimately. The backup plan has led to a GMPLS
stack fully owned and mastered by the developers of the G2 extensions. Furthermore, this stack was equipped
with all the needed modules and utilities that allow to fulfil to a large extent the ASON and GMPLS architectural
requirements.

Thus, some of the elements (protocol controllers) can be easily identified as the name, functions and
architectural placements are perfectly aligned with the ASON architecture; examples are the LRM, the
G.RSVP-TE, the G.OSPF-TE. However, other elements have no counterparts in the ASON or GMPLS
specifications, since they are basic and founding software modules that derive from high-level requirements set
by ASON or GMPLS (e.g. the SCN Gateway is implied by the requirement that the Transport Network and the
Signalling Communication Network are decoupled in GMPLS).

For this very reason, these modules had to be documented in a sufficiently detailed way, in order to provide a
usable and effective tool to approach the complexity of the G2MPLS stack.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

15

l

Grid-GMPLS high-level system design

Finally, this deliverable is not a closed document. The G2MPLS software stack will evolve in the next months:
some activities are still going on (i.e. A2.2.4 — integration with the NSP/NRPSes and A2.2.3 — Integration with
AAI"), and the system testing activities (A2.1.7) might introduce relevant upgrades. A new version of D2.3 might
be produced, in order to incorporate the significant evolutions in the software after the official issue date (M18).

! See the G2.CCC and G2.NCC Call FSMs at Section 8 for the software hooks dedicated to the interaction with the Phosphorus AAL.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

16

Grid-GMPLS high-level system design

> Terminology

No specific terminology is introduced by this document, which refers to Deliverable D2.1, D2.2, D2.6 and D2.7
for any specific terms used.

One note about a terminology issue: the Grid-capable Optical User Network Interface has been termed in
previous WP2 deliverables as “G.OUNI", in accordance with the terminology used in related OGF-GHPN
documents. Since, during the course of time, OGF-GHPN has upgrade this term to a more general “G.UNI”", the
WP2 documents has started following this new naming accordingly. Thus, in the whole set of past and future
WP2 deliverables, the terms G.OUNI and G.UNI are used to refer, indifferently, to the Grid-capable User
Network Interface (with or without, respectively, a specific focus on the exported optical services). In other
words, the two terms refer to equivalent User-Network Interfaces, for what concerns the grid and network
services exported.

A full list of the abbreviations used in this document is provided in Section 16.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

17

Grid-GMPLS high-level system design

s High-level system design of G “MPLS
network elements

The generic functional decomposition of the stack components of the G2MPLS Network Control Plane (valid for
the G2MPLS Edge, Core and Border Controllers, see below) is reported in Figure 3-1.

XC
requests

GNS transaction & call requests

(GNS Transaction)

and G2MPLS Call

GNS transaction & call requests

Network Controller

GNS transaction & call coordination

G.OUNI

_ (G2-NCC) Y,

G.E-NNI

- G.I-NNI

- G.I-NNI

-ﬂ
- G.OUNI

caps

2 LSP action
A
() _G2-LSP request
G2MPLS LSP -
Controller (G?-LC) lopology queries
\ 7
1 "
f A "
Ir?abilests G2MPLS Routing ..
| topology | ~ Controller (GRC) i
\) ~
(TE-link M) 4 Grid & network
-iin anager topology
(TELM) link info GNS caps
\ . / [GNssenvice) oo
Discovery Agent
label state \ (G'SDA) J
7 . B ~ B N
Transport Resource Discovery Agent v
Controller (TRC) | (DA) L
\ \ J I

" coordination

Transport Plane

péer's
resources

G.OUNI

G.I-NNI

Figure 3-1: Generic functional decomposition of G2MPLS controllers.

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WpP2-D2.3

18

Grid-GMPLS high-level system design

The software implementation of these components has been carried out starting from the v0.99.7 routing suite
[QUAGGA-DOC], as explained in section 14.

Different types of network elements are identified in a G’MPLS domain, depending on the role and
functionalities they provide. Three of the elements are network-side, the fourth is a functional “G2 cluster” at the
customer premises:

« G°MPLS Edge Controllers, which operate at the edge of the G°MPLS domain and interface to the
Control Plane user®.

« G°MPLS Core Controllers, which implements the functionalities of an internal node of the domain like
an LSR in a GMPLS network.

« G’MPLS Border Controllers, which operate on the domain boundary and interface the G°MPLS with
other domains of the same or different technology and control/provisioning architecture (e.g. NSP-
NRPSes, AutoBAHN).

e G2MPLS UNI-C: this node is the client-side counterpart of the G2MPLS Edge Controller and is made up
of a composition of the Edge Controller modules, plus two specialized ones (the G.UNI-GW and the
Client Call Controller). Differently for the network-side G2MPLS controllers, these modules could also be
delocalized at different hardware platforms (e.g. the G.UNI-GW in one box, and the CCC in one other,
with the rest of the UNI-C protocols). For this reason, this section does not propose or impose a specific
software architecture for the whole set, but the document focuses on the single components.

Each controller is discussed in a separate subsection in the remainder of this section.

The localization of these network elements is shown in Figure 3-2, as well as the identification of the main
network reference points of the controllers [PH-WP2-D2.1, PH-WP2-D2.2, PH-WP2-D2.6].

The Grid layer is typically WS-based and the choice of WS-Agreement technology has been adopted also for
the Network Service Plane (which controls the NRPS layer, see D1.1 and D1.2) and the GEANT2 BoD system
(see GN2-JRA3 BoD specification documents, e.g. DJ3.4.1,2). For this reason, some form of translation from
the WS context to G°MPLS signalling and vice versa are needed at the external network reference points of the
G°MPLS NCP, i.e. the Grid-capable Optical User-Network Interface (G.UNI) and the Grid-capable External
Network-Network Interface (G.E-NNI). For this purpose, two additional architectural elements are part of the
G°MPLS network model (ref. Figure 3-2 and Figure 3-3):

e The G.UNI gateway
e The G.E-NNI gateway

% In the G®*MPLS framework, the user is principally a Grid site with an instance of middleware issuing/receiving requests for Grid Network
Services. However, the G?MPLS user can fall back to a standard ASON/GMPLS user issuing just Network Service requests and in this
case G’MPLS control plane falls back to a GMPLS Control Plane.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

19

Grid-GMPLS high-level system design

The gateways are aimed to provide the needed bridging functionality between the two frameworks and
preserve the core G°MPLS/GMPLS signalling and routing procedures by concentrating in single points the
adaptation functions.

SCN network DCN

.
.
/' SCN intfs

|mmmm e S

Grid
Middleware

Py
3, SCN intfs

i s 1 SCN () G:E-Nm T i Control

: — 3 Plane

| } i

: L ;

1 i 1 - y
S - —n - Transport
| e : LNy Plane

i ! 1 ; 1 ;

i g i i E i Neighbouring i

i site | l domain i | domain !

Figure 3-2: GBMPLS network elements.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

20

Grid-GMPLS high-level system design

(NMI)
AALC D TF ronting]
- *| Inter-domain layer Tiees
“ f Car1cib
O setupftea down WS

& LI

-
T L

SBI -1

G .0OUN|, G E-NNI East-westbound interfaces

MBI Morthbound Interface

SBI Southbound Interface

NM| Network Management Interface

Figure 3-3: The G°MPLS Network Control Plane with gateway functional elements.

G°MPLS network elements are interconnected through network interfaces specified in [PH-WP2-D2.1, PH-
WP2-D2.2, PH-WP2-D2.7]. In detalils:

e G.UNI, i.e. the Grid Optical User-Network Interface that supports Grid and network signalling and
discovery between the Grid site and the G°MPLS domain.

e G.I-NNI, i.e. the Grid Internal Node-Node Interface (G.I-NNI) that supports the routing and signalling
procedures between adjacent nodes.

* G.E-NNI, i.e. the Grid External Network-Network Interface that propagates Grid and network topology
information across different Control Plane domains and supports the inter-domain signalling
mechanisms.

» SBI, i.e. the Southbound Interface that retrieves resource status from the specific Transport Plane
and translates Control Plane actions into appropriate configurations of those resources.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

21

Grid-GMPLS high-level system design

« G.NBI, i.e. the Northbound Interface that connect the G°MPLS to the Grid layer and is based on WS
agreements technologies.

Each G°MPLS controller is connected to other G?MPLS controllers through the SCN. Therefore, each G°MPLS
controller has a number (at least one) SCN interfaces on top of which SCN adjacencies are established with
G°MPLS controller that are adjacent on the Transport Plane but may be not adjacent on the DCN. This
functionality is generally referred to as management of the dualism between Transport Network and Signalling
Network. See D2.1 for further details.

31 G’MPLS Edge Controller

3.1.1 Main functionalities

The G®MPLS edge controller is the entry point of the G?MPLS domain and, therefore, it is responsible for:

e the termination and control of a signalling session incoming through the UNI and initiated by an
attached Grid client (G.UNI-C)

« the progression and control of a G.UNI signalling session towards an attached Grid client (G.UNI-C)

« the control of the G°MPLS Call setup and its segment breakdown (with the scope of the domain in
which it operates)

« the control of the end-to-end recovery of a call segment (inter-domain recovery is left for further studies)

e the flooding of Grid and network routing information, in terms of
o local TE-link information directly generated
o Grid resource availabilities received through the G.UNI by the attached G°MPLS user
o remote network and Grid information learned by peer routing controllers

e the computation of end-to-end explicit routes for a call and its segments. Routes are as much as
possible complete and strict at least for the domain in which the Edge Controller operates, while they
could be sparse and in case loose, depending on the available information published by neighbouring
G°MPLS domains

. [optionals] the flooding of inter-domain Grid and network routing information, in terms of
o reception (feed-up) of topology (Grid and network) information from the domain in which it operates

(level 0)
o flooding of routing information with peering inter-domain routing controllers
o dissemination (feed-down) of the summarized topology information about neighbouring domains
towards the base routing instances operating in its domain (level 0).

« the retrieval of information (amount, status and alarms) on the Transport Network resources for
G°MPLS use in the equipment it is attached to

< the configuration (cross-connection) of Transport Network resources in the equipment it is attached to

® The functionality is optional because just one node in the domain configured as RC

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

22

Grid-GMPLS high-level system design

« the control of the G*MPLS data model (i.e. TE-links, Data-links, Control channels and SCN interfaces)
in accordance with the node configuration and the Transport Network resources availabilities retrieved
by the equipment

- [optional] the storage and control of the persistent data (TE-links, Calls, LSPs, resource status, etc.)
across case of node restart.

These functionalities are implemented by the software components depicted in Figure 3-4.

3.1.2 External interfaces

= retrieval of information on transport
resources (e.g. ports, wavelengths,
SBI TN in/out = configurations on transport resources
equipment (e.g. cross-connections, protections,
etc.)
= alarm reporting on configured resources
adjacent establish and maintain the adjacency
SCN interface G°MPLS infout between pairs of G°MPLS controllers
controller send/receive protocol SDUs
signalling
0 setup and monitoring of G.UNI
calls
G2MPLS routing _ _
user (Grid _ 0 Iear_nlng__ of Grid resource
G.UNI : . infout availabilities by the attached
site with G°MPLS user
middleware) 0 publication of remote Grid
resource availabilities learned
by other routing controllers
peering in the G*MPLS domain
signalling
o control (setup and recovery) of
G2MPLS utin I-NNI call segments
G.I-NNI core infout 9 . .
controller 0 learning of node externa_l Grid
and network (single domain and
multi-domain) topology resource
availabilities
G°MPLS routing
.) peering . 0 publication and learning of inter-
[optional] G.E-NNI Routing infout domain Grid and network
Controllers topology information

Table 3-1: G°MPLS Edge Controller external interfaces.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

23

Grid-GMPLS high-level system design

3.1.3 Internal interfaces

= head-end/taillend resource configuration (cross-

GZNCC — TNRC infout connection or protection among internal labels and
' “external” labels selected on ingress/egress TNAS)
= asynchronous notification of status change
G®.NCC — G®.RSVP-TE infout " connection setup . _
= connection recovery (particularly restoration)
G°.NCC — G.UNI RSVP in/out = G°MPLS call setup
= requests for call explicit routing (single-domain or inter-
GZNCC — GZPCERA infout domain) completion

= requests for end-to-end call rerouting (in case of e2e
crankback or recovery)

= topology information (single-domain or summarized multi-

in domain) on Grid and network resources

= topology updates

= resource configuration (cross-connection or protection

G*.RSVP-TE — TNRC infout among labels)

= asynchronous notification of status change

G%PCERA - G%.0OSPF-TE
(level 0)

G2RSVP-TE — LRM infout = resource selection (data-link or label)

' = local TE-link status update
G2RSVP-TE — SCNGW infout = send protocol messages

' = receive protocol messages

= requests for ERO completion
G°.RSVP-TE — G>.PCERA infout = requests for local-to-egress ERO computation (in case of
crankback)

G.UNI RSVP — SCNGW infout " send protocol messages

= receive protocol messages

= resource configuration (cross-connection or protection

G.UNI RSVP — TNRC infout among labels)

= asynchronous notification of status change

= Update lists of data links and labels for bundling
purposes

LRM - TNRC infout = check status of a resource (data-link or label)

= asynchronous notification of status change at runtime for
bundling update

= update bindings between TE-links and Control Channels

LRM — SCNGW out and between Control Channels and SCN interfaces
G°.OSPF-TE (level 0) — in = local TE-link update (all TE information)

LRM

G°.OSPF-TE (level 0) — infout = send protocol messages

SCNGW = receive protocol messages

G°.OSPF-TE (level 0) — = send and keep updated inter-domain topology data (feed-
G2.OSPF-TE (level 1) out up)

G°.OSPF-TE (level 1) — infout = send protocol messages

SCNGW = receive protocol messages

G°.OSPF-TE (level 1) — = send and keep updated inter-domain topology data (feed-

out

G°.OSPF-TE (level 0) down)

Table 3-2: G?MPLS Edge Controller internal interfaces.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

24

Grid-GMPLS high-level system design

- G NCC
O e o—{
- G' PCERA
|
ath T
GMPLS Call compdtation | Transport
lsetuptear-down requests | Topology 0 Opdamy/conronsad
| Wndates just ona noda in the domain configured as RC
I
[M o—{[] G".0SPF-TE
| Level 1 1
I e 1 (G.ENNY
} Inter-<domain| —"
| topology | :— Inter-domain
| fosdup | | topology feed down
! T
1 -
I - G”.0SPF-TE
I Level 0
s {G.I-NNI)
1
G.OUNI RSVP l
vy (G.OUNI) :
l Protocal
Connection 1 SCN-GW [—o [SCH Interface |
setup T
] % |
e 7o AR
recovery [N |
- a
Hoed eonld Resource check/salection s
resource LRM TE link 2 CC 2 SCN bindings
configuration
Data Link and Label
getchesk/selection
Resource configuration Persistent dala
TNRC
R

Figure 3-4: Internal components of the G2MPLS Edge Controller.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

25

Grid-GMPLS high-level system design

3.2

3.2.1

G?MPLS Core Controller

Main functionalities

The G®MPLS core controller is similar to a GMPLS LSR and, therefore, it is responsible for:

the progression and control of a G.I-NNI signalling session towards an specified session destination

the control of the local crankback for a failing LSP

the flooding of Grid and network routing information, in terms of

o local TE-link information directly generated

o remote network and Grid information learned by peer routing controllers

the completion of sparse or loose Explicit Routes, depending on the available information published by

neighbouring G°MPLS domains

[optional?] the flooding of inter-domain Grid and network routing information, in terms of

o reception (feed-up) of topology (Grid and network) information from the domain in which it operates
(level 0)

o flooding of routing information with peering inter-domain routing controllers
dissemination (feed-down) of the summarized topology information about neighbouring domains
towards the base routing instances operating in its domain (level 0).

the retrieval of information (amount, status and alarms) on the Transport Network resources for

G°MPLS use in the equipment it is attached to

the configuration (cross-connection) of Transport Network resources in the equipment it is attached to

the control of the G°MPLS data model (i.e. TE-links, Data-links, Control channels and SCN interfaces)

in accordance with the node configuration and the Transport Network resources availabilities retrieved

by the equipment

[optional] the storage and control of the persistent data (TE-links, Calls, LSPs, resource status, etc.)

across case of node restart.

These functionalities are implemented by the software components depicted in Figure 3-5.

3.2.2

External interfaces

SBI

= retrieval of information on transport

TN infout resources (e.g. ports, wavelengths,

equipment = configurations on transport resources

(e.g. cross-connections, protections,

* The functionality is optional because just one node in the domain configured as RC

Project:

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

Phosphorus

26

Grid-GMPLS high-level system design

etc.)
= alarm reporting on configured resources

adjacent = establish and maintain the adjacency
SCN interface G°MPLS in/out between pairs of G°MPLS controllers
controller » send/receive protocol SDUs
= signalling
o control (setup and recovery) of
G2MPLS - I-NNI call segments
G.I-NNI core infout 9 . .
0 learning of node external Grid
controller ; :
and network (single domain and
multi-domain) topology resource
availabilities
G°MPLS = routing
.) peering . 0 publication and learning of inter-
[optional] G.E-NNI Routing infout domain Grid and network
Controllers topology information

Table 3-3: G?MPLS Core Controller external interfaces.

3.2.3

Internal interfaces

G%.PCERA - G%.0OSPF-TE

topology information (single-domain or summarized multi-

G°.OSPF-TE (level 1)

in domain) on Grid and network resources
(level 0)
topology updates
resource configuration (cross-connection or protection
G®.RSVP-TE - TNRC infout among labels)
asynchronous notification of status change
G2RSVP-TE — LRM infout resource §e|ecti0n (data-link or label)
local TE-link status update
G2.RSVP-TE — SCNGW injout send protocol messages
receive protocol messages
requests for ERO completion
G°.RSVP-TE — G>.PCERA infout requests for local-to-egress ERO computation (in case of
crankback)
Update lists of data links and labels for bundling
purposes
LRM - TNRC infout check status of a resource (data-link or label)
asynchronous notification of status change at runtime for
bundling update
update bindings between TE-links and Control Channels
LRM — SCNGW out and between Control Channels and SCN interfaces
G°.OSPF-TE (level 0) — in local TE-link update (all TE information)
LRM
G°.OSPF-TE (level 0) — infout send protocol messages
SCNGW receive protocol messages
G°.OSPF-TE (level 0) — out send and keep updated inter-domain topology data (feed-

up)

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code:

Phosphorus-WpP2-D2.3

27

Grid-GMPLS high-level system design

G°.OSPF-TE (level 1) —
SCNGW

in/out

send protocol messages
receive protocol messages

G°.OSPF-TE (level 1) —
G°.OSPF-TE (level 0)

out

send and keep updated inter-domain topology data (feed-
down)

Table 3-4: G?MPLS Core Controller internal interfaces.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

28

Grid-GMPLS high-level system design

; I

I

| 1
G.0SPF-TE
Level 0
{G.I-NNI)

EEo—]
G* PCERA
Path) 7
computation T
requests : Tmnwtw : Opﬁuna.l cnm;“aunaﬂf
| updates Jjust one node in the domain confiured as ARG
|
| T o—{ |] G'.OSPF-TE
| Level1 |—1
I == = I I (<=2
: Inter-comain | _o
| topalogy | 1~ Inter-domain
| feadup | | lopaiogy feed dawn
|
|
|
|
|

Protocol messages

1
1
1
1
1
1
1
1
T
1
I
1
a

GLRSVP-TE
vy (G.I-NNI)

Resource check/salection 3
% LRM TE link = CC = SCN hindings

Data Link and Label
gaticheck'salaction

Rasourca configuration Parsistent data
TNRC

Figure 3-5: Internal components of the G2ZMPLS Core Controller.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

29

Grid-GMPLS high-level system design

33 G2MPLS Border Controller

3.3.1 Main functionalities

The G®MPLS border controller is the egress point of a G°MPLS domain and, therefore, it is responsible for:

« the termination of a G*MPLS call segment incoming through the I-NNI
« the control of the G°MPLS Call setup
« the progression and control of a G.E-NNI signalling session towards an adjacent G°MPLS border
controller in another G°MPLS domain
e the flooding of Grid and network routing information, in terms of
o local TE-link information directly generated
o remote network and Grid information learned by peer routing controllers
< the completion of sparse or loose Explicit Routes, depending on the available information published by
neighbouring G°MPLS domains
. [optionals] the flooding of inter-domain Grid and network routing information, in terms of
o reception (feed-up) of topology (Grid and network) information from the domain in which it operates
(level 0)
flooding of routing information with peering inter-domain routing controllers
dissemination (feed-down) of the summarized topology information about neighbouring domains
towards the base routing instances operating in its domain (level 0).
« the retrieval of information (amount, status and alarms) on the Transport Network resources for
G°MPLS use in the equipment it is attached to
« the configuration (cross-connection) of Transport Network resources in the equipment it is attached to
« the control of the G?MPLS data model (i.e. TE-links, Data-links, Control channels and SCN interfaces)
in accordance with the node configuration and the Transport Network resources availabilities retrieved
by the equipment
« [optional] the storage and control of the persistent data (TE-links, Calls, LSPs, resource status, etc.)
across case of node restart.

These functionalities are implemented by the software components depicted in Figure 3-6.

3.3.2 External interfaces

SBI TN infout = retrieval of information on transport

equipment resources (e.g. ports, wavelengths,

® The functionality is optional because just one node in the domain configured as RC

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

30

Grid-GMPLS high-level system design

= configurations on transport resources
(e.g. cross-connections, protections,

etc.)
= alarm reporting on configured resources
adjacent = establish and maintain the adjacency
SCN interface G°MPLS in/out between pairs of GMPLS controllers

controller = send/receive protocol SDUs
= signalling
o control (setup and recovery) of

G2MPLS . routing I-NNI call segments
G.I-NNI coﬁ?rz)eller infout o0 learning of node external Grid
and network (single domain and
multi-domain) topology resource
availabilities
= signalling
2 0 setup and monitoring of G.E-
G MPLS NNI calls
G.E-NNI peering infout = [optional] routing
Routing 0 publication and learning of inter-
Controllers

domain Grid and network
topology information

Table 3-5: G?MPLS Border Controller external interfaces.

3.3.3 Internal interfaces

= head-end/taillend resource configuration (cross-

GZNCC — TNRC infout connection or protection among internal labels and
' “external” labels selected on ingress/egress TNAS)
= asynchronous notification of status change
G®.NCC — G®.RSVP-TE infout " connection setup . _
= connection recovery (particularly restoration)
G°.NCC — G.ENNI RSVP in/out = G°MPLS call setup
= requests for call explicit routing (single-domain or inter-
G?.NCC - G>.PCERA infout domain) completion

= requests for end-to-end call rerouting (in case of e2e
crankback or recovery)

= topology information (single-domain or summarized multi-

in domain) on Grid and network resources

= topology updates

= resource configuration (cross-connection or protection

G*.RSVP-TE - TNRC infout among labels)

= asynchronous notification of status change

G%PCERA - G%.0OSPF-TE
(level 0)

G2RSVP-TE — LRM infout = resource §e|ect|0n (data-link or label)
= local TE-link status update
G2.RSVP-TE — SCNGW injout | = Send protocol messages
= receive protocol messages
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

31

Grid-GMPLS high-level system design

l

requests for ERO completion

G°.RSVP-TE — G°.PCERA infout requests for local-to-egress ERO computation (in case of
crankback)
G.ENNI RSVP — SCNGW infout send protocol messages
receive protocol messages
resource configuration (cross-connection or protection
G.ENNI RSVP — TNRC infout among labels)
asynchronous natification of status change
Update lists of data links and labels for bundling
purposes
LRM - TNRC infout check status of a resource (data-link or label)
asynchronous notification of status change at runtime for
bundling update
update bindings between TE-links and Control Channels
LRM — SCNGW out and between Control Channels and SCN interfaces
G°.OSPF-TE (level 0) — in local TE-link update (all TE information)
LRM
G°.OSPF-TE (level 0) — infout send protocol messages
SCNGW receive protocol messages
G°.OSPF-TE (level 0) — send and keep updated inter-domain topology data (feed-
G2OSPF-TE (level 1) out up)
G°.OSPF-TE (level 1) — infout send protocol messages
SCNGW receive protocol messages
G°.OSPF-TE (level 1) — out send and keep updated inter-domain topology data (feed-

G°.0SPF-TE (level 0)

down)

Table 3-6: G?MPLS Border Controller internal interfaces.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

32

Grid-GMPLS high-level system design

v o—{]
O

RN

Head-end /
Tail-end
resource

configuration

SCN-GW

G'.NCC
e o—
H " PCERA
— L]
Path T
GMPLS Call Sl il | Transpart
lsefup/tear-down = | Topology Optional component

| updatas Just one node in the domain configured as RC

I

i [wmyo—{]] G .0SPRTE

I Level 1 |

1 e 2] (GE-NN)

: nter-domain | R

H topology | | ™ Tntar-demain

: faed up 1 | topology fead dowi

T

i -

1 VIY GL.OSPF-TE

1 Level 0

L e {G.I-NNI)

G.E-NNI RSVP
Rua {G.E-NNI)
Protosaf
Cennection
setup
" G .RSVP-TE
S
|
| tocal
| TEiink
} updates
Resource checkiselection
LRM TE link 2 CC 2 SCN bindings
Data Link and Labe!
getcheckisslection
Resource configuration Persistent dala
TNRC
Pt

Figure 3-6: Internal components of the G2MPLS Border Controller.

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WpP2-D2.3

33

Grid-GMPLS high-level system design

3.4 G.UNI Gateway (G.UNI-GW)

3.4.1 Main functionalities

The G.UNI Gateway is the adapter between the G’MPLS Control Plane and the Grid middleware. It is
responsible for:

e the translation of WS-Agreement semantics on job request (JSDL) and resource availability (GLUE) into
G.UNI syntax

« initiating/terminating a GNS transaction and related G°MPLS calls

« the injection of Grid routing information into the G°MPLS domain

« the learning and forward to the middleware of remote Grid routing information coming from the G°MPLS
domain

< the configuration (cross-connection) of Transport Network resources in the customer equipment
attached to the G*°MPLS domain

These functionalities are implemented by the software components depicted in Figure 3-7.

3.4.2 External interfaces

= signalling
0 setup and monitoring of G.UNI

calls
G°MPLS = routing
G.UNI edge in/out 0 publication of local Grid
controller resource availabilities

0o learning of remote Grid
resource availabilities by the
attached G’MPLS user

= WS-Agreement job creation
0 setup and monitoring of jobs via

Grid JSDL
G.NBI middleware in/out = WS-Agreement resource information
(Grid broker) 0 publication and learning of Grid

resource information

Table 3-7: G.UNI Gateway external interfaces.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

34

Grid-GMPLS high-level system design

WS-
Agreement
(JSDL +
GLUE)

PC : | | c2.0sPFTE

PC

(client)

Figure 3-7: G.UNI Gateway (G.UNI-GW) breakdown into main components.

3.4.3 Internal interfaces

WS-AG server — infout = translate WS-agreements on Grid job and resource
WS-G.UNI adapter availabilities into an XML schema

WS-G.UNI adapter — G.UNI infout * G°MPLS call setup

RSVP

WZS—G.UNI adapter — infout = push/pull Grid topology information

G°.OSPF (client)

Table 3-8: G.UNI Gateway internal interfaces.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

35

Grid-GMPLS high-level system design

35 G.E-NNI Gateway (G.ENNI-GW)

The G.E-NNI GW is designed in the track of integration activities between G2MPLS, NSP/NRPSes and GN2-
JRA3 AutoBAHN system. Its design and high-level software specification will be reported in related documents
(D2.9).

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

36

Grid-GMPLS high-level system design

+ Transport Network Resource Controller
(TNRC)

The TNRC module is a separate process, not part of Quagga routing suite and is developed from scratch. It is
integrated into Quagga framework according to Quagga daemon main structure (e.g. one master thread to
manage the single thread daemon as pseudo multi-thread, the trace log system, the VTY interface, etc).

41 TNRC basics

The TNRC module is responsible for abstracting the technology specific details of the transport network
resources for control plane use. The main functionalities of the Transport Network Resource Controller are:

« translation and maintenance of the bindings between the technology specific name space for transport
resources (e.g. in DWDM equipments: <port, wavelength>; in TDM: <port, virtual container>; in
Ethernet: <port, VLANs>) and the G2MPLS name space (<data-link, label>)

« translation between the technology specific configurations for transport resources (e.g. cross-
connections, protections, etc.) and the G*MPLS corresponding actions

« binding maintenance among the resources (e.g. cross-connections, bookings, protections/restorations,
etc.).

The TNRC module is further broken down in two sub-modules as described in Table 4-1

Process offering a generic API for the configuration &
TNRC monitoring of the TN resources. It will abstract the TN

TNRC-AP

(Transport Network (TNRC Abstract Part)

Resource Controller)

resource description, and provide an atomic grouping of
actions that might be composed by a set of local
management sub-actions on the equipment.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

37

l

Grid-GMPLS high-level system design

Lower part of the process, loaded as plug-in, and
offering the upper part an API specific to the equipment
considered. It will name resources based on the
underlying TN technology and SwCap. The core part of
the TNRC-SP is likely to be dependent on the controlled
equipment (e.g. based on some proprietary SNMP MIB
sub-tree supported for configuration and monitoring).

TNRC-SP
(TNRC Specific Part))

Table 4-1: TNRC breakdown in sub-modules.

The following sections will describe the TNRC data model, the TNRC Abstract Part and the generic TNRC
Specific Part. Examples of TNRC SP design and implementations can be found in Appendix C.

4.2 TNRC data model

The TNRC data model is depicted in Figure 4-1.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

38

Grid-GMPLS high-level system design

TNRC_Master

1 1

Eqpt ApiQueue
_{’.—/

Resource \

0.

+

Board Action
b—/

o..r

KN

0.

Plugin

1

Plugin
Container

1

0.*

Plugin

Figure 4-1: TNRC data model

4.2.1 TNRC_Master instance

The TNRC_Master instance is the root of the whole TNRC data model. When TNRC process starts, a global
instance of TNRC_Master is created, all available plug-ins (representing all possible TNRC Specific Part) are
loaded in a plug-in container, which is linked to the TNRC_Master.

The TNRC_Master instance is also linked to:

e the unique TNRC_AP instance (tnrc_ap_)
« the unique ApiQueue instance (api_aq_)
e amap of Action instances, representing all the actions either in execution or executed (actions_)

e amap of XC instances (xcs_)

« the unique Plugin instance installed (plugin_)

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

39

Grid-GMPLS high-level system design

class TNRC_Master {

public:
static bool init(void);
static bool destroy(void);
static TNRC_Master & instance(void);
void init_vty(void);
void pc(Pcontainer * PC);
Pcontainer * getPC();
struct thread_master * getMaster();
static TNRC:: TNRC_AP * getTNRC();
bool test_mode(void);
void test_mode(bool val);
char* test_file(void);
void test_file(std::string loc);
tnrcap_cookie_t new_cookie();
uint32_t new_xc_id();
egpt_type_t getEqpt_type(eqgpt_id_t id);
static bool attach_instance(TNRC::TNRC _ AP *1t);
static bool detach_instance(TNRC::TNRC _ AP *t);
Plugin* getPlugin(void);
void installPlugin(Plugin * p);
std::string plugin_location(void);
void plugin_location(std::string loc);
bool api_queue_insert(api_queue_ element_t * e);
api_queue_element_t * api_queue_extract(void);
int api_queue_size(void);
void api_queue_process(void);
u_int api_queue_tot_request(void) ;
void process_make_xc(api_queue_e lement_t * el);
void process_destroy_xc(api_queu e_element_t * el);
void process_reserve_xc(api_queu e_element_t * el);
void process_unreserve_xc(api_qu eue_element_t * el);
bool attach_action(tnrcap_cookie _tck, Action * a);
bool detach_action(tnrcap_cookie _tck);
Action * getAction (tnrcap_cookie_t ck);
bool attach_xc(u_int id, XC * xc);
bool detach_xc(u_int id);
XC * getXC (u_int id);
int n_xcs (void);
I/ define iterator_actions
DEFINE_MASTER_MAP_ITERATOR (actions, tnrcap_cookie _t, Action);
Il define iterator_xcs
DEFINE_MASTER_MAP_ITERATOR (xcs, u_int, XC);
protected:
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

40

Grid-GMPLS high-level system design

TNRC_Master& operator=(const TNRC_Master& j);
TNRC_Master(const TNRC_Master & j);
TNRC_Master(void);

~TNRC_Master(void);

private:
static TNRC_Master * instance_;
static tnrcap_cookie_t cookie_; /Iv alue for the next cookie
static uint32_t xc_id_; /v alue for the next Xc id
static struct thread_master * master_;
/ltest mode
bool test_mode_;
std::string test file_;
TNRC:TNRC_AP * tnrc_ap_; /I TNRC_AP instance
Pcontainer * PC_; Ilp ointer to Plugin container
Plugin * plugin_;// p ointer to installed Plugin
std::string plugin_locat ion_;
ApiQueue api_aq_;
std::map<tnrcap_cookie_t, Action *> actions_; // actions in

/I execution/executed

std::map<u_int, XC *> xcs_; Il XCs active or reserved
static time_t start_time_;

h

Code 4-1: TNRC_Master class.

4.2.2 TNRC_AP instance

The TNRC_AP instance is the container of the TNRC abstraction of the Transport Network resources. It
manages Eqpt, Board, Port and Resource instances offering an up-to-date image of the equipment resources
status.

The most relevant fields are:

« aflag active when the link with equipment is down (eqpt_link_down_): in this case no further actions on
the equipment can be accepted until restoring communication with equipment (in charge of TNRC
Specific Part)

« a map of linked Egpt instances (egpts_). Even if only one Eqpt instance is accepted, there is a map to
take in account of future upgradings

class TNRC_AP {
public:
TNRC_AP(void);

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

41

Grid-GMPLS high-level system design

~TNRC_AP(void);

bool attach(EqgptKey_t k, Eqpt * e);
bool detach(EgptKey_t k);

Eqgpt * getEqpt(EqptKey_t K);
Board * getBoard(EqptKey_t e_id,
BoardKey_t b_id);
Port * getPort(EqptKey_t e_id,
BoardKey tb_id,
Portkey_t p_id);
Resource * getResource(Eqptkey_t e_id,
BoardKey t b _id,
Portkey t p_id,
ResourceKey_t|_id);

int n_eqpts(void);

bool egpt_link_down(void);
void egpt_link_down(bool val);

/I Defines eqpts_iterator
DEFINE_DM_MAP_ITERATOR(eqpts, Eqpt);

private:
uint32_t dflt_Retransmitinterval_;
time_t tnrc_start_time_;
time_t current_time_;
time_t stats_reset_time_;
time_t shutdown_delay_;

bool egpt_link_down_; // flag active if equipm ent link is down

std::map<EqptKey _t, Eqpt *> eqgpts_; // map of egpt s
I

Code 4-2: TNRC_AP class.

4.2.3 Egptinstance

The Eqgpt instance is the highest level of abstraction of the equipment resources, representing the equipment
itself. There is only one Eqpt instance linked to the TNRC_AP instance.

The most relevant fields are:

e aunique identifier (egpt_id_)

e the type of equipment (e.g. ADVA, Calient, etc.) (type)
e operational state (opstate)

* administrative state (admstate)

e amap of linked Board instances (boards_)

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

42

Grid-GMPLS high-level system design

class Eqgpt {
public:
Eqpt(void);
~Eqgpt(void);
Eqpt(TNRC_AP * tnrc,
egpt_id_t id,

g2mpls_addr_t addr,
egpt_type_t t,
opstate_t opst,
admstate_t admst,
std::string loc);

bool attach(BoardKey_t k, Board * b);
bool detach(BoardKey t k);

Board * getBoard(BoardKey_t k);

int n_boards(void);

egpt_id_t egpt_id(void);
g2mpls_addr_t address(void);
egpt_type_t type(void);

opstate_t opstate(void);

void opstate(opstate_t st);
admstate_t admstate(void);
void admstate(admstate_t st);

const char * location(void);

/I Defines boards_iterator
DEFINE_DM_MAP_ITERATOR(boards, Board);

private:
TNRC_AP *tnrc_ap_; /I TNRC_AP pare nt instance

g2mpls_addr_t address_;
egpt_id_t egpt_id_;
eqpt_type_t type_; /I type of equipment

opstate_t opstate_;
admstate t admstate_;

std::string location_name_;

std::map<BoardKey_t, Board *> boards_; // map of b oards

3

Code 4-3: Eqpt class.

4.2.4 Board instance

The most relevant fields of the Board instance are:

e aunique board identifier for a given Eqgpt (board_id)
« switching capability of all Ports and Resources linked (sw_cap)

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

43

Grid-GMPLS high-level system design

« encoding type of all Ports and Resources linked (enc_type)
e operational state (opstate)

e administrative state (admstate)

« amap of linked Port instances (ports_)

class Board {
public:
Board(void);
~Board(void);
Board(Eqgpt * e,
board_id_t id,
sw_cap_t sw_cap,
enc_type_t enc_type,
opstate_t opst,
admstate_t admst);

Egpt ™ eqpt();

bool attach(PortKey_t k, Port * p);
bool detach(PortKey_t k);

Port* getPort (PortKey_t k);

int n_ports(void);

board_id_t board_id(void);

sw_cap_t sw_cap(void);
enc_type_t enc_type(void);

opstate_t opstate(void);

void opstate(opstate_t st);
admstate_t admstate(void);

void admstate(admstate_t st);

/I Defines ports_iterator
DEFINE_DM_MAP_ITERATOR(ports, Port);

private:
Egpt *eqpt_; // eqpt parent instance
board_id_t board_id_;

sw_cap_t sw_cap_; //switching capability
enc_type_t enc_type_; // encoding type

opstate_t opstate_;
admstate_t admstate_;

std::map<PortKey _t, Port *> ports_; // map of port
b5

Code 4-4: Board class.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

44

Grid-GMPLS high-level system design
4.2.5 Port instance

The Port instance is the TNRC abstraction for the data link in the G°MPLS space. The triple Eqpt/Board/Port in
fact identifies a single data link on the equipment.

The most relevant fields are:

* aunique port identifier for a given Board (port_id_)

« the protection type for this data link (prot_type)

e operational state (opstate)

« administrative state (admstate)

« total available bandwidth on the data link (max_bw)

* maximum reservable bandwidth on the data link (max_res_bw)

« unreserved bandwidth per priority on the data link (unres_bw). This parameter is updated each time a
linked Resource is involved in some action on the equipment.

« minimum reservable bandwidth per LSP on the data link (min_Isp_bw)

* maximum reservable bandiwdth per LSP and per priority on the data link (max_Isp_bw)

« amap of linked Resource instances (resources_)

class Port {
public:
Port(void);
~Port(void);
Port(Board * b,
port_id_t id,
int flags,

g2mpls_addr_t rem_eq_addr,
port_id_t rem_port_id,
opstate_t opst,

admstate_t admst,

uint32_t bandwidth,
gmpls_prottype_t protection);

Board * board();
bool attach(ResourceKey _t k, Resour ce*r);
bool detach(ResourceKey _t k);
int n_resources (void);
Resource * getResource(ResourceKey _t Kk);
port_id_t port_id (void);
int port_flags (void);
g2mpls_addr_t remote_eqgpt_address (void);
port_id_t remote_port_id (void);
opstate_t opstate (void);
void opstate(opstate_t st);
admstate_t admstate(void);
void admstate(admstate_t st);
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

45

Grid-GMPLS high-level system design

uint32_t max_bw(void);

uint32_t max_res_bw(void);
avail_bw_per_prio_t unres_bw(void);
uint32_t min_Isp_bw(void);
avail_bw_per_prio_t max_Isp_bw(void);
void upd_unres_bw(label_t label);

gmpls_prottype_t prot_type(void);

/I Defines resources_iterator
DEFINE_DM_MAP_COMP_ITERATOR(resources, Resource, m yCompareResource);

private:
Board * board_; I/ parent boar d instance
port_id_t port_id_;
int port_flags_; // bit mask des cribing the port behaviour
g2mpls_addr_t remote_eqgpt_address_;
port_id_t remote_port_id_;
opstate_t opstate_;
admstate_t admstate_;
gmpls_prottype_t prot_type_; // Protection ty pe
uint32_t max_bw_; // total availab le bandwidth
uint32_t max_res_bw_; // max reservabl e bandwidth
avail_bw_per_prio_tunres_bw_; // unreserved b andwidth per priority
uint32_t min_Isp_bw_; // minimum reser vable bandiwdth
avail_bw_per_prio_t max_Isp_bw_; // maximum reser vable bandiwdth per priority

/l map of resources
std::map<ResourceKey_t, Resource *, myCompareResou rce> resources_;

Code 4-5: Port class.

4.2.6 Resource instance

The Resource instance is the lowest level of abstraction of the equipment resources, representing a single label
associated to a data link.

The most relevant fields are:

e aunique label identifier for a given Port (label_id_)

e operational state (opstate)

* administrative state (admstate)

* label state (state)

< a map of advance reservation for this label (reservations_), stored as [start time, end time] couples

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

46

Grid-GMPLS high-level system design

class Resource {

public:
Resource(void);
~Resource(void);

Resource(Port * p,
int tp_fl,
label_t id,

opstate_t opst,
admstate_t admst,
label_state_t st);

bool attach(struct timeval start, struc t timeval end);
bool detach(struct timeval start);
bool check_label_availability(struct ti meval start,

struct timeval end);

Port * port();
int tp_flags(void);
label_t label_id(void);

opstate_t opstate(void);

void opstate(opstate_t st);
admstate_t admstate(void);

void admstate(admstate_t st);
label_state_t state(void);

void state(label_state _t st);

/ldefine iterator advance reservations
typedef std::map<struct timeval, struct timeval, myCompareTime>::
iterator iterator_reservations;

iterator_reservations begin_reservations(void)
iterator_reservations end_reservations(void);

private:
Port * port_; // parent port p ointer
int tp_flags_;
label_t label_id_;

opstate_t opstate_;
admstate t admstate_;
label_state_t state_;

/I Advance Reservation Calendar
std::map<struct timeval, struct timeval, myCompare Time> reservations_;

Code 4-6: Resource class.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

47

Grid-GMPLS high-level system design

4.2.7 Plugin Container (Pcontainer) instance

The Plugin Container (Pcontainer) instance is unique and is created at the boot of the TNRC process. It is a
container of all available plug-ins, that are loaded in the Plugin Container at the boot.

class Pcontainer {

public:
Pcontainer(void) {};
~Pcontainer(void){};

bool attach(std::string name, Plugin *p);
bool detach(std::string name);
Plugin * getPlugin(std::string name);

/I Defines iterator_plugins
DEFINE_PIN_MAP_ITERATOR(plugins, std::string, Plug

private:
std::map<std::string, Plugin *> plugins_; // map o
h

Code 4-7: Pcontainer class.

4.2.8 Plugin instance

in);

f plugins

The Plugin class is the abstract interface of the TNRC Specific Part. Each TNRC Specific Part for for a given
equipment type (ADVA, Calient, etc.) implements his own interface, inheriting the following Plugin class.

One and only one plug-in can be installed in the TNRC_Master instance, in fact one TNRC process manges

one and only one equipment.
The most relevant fields are:

e aunique plug-in name (name_)

« aflag for bidirectional cross-connections support (xc_bidir_support_)

class Plugin {

public:
Plugin(void) {};
~Plugin(void){};
Plugin(std::string name);

std::string name(void);
tnrcsp_handle_t new_handle(void);

bool xc_bidir_support(void);

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

48

Grid-GMPLS high-level system design

virtual wg_item_status wq_function(void *d) = 0;
virtual void del_item_data(void *d) =0;
virtual tnrcapiErrorCode_t probe(std::string locat ion) = 0;

virtual tnrcsp_result_t

tnrcsp_make_xc(tnrcsp_handle_t * handlep,
tnrc_port_id_t portid_in,
label_t labelid_in,
tnrc_port_id_t portid_out,
label_t labelid_out,
xcdirection_t direction,
tnrc_boolean_t isvirtual,
tnrc_boolean_t activate,
tnrcsp_response_cb_t response_cb,
void * response_ctxt,
tnrcsp_notification_cb_t async_cb,
void * async_ctxt) = 0;

virtual tnrcsp_result_t
tnrcsp_destroy_xc(tnrcsp_handle_t* handlep,
tnrc_port_id_t portid_in,

label_t labelid_in,
tnrc_port_id_t portid_out,
label_t labelid_out,
xcdirection_t direction,

tnrc_boolean_t isvirtual,
tnrc_boolean_t deactivate,
tnrcsp_response_ch_t response_cb,
void * response_ctxt) = 0;

virtual tnrcsp_result_t
tnrcsp_reserve_xc(tnrcsp_handle_t* handlep,
tnrc_port_id_t portid_in,

label_t labelid_in,
tnrc_port_id_t portid_out,

label_t labelid_out,
xcdirection_t direction,
tnrcsp_response_ch_t response_cb,
void * response_ctxt) = 0;

virtual tnrcsp_result_t
tnrcsp_unreserve_xc(tnrcsp_handle_t* handlep,

tnrc_port_id_t
label_t
tnrc_port_id_t
label_t
xcdirection_t

portid_in,

labelid_in,

portid_out,

labelid_out,

direction,

tnrcsp_response_cb_t response_cb,

void * response_ctxt) =0 ;
virtual tnrcsp_result_t
tnrcsp_register_async_cb(tnrcsp_event_t *events) =0;
protected:
std::string name_;
tnrcsp_handle_t handle_;
bool xc_bidir_support_;

struct work_queue * wqueue_;

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

49

Grid-GMPLS high-level system design

Code 4-8: Plugin class.

The pure virtual methods in the Plugin class are the TNRC Specific Part APl exposed toward TNRC Abstract
Part to communicate with the equipment. These methods, implemented by each TNRC Specific Part plug-in,

are:

« tnrcsp_make xc(): create (or activate a reserved) cross-connection on the equipment, with the
following behaviour:

o

it returns soon after the preliminary checks have been carried out: poisitively if the cross-
connection has been requested and started o the equipment, else negatively

later, when the cross-connection has been completed, the TNRC Specific Part will come back
using the response callback (response_cb) and context (response_ctxt),and delivering the result of
the operation

any future event related to the cross-connection or one of its component will be reported with the
asynchronus callback (async_cb)

e tnrcsp_destroy_xc(): destroy an existent cross-connection on the equipment, with the following
behaviour:

o

it returns soon after the preliminary checks have been carried out: poisitively if the cross-
connection removal has been requested and started o the equipment, else negatively

later, when the cross-connection removal has been completed, the TNRC Specific Part will come
back using the response callback (response_cb) and context (response_ctxt),and delivering the
result of the operation

e tnrcsp_reserve_xc(): reserve a cross-connection on the equipment, with the following behaviour:

o

it returns soon after the preliminary checks have been carried out: poisitively if the cross-
connection reservation has been requested and started o the equipment, else negatively

later, when the cross-connection reservation has been completed, the TNRC Specific Part will
come back using the response callback (response_cb) and context (response_ctxt),and delivering
the result of the operation

e tnrcsp_unreserve_xc(): unreserve an existent reserved cross-connection on the equipment, with the
following behaviour:

o

it returns soon after the preliminary checks have been carried out: poisitively if the cross-
connection unreservation has been requested and started o the equipment, else negatively

later, when the cross-connection unreservation has been completed, the TNRC Specific Part will
come back using the response callback (response_cb) and context (response_ctxt),and delivering
the result of the operation

e tnrcsp_register_async_cb(): report about events on ports; it's invoked asynchronously by the TNRC
Specific Part, based on underlying event report mechanism

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

50

Grid-GMPLS high-level system design
4.2.9 ApiQueue instance

The ApiQueue instance is unique and is created at the boot of the TNRC process. It contains a queue in which
are stored all the action requests coming from the upper layers, through the TNRC Abstract Part external API.

Each time an action is executed (either successfully or unsuccessfully), an action request is extracted from the
queue and executed.

class ApiQueue {

public:
ApiQueue(void);
~ApiQueue(void) {};

bool insert(api_queue_element_t * e);
api_queue_element_t * extract(void);

int size(void);
u_int tot_request (void);

private:
u_int tot_req_; // total number of action requests

std::queue<api_queue_element_t *> queue_; // que ue of actions to execute

Code 4-9: ApiQueue class.

4.2.10 Action instance

The Action instance is the basic item in the TNRC data model dedicated to equipment resource requests
management. An Action instance is created each time that a “create” (make/reserve cross-connection) action
request is extracted from ApiQueue and ready to communicate with the equipment. Otherwise when a “destroy”
action (destroy/unreserve cross-connection) is extracted from ApiQueue, no new Action instance is created,
and correspondent make/reserve Action instance is retrieved to post an event on its FSM instance.

It has the following relevant fields:

e aunique identifier generated for the client requested the action (ap_cookie)

e aunique identifier generated by TNRC Specific Part (sp_handle)

* type of action (make/destroy or reserve/unreserve cross-connection) (action_type_)
e a pointer to the (unique) installed plug-in (plugin_)

e apointer to the Action FSM instance for this action (FSM_)

e atomic action in execution (atomic_)

e queue containing all the atomic actions for this action (atomic_actions_)

e (ueue containing the atomic actions to do (atomic_todo)

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

51

Grid-GMPLS high-level system design

e (ueue containing the atomic actions already done (atomic_done_)

class Action {

public:
Action (void) {};
~Action (void){};

Plugin * plugin();

Action * atomic();
void atomic(Action * at);

tnrcap_cookie_t ap_cookie(void);

void sp_handle(tnrcsp_handle_t h);
tnrcsp_handle_t sp_handle(void);

long resp_ctxt(void);
void resp_ctxt(long ctxt);

long async_ctxt(void);

tnrc_action_type_t action_type(void);
void action_type(tnrc_action_type_t type);

void prel_check(tnrcsp_result_t pc);
tnrcsp_result_t prel_check(void);

void egpt_resp(tnrcsp_result_t res);
tnrcsp_result_t eqpt_resp(void);

void have_atomic(bool atomic);
bool have_atomic(void);

bool have_atomic_todo(void);
bool have_atomic_todestroy(void);

bool wait_answer(void);
void wait_answer(bool val);

//atomic actions to do management
void pop_todo();

Action * front_todo(void);

void push_todo(Action * at);

int todo_size(void);

/latomic actions done management
void pop_done();

Action * front_done(void);

void push_done(Action * at);

int done_size(void);

void swap_action_type(void);

int n_retry(void);
void n_retry_inc();

virtual void fsm_start(void) = O;

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

52

Grid-GMPLS high-level system design

virtual void fsm_post(fsm:: TNRC::virtFsm::root_eve nts_t ev,
void * ctxt,
bool queue =fa Ise) = 0;

/ldefine iterator_atomic_actions
DEFINE_QUEUE_ITERATOR(atomic_actions, Action);
//define iterator_atomic_done
DEFINE_QUEUE_ITERATOR(atomic_done, Action);

protected:
tnrcap_cookie_t ap_cookie_;
tnrcsp_handle_t sp_handle_;
long resp_ctxt_;
long async_ctxt_;
tnrc_action_type_t action_type_;
tnrcsp_result_t prel_check_;
tnrcsp_result_t eqpt_resp_;
bool have_atomic_;
bool have_atomic_todo_;
bool wait_answer_;
int n_retry_;
Plugin * plugin_;
fsm::TNRC::virtFsm * FSM_; /I Acti on FSM instance
Action * atomic_; /I ato mic action in execution
std::deque<Action *> atomic_actions_; // que ue of atomic actions
std::deque<Action *> atomic_todo_; // que ue of atomic actions todo
std::deque<Action *> atomic_done_; // que ue of atomic actions done
h

Code 4-10: Action class.

4.2.11 XC instance

An XC instance is created each a time a make or reserve cross-connection action is executed successfully.
The XC instance is useful to correlate an executed action with the correspondent cross-connection on the
equipment, allowing to manage easily any possible notification related to the cross-connection from the
equipment.

An XC instance is deleted when correspondent cross-connection is either destroyed or unreserved on the
equipment.

It has the following relevant fields:

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

53

Grid-GMPLS high-level system design

e aunique cross-connection identifier (id_)

< identifier of the associated action (cookie)

e resources (and ports) involved in the cross-connection (portid_in_, portid_out_, labelid_in_,
labelid_out)

class XC {
public:

XC(void) {};

~XC(void){};

XC(u_int id,
tnrcap_cookie_t ck,
tnrcap_xc_state_t st,
tnrc_port_id_t portid_in,
label_t labelid_in,
tnrc_port_id_t portid_out,
label_t labelid_out,
xcdirection_t direction,
long ctxt);

u_int id(void);

tnrcap_cookie_t cookie(void);
void cookie(tnrcap_cookie_t ck);

tnrcap_xc_state_t state(void);
void state(tnrcap_xc_state_t st);

tnrc_port_id_t portid_in(void);
tnrc_port_id_t portid_out(void);
label_t labelid_in(void);
label_t labelid_out(void);
xcdirection_t direction(void);

long async_ctxt (void);
void async_ctxt (long ctxt);

private:
u_int id_; // id of the cros s-connection
tnrcap_cookie_t cookie_; /I cookie of the associated action

tnrcap_xc_state_t state_; /I state of the ¢ rossconnection
tnrc_port_id_t portid_in_;

tnrc_port_id_t portid_out_;

label_t labelid_in_;

label_t labelid_out_;

xcdirection_t direction_;

long async_ctxt_;

Code 4-11: XC class.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

54

Grid-GMPLS high-level system design

43 TNRC Abstract Part

The TNRC Abstract Part is the core of the TNRC module; it is implemented as a process integrated in the
Quagga framework, and it is in charge of:

« bridging the semantics from the G*MPLS space down to the equipment (through TNRC_SP)
o G*MPLS resource spec:
— data link
— label
o lower layer resource spec (at TNRC_SP)
— FSC
- port
— LSC
- port
- wavelength/waveband
— TDM
- port
- Termination Point (TP)
— L2sC
- port
- label
« decoupling the communication mechanism
« decomposing and serializing the operations that are atomic at the G*MPLS level into a sequence of
operations that are atomic at the equipment level
* maintaining a synchronized image of equipment resource status
« providing access to this mirrored information to upper G°MPLS module
« handling the notifications rising from the equipment and correlating them to some G°MPLS-level
resource

The TNRC Abstract Part has three different APls:
« configuration API (exposed to TNRC Specific Part)

« external API (exposed to external modules)
e action specific API (exposed to TNRC Specific Part)

4.3.1 TNRC Abstract Part configuration API

The configuration API is exposed to TNRC Specific Part, and is used to install the unique plug-in and to build
an up-to-date image of the equipment .in TNRC Abstract Part. It is specified in <sw_root>/tnrcd/tnrc_apis.h.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

55

Grid-GMPLS high-level system design

tnrcapiErrorCode_t init_plugin(std::string name, st d::string loc);
int plugin_probe(struct thread *t);

tnrcapiErrorCode_t add_Eqgpt(egpt_id_t id,
g2mpls_addr_t address,
eqpt_type_t type,
opstate_t opst,
admstate_t admst,
std::string location);

tnrcapiErrorCode_t add_Board(eqpt_id_t eqpt_id,
board_id_tid,
sw_cap_t sw_cap,
enc_type_t enc_type,
opstate_t opst,
admstate_t admst);

tnrcapiErrorCode_t add_Port(eqpt_id_t egpt_i d,
board_id_t board_id,
port_id_t id,
int flags,

g2mpls_addr_t rem_eq_addr,
port_id_t rem_port_id,
opstate_t opst,

admstate_t admst,

uint32_t bandwidth,
gmpls_prottype_t protection);

tnrcapiErrorCode_t add_Resource(eqpt_id_t eqpt_ id,
board_id_t board_id,
port_id_t port_id,
int tp_fl,
label_t id,
opstate_t opst,
admstate_t admst,
label_state_t st);

Code 4-12: TNRC Abstract Part configuration API.

The methods of the API are:

e init_plugin(): install the plug-in specified by name into TNRC_Master instance, and schedule the
execution of plugin_probe()

« plugin_probe(): this is the core method of the configuration API. It's a wrapper of TNRC Specific Part
plug-in method called probe() (see Code 4-8), that is responsible to create the image of equipment in
the TNRC_AP instance through.the add_Eqpt(),add_Board(),add_Port(),add_Resource() methods

e add_Egpt(): add an Eqpt instance in the data model

e add _Board(): add a Board instance in the data model

e add_Port(): add a Port instance in the data model

e add_Resource(): add a Resource instance in the data model

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

56

Grid-GMPLS high-level system design
4.3.2 TNRC Abstract Part external API

The external APl is exposed to external modules, and is used to accept new action requests and to provide
access to the image of the equipment stored in the data model. It is specified in <sw_root>/idl/tnrc.idl.

#include "types.idl"
#include "g2mplsTypes.idl"

interface TNRC {
exception InternalProblems { };
exception CannotFetch {};
exception ParamError {}

boolean nakeXC(out Types::uint32 cookie,
in g2mplsTypes::DLinkld dlinkin,
in g2mplsTypes::labelld labelln,
in g2mplsTypes::DLinkld dlinkOut,
in g2mplsTypes::labelld labelOut,
in g2mplsTypes::xcDirection direction,

in Types::uint32 activate,
in Types::uint32 rsrvCookie,
in long responseCtxt,
in long asyncCixt)

raises(InternalProblems, ParamError);

boolean destroyXC(in Types::uint32 cookie,
in Types::uint32 deactivate,
in long responseCtxt)
raises(InternalProblems, ParamError);

boolean reserveXC(out Types::uint32 cookie,
in g2mplsTypes::DLinkld dlinkin,
in g2mplsTypes::labelld labelln,
in g2mplsTypes::DLinkld dlinkOut,
in g2mplsTypes::labelld labelOut,
in g2mplsTypes::xcDirection direction,

in Types::uint32 advanceRsrv,
in long startTime,

in long endTime,

in long responseCtxt)

raises(InternalProblems, ParamError);

boolean unreser veXC(in Types::uint32 cookie,
in long responseCtxt)
raises(InternalProblems, ParamError);

boolean get DLi nkDet ai | s(in g2mplsTypes::DLinkld dataLink,
out g2mplsTypes::DLinkParameters params)
raises(InternalProblems, CannotFetch);

boolean get Label St at us(in g2mplsTypes::DLinkld localDataLink,
in g2mplsTypes::labelld label,
out g2mplsTypes::labelState labelState,
out g2mplsTypes::operState opState)
raises(InternalProblems, CannotFetch);

boolean get Label FronDLi nk(in g2mplsTypes::DLinkld dataLink,

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

57

Grid-GMPLS high-level system design

out g2mplsTypes::labelld label)
raises(InternalProblems, CannotFetch);

Code 4-13: TNRC Abstract Part external API IDL.

The methods of the API are:

makeXC(): create (or activate a reserved) cross-connection on the equipment, with the following

behaviour:

o it returns soon after the preliminary checks on the data model have been carried out: positively if
the request is consistent and queued in the ApiQueue instance, else negatively

o later, when the cross-connection has been completed, the TNRC Abstract Part will come back
using the actionResponse() method exposed by G2.RSVP-TE external API (see section 7.3) and
context (responseCitxt), delivering the result of the operation

any future event related to the cross-connection or one of its component will be reported with the

actionNotify() method exposed by G2.RSVP-TE external API

destroyXC(): destroy an existent cross-connection on the equipment, with the following behaviour:

o it returns soon after the preliminary checks on the data model have been carried out: positively if
the request is consistent and queued in the ApiQueue instance, else negatively

later, when the cross-connection removal has been completed, the TNRC Abstract Part will come back

using the actionResponse() method exposed by G2.RSVP-TE external APl and context (responseCtxt),

delivering the result of the operation

reserveXC(): reserve a cross-connection on the equipment, with the following behaviour:

o it returns soon after the preliminary checks on the data model have been carried out: poisitively if
the request is consistent and queued in the ApiQueue instance, else negatively

o later, when the cross-connection reservation has been completed, the TNRC Abstract Part will
come back using the actionResponse() method exposed by G2.RSVP-TE external API and context
(responseCtxt), delivering the result of the operation

o if the advance reservation flag (advanceRsrv) is active and the preliminary checks on the data
model have been carried out positively, a make cross-connection action is scheduled to be
executed at startTime, and a destroy cross-connection one is scheduled to be executed at
endTime

unreserveXC(): unreserve an existent reserved cross-connection on the equipment, with the following

behaviour:

o it returns soon after the preliminary checks have been carried out: positively if the request is
consistent and queued in the ApiQueue instance, else negatively

o later, when the cross-connection unreservation has been completed, the TNRC Abstract Part will
come back using the actionResponse() method exposed by G2.RSVP-TE external API and context
(responseCtxt), delivering the result of the operation

getDLinkDetails(): method called to retrieve information about a data link (operational and

administrative status, bandwidth parameters, switching capability, encoding type, etc.)

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

58

Grid-GMPLS high-level system design

« getLabelStatus(): method called to retrieve the status (operational, administrative and label status) of
the specified label associated to the specified data link

« getLabelfromDLink(): method called to pick a free label among all free labels associated to the
specified data link

4.3.3 TNRC Abstract Part action specific API

The action specific API is exposed to TNRC Specific Part, and is used to provide a set of action result callbacks
to be called by the Specific Part when the action has been completed on the equipment. It is specified in
<sw_root>/tnrcd/tnrc_apis.h.

void make_xc_resp_cb(tnrcsp_handle_t handle,
tnrcsp_result_t result,
void * ctxt);

void destroy_xc_resp_cb(tnrcsp_handle_t handle,
tnrcsp_result_t result,

void * ctxt);

void notification_xc_cb(tnrcsp_handle_t han dle,
tnrcsp_resource_id_t ** failed_resource_listp,
void * cxt);

void reserve_xc_resp_cb(tnrcsp_handle_t handle,
tnrcsp_result_t result,
void * ctxt);

void unreserve_xc_resp_cb(tnrcsp_handle_t handle,
tnrcsp_result_t result,
void * ctxt);

Code 4-14: TNRC Abstract Part action specific API.

The methods of the API are:

« make_xc_resp_cb(): this method is registered as response_ch parameter when TNRC Specific Part
API tnrcsp_make_xc() method is called by the Abstract Part. An appropriate event is posted to the
action FSM and the data model is updated, according to the result value

e destroy_xc_resp_cb(): this method is registered as response_ch parameter when TNRC Specific Part
API tnrcsp_destroy_xc() method is called by the Abstract Part. An appropriate event is posted to the
action FSM and the data model is updated, according to the result value

< notification_xc_ch(): this method is registered as async_cb parameter when TNRC Specific Part API
tnrcsp_make_xc() method is called by the Abstract Part. The data model is updated according to the
event notified

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

59

Grid-GMPLS high-level system design

« reserve_xc_resp_ch(): this method is registered as response_cb parameter when TNRC Specific Part
API tnrcsp_reserve_xc() method is called by the Abstract Part. An appropriate event is posted to the
action FSM and the data model is updated, according to the result value

« unreserved_xc_resp_cb(): this method is registered as response_cb parameter when TNRC Specific
Part API tnrcsp_unreserve_xc() method is called by the Abstract Part. An appropriate event is posted
to the action FSM and the data model is updated, according to the result value

4.4 TNRC Specific Part

The TNRC Specific Part is in charge of:

« implementing the specific actions on the hardware, by means of any available and suitable
management interface

« decoupling the mechanism of the lower management interface from the upper layers (TNRC Abstract
Part)
o decoupling of blocking/unblocking sync/async communication
o decoupling of objects or sessions identifiers

- perform any final translation from the semantics and object identifiers passed by TNRC Abstract Part
into those needed to communicate with the hardware

* hide away from TNRC Abstract Part some unneeded peculiarities of the underlying transport network

There is a different TNRC Specific Part for each type of equipment (ADVA, Calient,.etc.). A single Specific Part
is build via the implementation of a plug-in: this is done inheriting the Plugin class explained in the TNRC Data
Model section (see Code 4-8) and implementing the pure virtual methods specified.

The TNRC Specific Part offers an API to the Abstract Part to execute the actions on the equipment.

4.4.1 TNRC Specific Part API

The TNRC Specific Part API consists of the set of methods exposed by the Plugin class (see Code 4-8), and
implemented by each specific inherited plug-in.

These methods have already been explained in Section 4.2.8.

45 TNRC Action FSM

The main engine of TNRC Abstract Part is the finite state machine of the actions that are executed. Each
Action can be the collection of a number of correlated AtomicActions, whose execution and success determines

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

60

Grid-GMPLS high-level system design

the success of the master Action. The FSM states and events are explained in Table 4-2 and Table 4-3, while
the overall FSM picture with the transition events between states are shown in Figure 4-2.

#

XXX FSM definition

#

st/lev eventl eventl event2 event3
#

statel - statel state2 state3
statel - statel - -

state2 - - state2 -

state3 - - - state3
{FSM }

name = TNRC

definition-file = tnrc_action.def
include-name = tnrc_action.h
start-state = stateX [optional]
graphviz-file = tnrc_action.dot

#

Events

#

#

rootEvent = derivedEventl, derivedEvent?, ...
#

{ Events }

ActionCreate = evActionCreate

AtomicActionOk = evAtomicActionOk
evActionEndDown

AtomicActionKo = evAtomicActionKo

evAtomicActionincomplete, evAtomicActionAbort
ActionNotification evAction Notification

ActionDestroy = evActionDestroy
ActionRollback = evActionRollback
AtomicActionTimeout = evAtomicActionTimeout

AtomicActionRetryTimer = evAtomicActionRetryTime
AtomicActionDownTimeout = evAtomicActionDownTimeo
EgptDown = evEqgptDown

#

States

#

state = statel [The first state is the start on
eventX -> dstState

#

state = state2

eventY -> dstState

#
{ States }
State = Down
evActionCreate -> Creating
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

evAtomicActionNext, evActionEndUp,

evAtomicActionRetry,

evActionPending

ut

e if start-state is not set]

61

Grid-GMPLS high-level system design

State = Creating

evAtomicActionNext -> Creating
evActionPending -> Dismissed
evAtomicActionincomplete -> Incomplete
evActionEndUp -> Up
evActionDestroy -> Down
evAtomicActionKo -> Down
evEgptDown -> Down

State = Incomplete
evEqgptDown -> Down
evActionRollback -> Closing

State = Dismissed

evEqgptDown -> Down
evAtomicActionKo -> Down
evAtomicActionTimeout -> Down
evAtomicActionOk -> Incomplete

evAtomicActionincomplete -> Incomplete

State = Up
evActionNotification -> Up
evActionDestroy -> Closing

State = Closing
evAtomicActionNext -> Closing
evAtomicActionRetry -> Closing
evAtomicActionRetryTimer -> Closing
evAtomicActionDownTimeout -> Closing
evAtomicActionAbort -> Down
evActionEndDown -> Down

Code 4-15: TNRC Abstract Part action FSM.

Down Initial state of the FSM; none of the AtomicAction has been run yet

Creating The Action has been created and all the component AtomicActions are executed

The Action has been stopped while going Up, and received a command to destroy
Dismissed itself; but the current AtomicAction is still waiting for a response from the TNRC-SP,
and thus the equipment Agent

The Action has been stopped while going Up, and received a command to destroy
itself; but the current AtomicAction is not already waiting for a response from the

Incomplete equipment Agent (e.g. its request has not been ack-ed yet and can be silently
dismissed)
Up The Action has successfully run all the component AtomicAction and is now
established in an idle state
The Action is rewinding its “ready” component AtomicActions in order to undo all the
Closing atomic operations carried out until the moment when the Destroy command has been
received
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WpP2-D2.3

62

Grid-GMPLS high-level system design

Table 4-2: TNRC Action FSM: states.

evActionCreate

ActionCreate

Start running the first AtomicAction in the Action

evAtomicActionOk

AtomicActionOk

The current AtomicAction has been positively
answered by the equipment; do not run the next
Atomic Action

evAtomicActionNext

A

tomicActionOk

The current AtomicAction has been positively
answered by the equipment; now run the next
AtomicAction

The current AtomicAction has been positively
answered by the equipment, and this was the last

evActionEndUp AtomicActionOk AtomicAction in the Action; the Action should go idle
into Up state
the current AtomicAction has been positively
evActionEndDown AtomicActionOk answered by the equipment, and this was the last

AtomicAction in the Action; the Action should go idle
into Down state

evAtomicActionKo

tomicActionKo

The current AtomicAction has been negatively
answered by the equipment, and should not be re-
issued

evAtomicActionRetry

A

tomicActionKo

The current AtomicAction has been negatively
answered by the equipment, and should be re-
attempted later on (after a “retry” interval)

The current AtomicAction has been negatively
answered by the equipment, and the Action should go
Down; but some other AtomicActions have been

evAtomicActionincomplete - AtomicActionKo successfully carried out before, thus those Action’s
AtomicActions need to be rewinded before the Action
can go Down
The current AtomicAction has been negatively
evAtomicActionAbort AtomicActionKo answered by the equipment, and should not be

reattempted anymore

evActionNotification

ctionNotification

The Action has received an asynchronous notification
from the equipment about some of its related
resources

evActionDestroy

A

ActionDestroy

The Action got a Destroy command, and none of its
AtomicActions have been either carried out nor even
sent to the equipment

evActionPending

A\ctionDestroy

The Action got a Destroy command, but the current
AtomicAction is still waiting for a response from the
equipment and, when ready, it might need to be
rewinded before the Action can go Down

evActionRollback

ActionRollback

Start rewinding this Action from the point it has
reached until now with its “ready” AtomicActions

evAtomiActionRetryTimer

A

tomiActionRetryTimer

The “retry” timer has expired; it is time to reissue the
request to the equipment about the currently
rewinded AtomicAction

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus
D.2.3
31/03/08
034115

Phosphorus-WpP2-D2.3

63

Grid-GMPLS high-level system design

A failure on the TNRC Specific Part — equipment link

evEgptDown EgptDown occurred
evAtomicActionTimeout AtomicActionTimeout (not used)
evAtomicActionDownTime AtomicActionDownTime

(not used)

out

out

Table 4-3: TNRC Action FSM: events and root events.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

64

Grid-GMPLS high-level system design

evActionNotification

evAtamicActionMext

evAtomicAct ionNext
evitomicAct ionRetruTimer

evAtomicActignDownTimeout

evActionDestroy

vkt Up
 ectimmap "
Creating
evitonichct ionk
Down evEgptDown
evActionDestro

fitomichct ionInconplete Closing

yRctionPending

evActionRol Lb.

evAtomicAct ionTimeaut.
o evAtomicActionko

evEgptOown
evEngptOoun

= evActionEndDoun
evAtamichct ionAbort

evAtamicAct ionOk

-
evAtomicActionIncomplete i}

Dismissed Incomplete

Figure 4-2: TNRC actions finite state machine.

|
|
|
|

Project: Phosphorus ‘
Deliverable Number: D.2.3 ‘
Date of Issue: 31/03/08

EC Contract No.: 034115 |
Document Code: Phosphorus-WP2-D2.3 ’

65

Grid-GMPLS high-level system design

45.1

Example transitions

In Figure 4-3 is showed an example of successfully make cross-connection action:

the initial state is Down, an evActionCreate event is posted as soon as the Action instance is created.
the TNRC Specific Part API tnrcsp_make xc() method is called (for every atomic action) and the
Action FSM goes to the Creating state

the equipment executes correctly all the atomic actions, and the Specific Part (through the Abstract
Part action specific API) post an evAtomicActionNext event for each atomic action

when all atomic are executed, an evActionEndUp event is posted and the Action FSM goes to Up
state, meaning that the cross-connection is correctly done

In Figure 4-4 is showed an example of successfully destroy cross-connection action:

the initial state is Up, an evActionDestroy event is posted as soon as the destroy action request is
extracted from the queue in the ApiQueue instance, and appropriate Action instance is retrieved

the TNRC Specific Part API tnrcsp_destroy_xc() method is called (for every atomic action) and the
Action FSM goes to the Closing state

the equipment executes correctly all the atomic actions, and the Specific Part (through the Abstract
Part action specific API) post an evAtomicActionNext event for each atomic action

when all atomic are executed, an evActionEndDown event is posted and the Action FSM goes to Down
state, meaning that the cross-connection is correctly removed. The Action instance is destroyed.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WpP2-D2.3

66

Grid-GMPLS high-level system design

Figure 4-3: TNRC action FSM: example transitions in case of successfully make cross-connection.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

67

Grid-GMPLS high-level system design

Figure 4-4: action FSM: example transitions in case of successfully destroy cross-connection.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

68

Grid-GMPLS high-level system design

s Link Resource Manager (LRM)

The LRM module is a separate process, not part of Quagga routing suite and is developed from scratch. It is
integrated into Quagga framework according to Quagga daemon main structure (e.g. one master thread to
manage the single thread daemon as pseudo multi-thread, the trace log system, the vty interface, etc).

5.1 LRM basics

This LRM module is responsible for the management of the relationships among TE-Links, Data-Links, Control
Channels and SCN Interfaces. The TE-links are the result of a bundling procedure applied to a number of
physical component Data-Links with the eligibility for being part of the same logical construct.
The functionalities of the LRM comprise:

e Selection and allocation/de-allocation of resources (<Data-link, label>) in TE-link for signaling

purposes,
« Management of the TE-link status and bundling information for topology purposes.

The LRM module exposes interfaces to gunirsvpd, G2.RSVP-TE, TNRC, ospfd, SCNGW and g2nccd.

5.2 LRM Data Model

The LRM Data Model also holds the basic instances of nearly all the G°MPLS items. Each external module
remaps its own “view” or “instance” of a basic item (e.g. a Data-Links, ora TE-Link), but the basic item itself is
maintained and hosted by the LRM module.

The LRM Data Model is depicted in Figure 5-1.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

69

l

Grid-GMPLS high-level system design

LRM
o.= n.= o.=
1 Control . I
‘ SCH Interface H @herrre] I Adjacency
D *

TE-Link

|
U;

0.*

o=
Data-Link

Figure 5-1: LRM Data Model.

5.2.1 LRM instance

The LRM instance is the root of the whole LRM Data Model. When LRM process starts, a global instance of
LRM is created. It holds:

e aunique network address of G°MPLS controller (router_id)
« all the SCN Interfaces instances (scn_if_list)

« all the Control Channel Instances (cc_list)

« all the Data-Link instances (datalink_list)

< all the TE-Link instances (telink_list)

« alle the Adjacency instances (adj_list)

typedef struct Irm {
u_int32_t router_id;
struct zlist * scn_if_list;
struct zlist * cc_list;
struct zlist * datalink_list;

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

70

Grid-GMPLS high-level system design

struct zlist * telink_list;

struct zlist * adj_list;

uint32_t telink_count;
Hirm_t;

Code 5-1: LRM instance

5.2.2 SCN Interface instance

The SCN Interface is the basic item for the Control Network management. The SCN Interface instances are
created reading a configuration file containing the description of the entire data model. Each instance holds:

« the network address of the interface (addr)

« the type (broadcast/point-to-point) of the interface (type)
e operational state of the interface (op_state)

« administrative sate of the interface (adm_state)

typedef struct ctrl_interface {
g2mpls_addr_t addr;
if_type_t type;

opstate_t op_state;
admstate_t adm_state;
int sync_status;
}etrl_intf_t;

Code 5-2: SCN interface instance

5.2.3 Control Channel instance

The Control Channel is a fundamental item in the Control Network management, and represent the binding of
two (local and remote) SCN Interfaces in the Control Network. The Control Channel instances are created
reading a configuration file containing the description of the entire data model. Each instance holds:

* aunique local identifier of the Control Channel (cc_id)
< the remote identifier of the Contro Channel (rem_cc_id)
* local SCN Interface address (Icl_scn_addr)

* remote SCN Interface address (rem_scn_addr)

typedef struct control_channel {

u_int32_t cc_id; /* local and node-unique CC id */
u_int32_t rem_cc_id; /* remote and node-unique CC id */
Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

71

Grid-GMPLS high-level system design

g2mpls_addr_t Icl_scn_addr;

g2mpls_addr_t rem_scn_addr;

opstate_t op_state;

admstate_t adm_state;

struct zlist * te_link_list; [* te-links m anaged by this CC */

}cc t;

int sync_status;

Code 5-3: Control Channel instance

5.2.4

Adjacency instance

The Adjacency is the highest level item of the Transport Netwok part of the data model. The Adjacency
instances are created each time a new TE-Link instance not linked to any Adjacency is created. Each instance

holds:

a unique local identifier of the Adjacency ()

the network address of the remote G*MPLS controller (its router_id parameter of LRM instance)
(adj_addr)

the type of the Adjacency (INNI/ENNI/UNI) (link_type)

the list of all associated TE-Link instances

typedef struct adj {

}adi_t;

u_int32_t adj_id;
u_int32_t adj_addr;
adj_type_t link_type;
struct zlist * tel_list;

Code 5-4: Adjacency instance.

5.2.5

TE-Link instance

The TE-Link is the basic routable item of the data model. The TE-Link instances are created reading a
configuration file containing the description of the entire data model.

The most relevant fields are:

local address (Icl_id)
remote address (rem_id)

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

72

Grid-GMPLS high-level system design

the network address of the remote G*MPLS controller (its router_id parameter of LRM instance)
(rem_node_id)

operational state (op_state)

administrative state (adm_state)

the type of the Adjacency (adj_type)

the TE metric (te_metric)

the list SRLG the TE-Link instance belongs to (SRLG_ids)

the switching capability (swcap). This parameter must be the same for all associated Data-Link
instances

the encoding type (enctype). This parameter must be the same for all associated Data-Link instances
total available bandwidth (max_bw)

maximum reservable bandwidth (max_res_bw)

unreserved bandwidth per priority (avail_bw_per_prio)

minimum reservable bandwidth per LSP (min_LSP_bw)

maximum reservable bandiwdth per LSP and per priority (max_LSP_bw)

the list of all associated Data-Link instances (dl_list). All the above bandwidth parameters are a bundle
of the correspondent parameters of the associated Data-Link instances

a pointer to the parent Adjacency instance (ad))

the list of all associated Control Channel instances (cc_list)

typedef struct _te_link {

g2mpls_addr_tIcl_id;
g2mpls_addr_t rem_id;

u_int32_t rem_node_id; /* rem_id MUST be conta ined */
char tel_name[20 + 1]; /* name of TEL */
int tel_key; /* used for internal pu rposes */

opstate_t op_state;

admstate_t adm_state;

/* Summary (after bundling) or configured TE info */
adj_type_t adj_type;

u_int32_t te_metric;

u_int32_t link_color;

struct zlist * SRLG _ids;

sw_cap_t swcap; /* switching capability */
enc_type_t enctype; /* encoding type */

u_int32_t max_bw;

u_int32_t max_res_bw;

[* unreserved bw per priority */

u_int32_t avail_bw_per_priofMAX_BW_PRIORITIES 1;
[*max of max LSP per priority p bw of component li nks*/
u_int32_t max_LSP_bw[MAX_BW_PRIORITIES];

u_int32_t min_LSP_bw;

struct zlist * dl_list; /* list of data links in to te-link */
adj_t* adj;
cc_t* assoc_cc; /* cc associated whith t his te-link */
struct zlist * cc_list; /* list of CCs for this TEL */
u_int32_t num_cc_up; /* number of available C Csinup*/

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

73

Grid-GMPLS high-level system design

int sync_status;
}te_link_t;

Code 5-5: TE-Link instance.

5.2.6 Data-Link instance

The Data-Link is the lowest level item of the Transport Netwok part of the data model. The Data-Link instances
are created reading a configuration file containing the description of the entire data model. Each instance holds:

* local Transport Network address (Icl_id)

e remote Transport Network address (rem_id)

e operational state (op_state)

* administrative state (adm_state)

« the switching capability (swcap)

« the encoding type (enctype)

« total available bandwidth (max_bw)

e maximum reservable bandwidth (max_res_bw)

« unreserved bandwidth per priority (avail_bw_per_prio)

e minimum reservable bandwidth per LSP (min_LSP_bw)
« maximum reservable bandiwdth per LSP and per priority (max_LSP_bw)

typedef struct datalink {
g2mpls_addr_t Icl_id;
g2mpls_addr_t rem_id;
opstate_t op_state;
admstate_t adm_state;

sw_cap_t swcap; /* switching capabilit y *

enc_type_t enctype; /* the encoding type o f this data link */
u_int32_t max_bw;

u_int32_t max_res_bw;

u_int32_t avail_bw_per_prio[MAX_BW_PRIORITIE S];

u_int32_t max_LSP_bw[MAX_BW_PRIORITIES];
u_int32_t min_LSP_bw;
} datalink_t;

Code 5-6: Data Link instance.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

74

Grid-GMPLS high-level system design

5.3 LRM configuration API

The LRM configuration API is used to build the LRM data model starting from the configuration file containing
its description.

It is specified in <sw_root>/Irmd/Irm_core.h.

int Irm_set_rid(Irm_t * Irm, u_int32_t rid);

/* CTRL IF related functions */

int scn i f _add(Irm_t*Irm, g2mpls_addr_t addr, if_type_t intf_ty pe);
int scn_i f_del (Irm_t * Irm, g2mpls_addr_t addr);
int scn_ i f _ena(lrm_t* Irm, g2mpls_addr_t addr);
int scn_i f_di s(Irm_t * Irm, g2mpls_addr_t addr);

[* CC related functions */
int control _channel _add(lrm_t* Irm,
u_int32_t cc_id,
g2mpls_addr_t Icl_scn,
g2mpls_addr_t rem_scn);

int control _channel _del (Irm_t * Irm, u_int32_t cc_id);

int control channel ena(lrm_t*Irm, u_int32_t cc_id);

int control _channel _di s(Irm_t * Irm, u_int32_t cc_id);

int control _channel up(lrm_t*Irm, u_int32_t cc_id); /* static-LMP */
int control _channel _down(Irm_t * Irm, u_int32_t cc_id); /* static-LMP */

/* DATA LINK related functions */

int data_| i nk_add(Irm_t*Irm, g2mpls_addr_t dl_id, g2mpls_addr_t re m_dl_id);
int data |ink _del (Irm_t*Irm, g2mpls_addr_t dl_id);
int data_| i nk_ena(lrm_t * Irm, g2mpls_addr_t dI_id);

int data_|ink_di s(Irm_t*Irm, g2mpls_addr_t dI_id);

[* TE-LINK related functions */

int te_link_add(rm_t* Irm,
g2mpls_addr_t tel_id,
g2mpls_addr_tr_tel_id,
u_int32_t adj_rid,
adj_type_t adj_type);

int te link del (Irm_t*Irm, g2mpls_addr_t tel_id);

int te_|'ink_ena(lrm_t*Irm, g2mpls_addr_t tel_id);

int te link dis(rm_t*Irm, g2mpls_addr_t tel_id);

int te_|'ink_bind_cc(rm_t*Irm, g2mpls_addr_t tel_id, u_int32_t cc_id);

int te link unbind cc(lrm_t*Irm, g2mpls_addr_t tel_id, u_int32_t cc_id);
int te_|'ink_push_dl (Irm_t*Irm, g2mpls_addr_t tel_id, g2mpls_addr_t d I_id);
int te link pop_dl (Irm_t*Irm, g2mpls_addr_t tel_id, g2mpls_addr_t d I_id);

int te link_set _te netric(lrm_t* Irm,

g2mpls_addr_t tel_id,
u_int32_t te_metric);
int te link_set |ink _color(rm_t* Irm,
g2mpls_addr_t tel_id,
u_int32_t colotmask);

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

75

Grid-GMPLS high-level system design

int te |link _add_srlg_id(rm_t* Irm,
g2mpls_addr_t tel_id,
u_int32_t SRLG_id);

int te_ link_remsrlg_id(rm_t* Irm,
g2mpls_addr_t tel_id,
u_int32_t SRLG_id);

Code 5-7: LRM configuration API.

The methods of the API are:

« scn_if_add(): add a new SCN Interface instance in the data model, probing the specified interface by
means of ioctl() system call. Advertise SCNGW module through its external API of this addition

« scn_if_del(): delete an existent SCN Interface instance from the data model. Advertise SCNGW
module through its external API of this deletion

e scn_if_en(): set the administrative state of the SCN Interface istance to ENABLED

« scn_if_dis(): set the administrative state of the SCN Interface instance to DISABLED

e control_channel_add(): add a new Control Channel instance in the data model. Advertise SCNGW
module through its external API of this addition

« control_channel_del(): delete an existent Control Channel instance from the data model. Advertise
SCNGW module through its external API of this deletion

« control_channel_en(): set the administrative state of the Control Channel instance to ENABLED

« control_channel_dis(): set the administrative state of the Control Channel instance to DISABLED

< control_channel_up(): set the operational state of the Control Channel instance to UP

« control_channel_down(): set the operational state of the Control Channel instance to DOWN

e data_link_add(): add a new Data-Link instance in the data model, checking if this is consistent with
TNRC Abstract Part image of the equipment (through its external API)

« data_link_del(): delete an existent Data-Link instance from the data model

e data_link_en(): set the administrative state of the Data-Link instance to ENABLED

« data_link_dis():set the administrative state of the Data-Link instance to DISABLED

e te_link_add(): add a new TE-Link instance in the data model. Advertise SCNGW module through its
external API of this addition

« te_link_del(): delete an existent TE-Link instance from the data model. Advertise SCNGW module
through its external API of this deletion

« te_link_en():set the administrative state of the TE-Link instance to ENABLED

« te_link_dis():set the administrative state of the TE-Link instance to DISABLED

« te_link_bind_cc(): bind the specified Control Channel instance to specified TE-link Instance

« te_link_unbind_cc(): unbind the specified Control Channel instance from specified TE-link Instance

« te_link_push_dI(): associate the specified Data-Link instance to specified TE-link Instance

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

76

Grid-GMPLS high-level system design

« te_link_pop_dl():disassociate the specified Data-Link instance from specified TE-link Instance
e te_link_set te _metric(): set the metric for specified TE-link Instance

1.) te_link_set_link_color(): set the link color for specified TE-link Instance

2.) te_link_add_srlg_id(): add a SRLG to the specified TE-Link list of SRLGs

e te_link_rem_srlg_id(): remove a SRLG from the specified TE-Link list of SRLGs

5.4 LRM external API

The LRM external API is used to allow external modules to retrieve information about LRM data model. It is
specified in <sw_root>/idl/lrm.idl.

#include "types.idl"
#include "g2mplsTypes.idl"

interface LRM {

exception InternalProblems {};

exception UnknownTELinkldentity { g2mplsTypes::TEL inkld id; };
exception UnknownDLinkldentity { g2mplsTypes::DLi nkid id; };
exception UnknownTELink {}

exception UnknownDLink {}

exception UnknownAdjld {}

exception UnknownNodeld {}

exception NOTELinks {}

void | ocal DLI nkl dFromRenot eDLI nkl d(in g2mplsTypes::nodeld nodeld,
in g2mplsTypes::DLinkld remoteDLink,
out g2mplsTypes::DLinkld localDLink,
out g2mplsTypes::.operState operState,
out g2mplsTypes::adminState adminState)
raises (InternalProblems, UnknownDLink, UnknownNo deld);

g2mplsTypes::TELinkid TELI nkFronDLI nk(in g2mplsTypes::DLinkld datalink)
raises (InternalProblems, UnknownDLink);

g2mplsTypes::DLinkld DLI nkFronmTELI nk(in g2mplsTypes::TELinkld telink)
raises (InternalProblems, UnknownTELink);

void TELI nksDat a(inout g2mplsTypes::TELinkDataSeq telinks)
raises (InternalProblems, UnknownTELinkldentity);

void DLi nksDat a(inout g2mplsTypes::DLinkDataSeq datalinks)
raises (InternalProblems, UnknownDLinkldentity);

g2mplsTypes::TELinkldSeq al | TELi nkl ds()
raises (InternalProblems);

g2mplsTypes::TELinkDataSeq al | TELi nks(in g2mplsTypes::adjType type)
raises (InternalProblems, NoTELinks);

g2mplsTypes::nodeld nodel d()
raises (InternalProblems);

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

7

Grid-GMPLS high-level system design

h

void scngw i sup()
raises (InternalProblems);

Code 5-8: LRM external API.

The methods of the API are:

localDLinkldFromRemoteDLinkld(): retrieve local Data-Link address for specified remote Data-Link
address. This method return also the Data-Link instance administrative and operational state
TELinkFromDLink(): retrieve parent TE-Link local address for the specified Data-Link instance
DLinkFromTELIink(): get a Data-Link instance local address among specified TE-Link instance list of
associated Data-Links

TELinksData(): get TE-Link instance parameters for specified TE-Link instance

DLinksData(): get Data-Link instance parameters for specified Data-Link instance

allTELinklds(): get all TE-Links instance local address

allTELinks(): get all TE-Links instance local address for a specified Adjacency type

nodeld(): get the network address of G°MPLS controller (router_id parameter of the LRM instance)
scngw_isup(): this method is called by SCNGW module to start the synchronization phase in the
communication with LRM module (see SCNGW server external API)

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

78

Grid-GMPLS high-level system design

s SCN Gateway (SCNGW)

The SCNGW module is not part of Quagga routing suite and is developed from scratch. It is integrated into
Quagga framework according to Quagga daemon main structure (e.g. one master thread to manage the single
thread daemon as pseudo multi-thread, the trace log system, the vty interface, etc).

6.1 SCNGW basics

The SCNGW module has the role to manage the dualism between the Transport Network and the Control
Network. It's a kind of socket manager responsible of mapping TN resources (TE-links, well known by G°MPLS
protocols) into SCN resources (control i/fs, unknown by G’MPLS protocols). The main functionalities of the
SCN Gateway are:

« maintain the bindings between TE-links, Control Channels and SCN interfaces
« send the G?MPLS protocols’ SDUs on the appropriate Control Channels
« dispatch received SDUs (from network) to the correct G°MPLS protocol

SCNGW exposes interface to G2.RSVP-TE, G.UNI-GW, G.E-NNI RSVP, G.I-NNI RSVP (GZMPLS protocols)
and LRM. For these purposes, the module is broken down into two sub-modules:

Library offering a wrapped socket API, to be linked by
each protocol wanting communication across the SCN.

(SS%NNG(\;\; eway) (SSCCNNGGV\\//Vgl)ent It acts as an access i/f to the SCNGW server, and has 2
channels with it: 1 for data, 1 for control (e.g. open/close
sockets, etc.)

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

79

Grid-GMPLS high-level system design

Separate process (i.e. a socket manager) handling
(tunnelled) communication through the SCN for one or
more clients. It maps TN resources (TE links) into SCN
resources (control i/fs) via the TE links <-> CCs
association.

SCNGW server
(SCNGWS)

Table 6-1: SCNGW breakdown into two sub-modules.

The overall structure of the SCNGW module is depicted in Figure 6-1.

/
{ { SCNGW client J \
I 4 |
| I
| I
| 4 |
| I
| I
| SCNGW server |
| I
| I
\ 3 /

\ /

~—_—— e -~ SCNGW
v
[SCN Interfaces

Figure 6-1: SCNGW module structure.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

80

Grid-GMPLS high-level system design

6.2 SCNGW client

The client part of SCNGW is responsible of the communication with the G?MPLS protocols; it is a library that
wraps the standard socket functions and exposes an API each protocol can use to interact with the SCNGW

server, that is the core of the SCNGW module.

#ifndef IPPROTO_OSPFIGP
#define IPPROTO_OSPFIGP 89
#endif /* IPPROTO_OSPFIGP */

#ifndef IPPROTO_RSVP
#define IPPROTO_RSVP 46
#endif /* IPPROTO_RSVP */

#define OSPF_PORT 61089
#define RSVP_PORT 61046
#define NO_TUNNEL 0 /* want no encap sulation in SCNGW server */
#define TUNNEL 1 /* want encapsul ation in SCNGW server */
#define WANT_NO_ACK 0 /* want no respo nse on packet from SCNGW */
#define WANT_ACK 1 /* want response on packet from SCNGW */
[* Protoypes */
extern int scngwc_init (int interface_typ e,

int protocol,

int encap,

int want_ack);
extern int scngwc_sendmsg (int o) ck,

const void * sdu,

u_intl6_t sdu_size,

struct in_addr src_addr,

struct in_addr dst_addr,

int flags,

int * unread_packets);

extern int scngwc_stream_recvmsg (void * sdu,
int sock,
struct ip ** iph,
size_t size);

extern void scngwc_close (int sock);

Code 6-1: SCNGW client API.

The interaction between the protocols and the SCNGW client takes place in three different actions:

e initialization
e exchanging of the SDUs
e closing

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

81

Grid-GMPLS high-level system design

The functions of the API are:
< scngwec_init(): this function is responsible for the initialization phase, opening the TCP socket between
the client and the server part of the SCNGW module that will serve the considered G°MPLS protocol. It
also includes a registration of the protocol to the SCNGW server. The protocol that want to interact with
SCNGW has to call this function only once, declaring
o protocol: what kind of protocol it is (e.g. OSPF or RSVP)
o interface_type: the adjacency type (e.g. INNI or ENNI or UNI)

o encap: if it wants his SDUs be encapsulated by SCNGW server

o want_ack: if it wants an acknowledgment by SCNGW server of the transmission of the SDU on the
network

« scngwc_sendmsg(): this function is responsible for the exchanging of the SDUs phase, in the direction
G°MPLS protocol-> SCNGW client. If the protocol wants his SDUs encapsulated, it also builds the first
IP packet header for the specified protocol SDU. When a protocol has to send its SDU has to specify
o sock: file descriptor returned by scngwec_init()
o sdu: pointer to the buffer containing the SDU

o sdu_size: length of the SDU (bytes)

o src_addr: address of the source TE-link, used to build the IP packet header and (in the SCNGW
server) to retrieve the correct SCN interface)

o dst_addr: address of the destination TE-link, used to build the IP packet header and (in the SCNGW
server) to retrieve the correct SCN interface)

o flags: flags to be used by the SCNGW server when sending the SDU on the network

o unread_packets: flag valorized by SCNGW (out parameter) that specify if there any unread packets
for the protocol

« scngwc_recvmsg(): this function is responsible for the exchanging of the SDUs phase, in the direction
SCNGW client>G’MPLS protocol. If the protocol wants his SDUs encapsulated, it also remove the last

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

82

Grid-GMPLS high-level system design

IP packet header of the incoming (from SCNGW server) packet, offering to the protocol the only SDU.
The protocol has to specify

o sdu: pointer to the buffer for the incoming SDU

o sock: file descriptor returned by scnwgc_init() and that is set by the incoming SDU
o iph: pointer to the buffer for the incoming IP packet header

o size: length of the buffer specified by the parameter sdu

« scngwc_close(): this function is responsible of the closing phase, opening the TCP socket between the
client and the server part of the SCNGW module. The G*MPLS protocol has to specify

o sock: file descriptor returned by scnwgc_init()
For each G°MPLS protocol, the client and the server part of SCNGW module communicates each other
through a different socket. To improve this communication, each time there is a protocol SDU to be

sent/received by SCNGW client from SCNGW server and viceversa, a specific SCNGW overhead is added to
the entire message exchanged, containing some useful information about TE-links and SDU.

#define PACKET_MESSAGE 1u

#define ACK_MESSAGE 2U

#define NACK_MESSAGE 3U

#define REGISTRATION_MESSAGE 4U

[* structure containing the SCNGW header parameters */

struct scngw_hdr {
u_int32_t msg_type; /* Message type */
u_int32_t hdr_len; /* header length (b ytes) */
u_int32_t sdu_len; /* SDU length (byte s) */
u_int32_t msg_id; /* Message ID */
u_int32_t flags; /* flags used by pr otocols */
u_int32_t src_addr; /* TE-link local ad dress */
u_int32_t dst_addr; /* TE-link remote a ddress */
u_int32_t cc; /* Control channel */

Ji

Code 6-2: SCNGW header structure.

This overhead allows to simply identify the exchanged message type, and to retrieve basic information about
the TE-links’ addresses and the size of the SDU without reading the specific IP header packet fields.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

83

Grid-GMPLS high-level system design

6.3 SCNGW server

The server part of the SCNGW is the core of this module. It is in charge of sending the SDU of the G°MPLS
protocol on the correct SCN interface (for the specified couple source/destination TE-links), and receiving
packets from the network dispatching the contained SDUs to the appropriate protocol.

To do that, SCNGW server maintains:

e an up-to-date association between TE-links/Control Channels/SCN interfaces through a
communication with LRM module
« alist of all registered G*MPLS protocols

When a registered G°MPLS protocol has to send its SDU:

« SCNGW client send to SCNGW server the SDU (with the IP packet header added if requested by the
G°MPLS protocol) adding the SCNGW header

e SCNGW server receives the message, read the SCNGW header and bind the SDU to the correct
registered G°MPLS protocol. Put the message in an internal queue of messages (associated with the
specific protocol) to send on the network.

« SCNGW server extracts first message from the queue, retrieves the appropriate Control Channel and
SCN interfaces for specified TE-links, add the last IP packet header and finally send the packet on the
correct SCN interface

When SCNGW server receives a packet from network:

« SCNGW server retrieves the SCN interface of the incoming packet

« SCNGW server fetches the appropriate registered protocol (“owner” of the incoming packet) basing on
the associations TE-links/Control Channels/SCN interfaces

« SCNGW server extracts first message from the queue, and send it to the G*MPLS protocol (through
SCNGW client), adding the SCNGW header

6.3.1 SCNGW server data structures

The SCNGW server data structures are specified in <sw_root>/scngwd/scngws.h.

#include "stream.h"
#include "linklist.h"
#include "scngws_packet.h"

/* SCNGWs master for system wide configuration and variables. */
struct scn_master {

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

84

Grid-GMPLS high-level system design

k

/* SCNGW thread master. */
struct thread_master *master;
struct zlist *client_list;

/* Thread for END_SYNC timeout in LRM communicatio
struct thread *timer_thread;

[* Status of the connection with LRM */
int Irm_conn_status;

[* Timeout for synchronization phase with LRM (sec
long int timeout_Irmsync;

[* SCNGWs start time. */
time_t start_time;

/* Structure for the SCNGWSs client. */
struct scn_client {

b

[* Client protocol */

int proto;

[* Client interface type */

int interface_type;

[* Encapsulation */

int encap;

I* ACK / NO ACK */

int want_ack;

/* Number of packets sent */
int pckts_sent;

/* Number of packets received */
int pckts_rcvd,;

/* Socket */
int fd_cl;
int fd_net;

[* Input buffers*/

struct stream *ibuf_cl;

[* Output queues. */

struct scngws_fifo *obufg_cl;
struct scngws_fifo *obufqg_net;

[* threads. */

struct thread *t_read_cl;
struct thread *t_write_cl;
struct thread *t_read_net;
struct thread *t_write_net;

[* Structure containing one SCN-if */
struct scnif {

/* Status of SCN-if */

int status:

/*local SCN-if address*/
struct in_addr loc_addr;

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

85

Grid-GMPLS high-level system design

k

[* Structure containing one TE-link/CC association */
struct tel_cc_assoc {

[* Status of the TE-link */

int status;

/* INNI/ ENNI/ UNI */

u_intl6_t interface_type;

[* key used to update association */
u_int32_t key;

* local TE-link address*/

struct in_addr tel_loc;

* remote TE-link address*/

struct in_addr tel_rem;

[* control channels (id) associated*/
struct zlist *cclist;

kh

[* Structure containing one CC/SCN-if association * /
struct cc_scnif_assoc {

[* Status of the CC */

int status;

[* control channel id*/

u_int32_t cc_id;

/*local SCN-interface address*/

struct in_addr scnif_loc;

/*remote SCN-interface address*/

struct in_addr scnif_rem;

kh

/* SCN-if structure */

struct scn_if_addrs {
/*local SCN-interface address*/
struct in_addr loc_addr;
/*remote SCN-interface address*/
struct in_addr rem_addr;
int mtu;

Code 6-3: SCNGWS data structures.

The scn_client structure identifies a registered G°MPLS protocol. The registration is done by SCNGW client
when the protocol is in the initialization phase of the communication with the client part. This structure contains
information about the parameters specified by the protocol (adjacency type, encapsulation, etc.), the file
descriptor of the sockets opened toward SCNGW client and the network, buffers and queues for internal
packets storage.

In the scn_master structure is stored the list of all registered protocols, used to retrieve the appropriate protocol
when a packet is receveid on a certain SCN interface.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

86

Grid-GMPLS high-level system design

The tel_cc_assoc, cc_scnif_assoc and scnif_addrs structures identify respectively a singular TE-link/Control
Channelsl association, Control Channel/SCN interfaces association and a couple of local/remote SCN interface
addresses. These structures are created and updated by the communication with the LRM module. A list of all
these associations is maintained in SCNGW server ass global variable.

6.3.2 SCNGW server external API

The API for the communication with the LRM module is specified in <sw_root>/idl/scngw.idl.

#include "types.idl"
#include "g2mplsTypes.idl"

interface SCNGW {
exception Synckrr { };
exception InternalProblems { };
exception CCNotFound { };

void begi n_sync(in long scnif_count,
in long cc_count,
in long telink_count)
raises(SyncErr);

void end_sync()
raises(SyncErr);

void sync_fatal error();

void scnif _add(in g2mplsTypes::addr addr)
raises(SyncErr);

void scnif del et e(in g2mplsTypes::addr addr)
raises(SyncErr);

void tel cc assoc_add(in TELCC_Add_AssocSeq assocs)
raises(InternalProblems, SyncErr);

void tel _cc_assoc_update(inlong key_id,
in UpdateSeq updates)
raises(SyncErr);

void tel cc assoc del et e(in TELCC_Delete_AssocSeq assocs)
raises(SyncErr);

void cc_scnif_assoc_add(in CC_Add_AssocSeq assocs)
raises(InternalProblems, Synckrr);

void cc_scnif_assoc_updat e(in long cc_id,
in g2mplsTypes::addr local_addr,
in g2mplsTypes::addr remote_addr)
raises (CCNotFound, SyncErr);

void cc_scnif _assoc del et e(in CC_Delete_AssocSeq assocs)
raises(SyncErr);

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

87

Grid-GMPLS high-level system design

k

Code 6-4: SCNGW server external API IDL.

When the SCNGW server process starts, the scngw_is_up() LRM module external API function is called, and a
synchronization phase starts. During this phase LRM send all the TE-links/Control Channels/SCN interfaces
associations to SCNGW server (through the external API specified above). If something goes wrong during the
synchronization of the associations, SCNGW server deletes all the associations created and call again
scngw_is_up(), to restart the synchronization. When the synchronization ends correctly, SCNGW server is
ready to use the associations to send the protocols’ packets through the appropriate Control Channels.

The LRM module can add, delete or update some association simply calling, out of synchronization, an external
API function.

The external API functions are:

begin_sync(): start of the synchronization of all associations (to be called specifying the number of
associations to send)

end_sync(): end of the synchrionization of all associations

sync_fatal_error(): fatal error in synchronization (to be called after 5 in a row unsuccessfully
synchronization)

scnif_add(): add a couple of local/remote SCN interfaces (to be called either in synchronization phase
or to add a new association)

scnif_delete(): delete an existent couple of locallremote SCN interfaces (to be called out of
synchronization phase)

tel_cc_assoc_add(): add a TE-link/Control Channel association (to be called either in synchronization
phase or to add a new association)

tel_cc_assoc_update(): update an existent TE-link/Control Channel association (to be called out of
synchronization phase)

tel_cc_assoc_delete(): delete an existent TE-link/Control Channel association (to be called out of
synchronization phase)

cc_scnif_assoc_add(): add a Control Channel/SCN interface association (to be called either in
synchronization phase or to add a new association)

cc_scnif_assoc_update(): update an existent Control Channel/SCN interface association (to be called
out of synchronization phase)

cc_scnif_assoc_delete(): delete an existent Control Channel/SCN interface association (to be called
out of synchronization phase)

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

88

Grid-GMPLS high-level system design

;. G%RSVP-TE

The G®.RSVP-TE module is the RSVP-TE signalling protocol extended with GMPLS TE and Grid-GMPLS
extensions. This module implements the I-NNI signalling between G°MPLS nodes and it is responsible for
LSPs signalling.

It is compliant with the following IETF RFCs (see D2.1 and D2.2 for details):

« RFC 2205
« RFC 2961
* RFC 3209/3210
« RFC 3471
« RFC 3473
« RFC 3474
« RFC 3476
« RFC 3477

The g2rsvpted daemon is not originally part of Quagga routing suite and has been developed from scratch. The
G°.RSVP-TE protocol is integrated into the Quagga framework according to the Quagga daemon main
structure (e.g. one master thread to manage the single thread daemon as pseudo multi-thread, the trace log
system, the vty interface, etc etc).

Before starting the g2rsvpted daemon must:
« Initialize its own CORBA servants, i.e. NorthBound and TnrController interfaces (see Sec. 7.3).
e Initialize its CORBA clients toward tnrcd, nccd, rcd, g2pcera and Irmd.

e Set up the SCNGW client.

Therefore GZRSVP-TE protocol must start after the TNRC, NCC, RC, G°’PCERA, LRM and SCNGW modules.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

89

Grid-GMPLS high-level system design

7.1 G2.RSVP-TE data model

The G*>.RSVP-TE data model is sketched in Figure 7-1.
The main class is the G2ARSVPTE, the instance of the protocol, triggered by the VTY command or equivalent
internal APIl. Once the protocol instance is created, is attached at the global G2Z2RSVP-TE Thread Master, a

singleton class in charge of handling both the G2.RSVP-TE protocol instance and the Quagga structures.

This class links a list of interfaces and the various G2.RSVP-TE sessions.

G2ZRSVPTE

0.7 1.7

Interface

‘1 1 0.1 ‘0...1

Upstream Downstream Py fss
p StateBlock StateBlock

4
1 1

(SCNSocket J L SCNSocket

Figure 7-1: The base G2.RSVP-TE data model.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

90

Grid-GMPLS high-level system design

7.1.1 G2RSVPTE instance

The G2RSVPTE instance is the root of the whole data model. At boot, each node in the network starts a
G2.RSVP-TE protocol instance and loads all its interfaces from LRM module; each interface is instantiated and
attached at the G>.RSVP-TE instance.

The G2.RSVP-TE instance links also a session map to manage a set of LSPs with share a common group of
parameters (see Sec. 7.1.2). In fact, when a createLSP() is called, the G2.RSVP-TE instance checks if a
session instance with that Isp_ident_t already exists, otherwise, a new session is created and attached at the
protocol instance.

class G2RSVPTE {
public:

G2RSVPTE(void);

G2RSVPTE(uint32_t defaultRefreshinterval,
uint32_t defaultRapidRetransinterval,
uint32_t defaultRapidRetryLimit,
uint32_t defaultExpoBackoffDelta);

~G2RSVPTE(void);

bool attach(InterfaceKey _t |, Interface * e);
//bool detach(InterfaceKey _t I);

bool attach(SessionKey_t k, Session * e);

bool detach(SessionKey_t k, Session * e);

I/l Defines iterator_interfaces
DEFINE_MAP_ITERATOR(interfaces, Interface);
/I Defines iterator_sessions
DEFINE_MAP_ITERATOR(sessions, Session);

uint32_t nodeld(void);
void nodeld(uint32_t id);

I

/I Session utils

I

Session * findSession(SessionKey _t key);

1

/I Interface utils

1

Interface * findInterface(InterfaceKey _t key);
Interface * findInterface(g2mpls_addr_t addr,

bool checkRemote);
/I returns the number of loaded interfaces
int loadInterfaces(void);
I
/I LSP utils

/)

LSP * findLSP(Isp_ident_t info);

LSP * createLSP(const Isp_ident_t & ident,
Interface * intf,

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

91

Grid-GMPLS high-level system design

Message * msg);

LSP * createLSP(const Isp_ident_t& ident,
const std::string & sessionName,
const g2mpls_addr_t & iTna,
const g2mpls_addr_t & eTna,
const sw_cap_t & swcap,
const enc_type t & enctype,
const gmpls_bwenc_t& bw,
const gpid_t & gpid,
const uint32_t & setupPrio,
const uint32_t & holdingPrio,
const Isp_type_t & type,
const Isp_res_action_t & action,
const Isp_rro_mode_t & rroMode,

const uint32_t & refresh,

const bool & activateAck,

const uint32_t & rapidRetransinterv
const uint32_t & rapidRetryLimit,

const uint32_t & incrementValu

bool destroyLSP(const Isp_ident_t & id, bool int

private:
std::map<iInterfaceKey_t, Interface *> interfaces_
std::map<SessionKey_t, Session *> sessions_;

...

uint32_t nodeld_; I route
uint32_t defaultRefreshinterval_; // refre
uint32_t defaultRapidRetransinterval_; // retra
uint32_t defaultRapidRetryLimit_; // retry
uint32_t defaultExpoBackoffDelta_; //incr

3

Code 7-1: G2RSVPTE class

7.1.2 Session instance

The Session class groups LSPs that share a common:

« Destination Node Id (nodeld_)
e Tunnel Id (tunnelld_);
« Extended tunnel Id (extTunld).

al,
eDelta);

ernal = true);

rid

sh interval
ns. interval
limit
value delta

The relationship with the protocol instance is implemented through the base Ancestor template class.

class Session : public Ancestor<true, G2RSVPTE> {
friend std::ostringstream & operator<< (std::ostr

const Session &

public:
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

ingstream & os,

s);

92

Grid-GMPLS high-level system design

Session(G2RSVPTE * parent);

Session(G2RSVPTE * parent,
uint32_t nld,
uint32_t tunid,
uint32_t extTunld);

~Session(void);

bool attach(LSPKey_tk, LSP *);
bool detach(LSPKey tk, LSP *1);

LSP * findLSP(LSPKey_t key);

/I return the number of LSPs attached at this ses sion
uint32_t size(void);
bool empty(void);

/I Defines iterator_Isps and methods: begin_Isps/ end_lIsps
DEFINE_MAP_ITERATOR(Isps, LSP);

uint32_t nodeld(void) const;
void nodeld(uint32_t id);
uint32_t tunnelld(void) const;
void tunnelld(uint32_t id);
uint32_t extTunld(void) const;
void extTunld(uint32_t id);

private:
uint32_t nodeld_; // Destination Node Id
uint32_t tunnelld_; // Tunnel Id
uint32_t extTunld_; // Extended Tunnel Id

std::map<LSPKey_t, LSP *> Isps_;
I

Code 7-2: Session class

7.1.3 LSP instance

The LSP instance is differentiated from the others by:

e Source Node Id (nid_)
o LSPId (id)).

The LSP class is the key element of the GZRSVP-TE protocol data model. It has:

e The two LSP identifiers (source node id and LSP id)

« Ingress/Egress termination points info

* Asetof flags

* The retransmission and refresh timer values

e The Upstream and Downstream sending message interfaces

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

93

Grid-GMPLS high-level system design

e The Path State Block (PSB) and Resv State Block (RSB)
e The LSP FSM instance.

The relationship with the session instance is implemented through the base Ancestor template class.

class LSP : public Ancestor<true, Session> {
friend std::ostringstream & operator<< (std::ostr ingstream & os,
const LSP &);
public:
LSP(Session * parent);
LSP(Session * parent, uint32_t nld, uint32_t Ispl d);
~LSP(void);

bool attach(LSPCtrl * ctrl);

bool attach(UpstreamAckNack * u);
bool attach(DownstreamAckNack * d);
bool attach(PSB * psb);

bool attach(RSB * rsb);

bool isEnabled(void) const;
uint32_t nid(void) const;

uint32_t id(void) const;
g2mpls_addr_t iTNA(void) const;
g2mpls_addr_t eTNA(void) const;
PSB * psh(void);

RSB * rsb(void);
UpstreamAckNack * usAckNack(void);
DownstreamAckNack * dsAckNack(void);

void iTNA(g2mpls_addr_t addr);
void eTNA(g2mpls_addr_t addr);

std::string sessionName(void) const;

/I Time functions

uint32_t refreshinterval(void);
uint32_t rapidRetryLimit(void);
uint32_t expoBackoffDelta(void);
uint32_t rapidRetransinterval(void);

void refreshinterval(uint32_t time);

void rapidRetransinterval(uint32_t time);
void rapidRetryLimit(uint32_t time);

void expoBackoffDelta(uint32_t time);

/l LSP methods
bool eroProcess(bool recursive = true);
bool loopDetect(void);

/I For APIs

bool signalUpLSP(void);

bool signalDownLSP(void);

bool enableLSP(void);

bool disableLSP(void);

bool attachEroSubObj(EroSubObject * eroSubObj,

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

94

Grid-GMPLS high-level system design

bool insertTail = true);
bool sendPath(bool enqueueEvent = false);
bool sendResv(bool enqueueEvent = false);
bool sendDown(bool enqueueEvent = false);
bool sendTear(bool enqueueEvent = false);
bool sendConfirm(bool enqueueEvent = false);
bool xConnCompleted(void);

private:
UpstreamAckNack * us_AckNack_;
DownstreamAckNack * ds_AckNack_;

PSB * psb_;

RSB * rsb_;

uint32_t nid_; // source no de id
uint32_t id_; /I LSP id

g2mpls_addr_t ingress_tna_;
g2mpls_addr_t egress_tna_;

I/l Flags

LSP_FLAGS flags_;

[/l time intervals

uint32_t refreshinterval_; // ref resh interval
uint32_t rapidRetransinterval_; // ret rans. interval
uint32_t rapidRetryLimit_; //ret ry limit
uint32_t expoBackoffDelta_; //inc r value delta

/I LSP FSM instance
fsm::G2RSVPTE_LSP_FSM::virtFsm * fsminst_;

)

Code 7-3: LSP class

The LSP flags are:

G2RSVPTE_FLAG_ENABLED This LSP is enabled.

G2RSVPTE FLAG RECROUTE The Record Route for this LSP is active (RRO object
- - enable).

G2RSVPTE FLAG SIG ADMIN DOWN This LSP is in teardown because of an administrative
- - = - command.

G2RSVPTE_FLAG_TEAR_DOWN_US This LSP is in the first signalling tier of teardown.

G2RSVPTE_FLAG_TEAR_DOWN_DS This LSP is in the second signalling tier of teardown.

Table 7-1: LSP flags.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

95

Grid-GMPLS high-level system design

7.1.3.1 Upstream/Downstream objects

The Upstream and Downstream instances inherit from a common interface object that wraps the connection
with SCNGW module by means of the SCNSocket class. This class uses the library exposed by SCNGW client
to send packets towards others G°MPLS controllers.

7.1.3.2 Path/Resv State Block objects

The Path State Block (PSB) and Resv State Block (RSB) classes inherit directly from the StateBlock class
according to RFC 2205. The StateBlock class has the following data (in case of PSB, data structures are
previous/upstream, whereas in case of RSB, are next/downstream):

e The remote data link, used by next/previous HOP

e The upstream/downstream local data link, used to go to previous/next HOP
e The interface to next/previous HOP

e The next/previous HOP node Id

e The next/previous logical interface handler

e The upstream/downstream label used to transmit to previous/next HOP

e The upstream/downstream label used to receive from previous/next HOP

class StateBlock {
public:
uint32_t lih(void);
uint32_t nodeld(void);

Interface * interface(void);

g2mpls_addr_t remoteDL(void);
g2mpls_addr_t localDL(void);

uint32_t txLabel(void);
uint32_t rxLabel(void);

uint32_t refreshTimeout(void);
uint32_t refreshinterval(void);

private:
g2mpls_addr_t remoteDL_;
g2mpls_addr_t localDL_;
Interface * intf_;

uint32_t nodeld_;
uint32_t lih_;

uint32_t tx_label_;
uint32_t rx_label_;

uint32_t refreshTimeout_; //used Path/Resv re fresh timeout
uint32_t refreshinterval_; //used Path/Resv re fresh interval

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

96

Grid-GMPLS high-level system design

h

Code 7-4: g2rsvpte_dm.h StateBlock class
class PSB : public StateBlock {

public:

private:

k

PSB(void);
~PSB(void);

PathMessage * pathOut(void);
PathMessage * pathin(void);
PathErrMessage * pathErr(void);
ResvConfMessage * resvConf(void);
PathMessage * pathDown(void);
PathTearMessage * pathTear(void);

PathMessage * pathin_; // received Path msg
PathMessage * pathOut_; // transmitted Path

PathErrMessage * pathErr_; // TMP rx/tx Path Er
ResvConfMessage * resvConf_; // TMP rx/tx ResvCon
PathMessage * pathDown_; // TMP rx/tx Path (D
PathTearMessage * pathTear_; // TMP rx/tx PathTea

class RSB : public StateBlock {

public:

private:

k

RSB(void);
~RSB(void);

ResvMessage * resvOut(void);
ResvMessage * resvin(void);
ResvMessage * resvDown(void);
ResvTearMessage * resvTear(void);
ResvErrMessage * resvErr(void);

ResvMessage * resvin_; // received Resv msg
ResvMessage * resvOut_; // transmitted Resv

ResvMessage * resvDown_; // TMP rx/tx Resv (D
ResvTearMessage * resvTear_; // TMP rx/tx ResvTea
ResvErrMessage * resvErr_; // TMP rx/tx ResvTea

Code 7-5: PSB/RSB classes

7.1.4 Interface instance

msg

r msg
f msg
=1 R=1) msg
r msg

msg

=1 R=1) msg
r msg
r msg

The Interface class is the data structure that wraps the TE-Link managed by LRM with additional information
needed by the G°.RSVP-TE protocol.

The relationship with the protocol instance is implemented through the base Ancestor template class.

Project:

Phosphorus

Deliverable Number: D.2.3

Date of Issue:
EC Contract No.:
Document Code:

31/03/08
034115
Phosphorus-WP2-D2.3

97

Grid-GMPLS high-level system design

class Interface : public Ancestor<true, G2RSVPTE> {

public:
Interface(G2RSVPTE * parent);
Interface(G2RSVPTE * parent,
g2mpls_addr_t localld,
g2mpls_addr_t remoteld,
uint32_t nid,
opstate_t op_state,
admstate_t adm_state);
~Interface(void);
g2mpls_addr_t remoteld(void) const;
void remoteld(g2mpls_addr_t add);
g2mpls_addr_t localld(void) const;
void localld(g2mpls_addr_t add);
opstate_t opState(void) const;
void opState(opstate_t state);
admstate_t admState(void) const;
void admState(admstate_t state);
uint32_t neighbourld(void) const;
void neighbourld(uint32_t nid);
void dump(void) const;
friend std::ostringstream & operator << (std::ost ringstream & os,
const Interface & intf);
private:

g2mpls_addr_t localld_;
g2mpls_addr_t remoteld_;
uint32_t neighbourld_;
opstate_t op_state_;
admstate_t adm_state_;

k

Code 7-6: Interface classes

7.2 G2.RSVP-TE internal API

The internal API is used by the VTY interface and the CORBA G*.RSVP-TE servants to access the G*.RSVP-
TE data model and functionalities.

The G2.RSVP-TE internal API is specified in <sw_root>/g2rsvpted/g2rsvpte_apis.h and shown below.

namespace G2RSVPTE_API {
RSVP::G2RSVPTE * g2rsvpteGet(std::string & resp);
grapiErrorCode_t g2rsvpteStart(std::string & resp);
grapiErrorCode_t g2rsvpteStop(std::string & resp) ;

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

98

Grid-GMPLS high-level system design

namespace G2RSVPTE_GRAPI {

grapiErrorCode_t IspCreate(const Isp_ident_t & key,
const std::string & sessionName,
const g2mpls_addr_t & ingressTna,
const g2mpls_addr_t & egressTna,
constsw_cap_t & swcap,
const enc_type_t & enctype,
const gmpls_bwenc_t& bw,
const gpid_t & gpid,
const uint32_t & setupPrio,
const uint32_t & holdingPrio,
const Isp_type_t & type,
const Isp_res_action_t & action,
const Isp_rro_mode_t & rroMode,
const uint32_t & refresh,
const bool & activateAck,
const uint32_t & rapidRetrans minter,
const uint32_t & rapidRetryLi mit,
const uint32_t & incrementVal ueDelta,
std::string & resp);
grapiErrorCode_t IspDestroy(const Isp_ident_t & key,
std::string & resp);
grapiErrorCode_t IspEnable(const Isp_ident_t & key,
std::string & resp);
grapiErrorCode_t IspDisable(const Isp_ident_t & key,
std::string & resp);
grapiErrorCode_t IspEroAttach(const Isp_ident_t & key,
const std::list<Isp_ero_sobj_t> e ro,
std::string & r esp);
grapiErrorCode_t IspEroDetach(const Isp_ident_t & key,
const std::list<Isp_ero_sobj_t> e ro,
std::string & r esp);
grapiErrorCode_t IspSendPath(const Isp_ident_t & key,
std::string & resp);
grapiErrorCode_t IspSendResv(const Isp_ident_t & key,
std::string & resp);
grapiErrorCode_t IspSendConfirm(const Isp_ident_t & key,
std::string & resp);
grapiErrorCode_t IspSendDown(const Isp_ident_t & key,
std::string & resp);
grapiErrorCode_t IspSendTear(const Isp_ident_t & key,
std::string & resp);
grapiErrorCode_t IspForceUp(const Isp_ident_t & key,
std::string & resp);
grapiErrorCode_t IspForceDown(const Isp_ident_t & key,

std::string & resp);

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code:

Phosphorus-WP2-D2.3

99

Grid-GMPLS high-level system design

grapiErrorCode_t IspXConnCompleted(const Isp_iden t t& key,
std::string & resp);
grapiErrorCode_t getLsps(std::list<Isp_ident_t> & Isps,
std::string & resp);
grapiErrorCode_t IspGetDetails(const Isp_ident_t & key,
Isp_param_t & params,
std::string & resp);

k

Code 7-7: Internal API

The internal G2ZRSVPTE_API functions are:

e g2rsvpteGet(): allows to get the G2Z.RSVP-TE protocol instance reference.
* g2rsvpteStart(): allows to create and start a G2RSVP-TE protocol instance.
e g2rsvpteStop(): allows to stop and delete the G2RSVP-TE protocol instance.

The internal G2RSVPTE_GRAPI functions are:

« IspCreate(): allows to create an LSP instance with the specified LSP identity and parameter attribute.

« IspDestroy(): allows to destroy the LSP identified by Isp_ident if this LSP is disabled.

e IspEnable(): allows to enable the specified LSP.

« IspDisable():allows to disable the specified LSP.

» IspEroAttach(): allows to attach the list of ERO sub objects at the specified LSP.

« IspEroDetach():allows to detach the list of ERO sub objects from the specified LSP.

e IspSendPath(): prepares the G2RSVP-TE Path Message to be sent and sends a
G2RSVPTE_LSP_FSM_SendPath event to the FSM of the specified LSP.

e IspSendResv(): prepares the G2RSVP-TE Resv Message to be sent and sends a
G2RSVPTE_LSP_FSM_SendResv event to the FSM of the specified LSP.

* IspSendConfirm(): prepares the G2RSVP-TE Resv Confirm Message to be sent and sends a
G2RSVPTE_LSP_FSM_SendConfirm event to the FSM of the specified LSP.

« IspSendDown(): allows to start the tear down G2.RSVP-TE signalling procedure on the specified LSP if
the G°MPLS Controller is the head node of this LSP; otherwise, if the node is the tail of this LSP it
checks if the RSB is consistent, prepares the G2RSVP-TE Resv Down Message (Resv Message with
the Deletion flag set) to be sent and sends a G2ZRSVPTE_LSP_FSM_SendResvDown event to the FSM
of this LSP.

e IspSendTear(): prepares the G2RSVP-TE PathTear Message to be sent and sends a
G2RSVPTE_LSP_FSM_SendPathTear event to the FSM of the specified LSP if the G°MPLS Controller
is the head node of this LSP; otherwise, if the node is the tail of this LSP it prepares the G2ZRSVP-TE
Resv Tear Message to be sent and sends a G2RSVPTE_LSP_FSM_SendResvTear event to the FSM
of this LSP.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

100

Grid-GMPLS high-level system design

« IspForceUp(): checks if the LSP is enabled, if the PSB is consistent, prepares the G2RSVP-TE Path
Message to be sent and sends a G2ZRSVPTE_LSP_FSM_SendPath event to the FSM of the specified
LSP, triggering the G2.RSVP-TE signalling procedure for that LSP.

» IspForceDown(): if the G°MPLS Controller is the head node of the specified LSP, checks if the PSB is
consistent, prepares the G2RSVP-TE Path Down Message to be sent and sends a
G2RSVPTE_LSP_FSM_SendPathDown event to the FSM of this LSP; on the contrary, if the G’MPLS
Controller is the tail node of the specified LSP, checks if the RSB is consistent, prepares the G2.RSVP-
TE Resv Down Message to be sent and sends a G2RSVPTE_LSP_FSM_SendResvDown event to the
FSM of this LSP.

* IspXConnCompleted(): allows to send a G2RSVPTE_LSP_FSM_XConnCompleted event to the FSM of
the specified LSP.

e getlLsps(): returns the list of LSPs.

« IspGetDetails(): allows to retrieve all the parameters for the specified LSP.

7.3 G2.RSVP-TE external API

The GZRSVP-TE module exposes its interface by means of CORBA servants. Its API for the communication
with external modules is specified in the <sw_root>/idl/g2rsvpte.idl and shown below.

#include "types.idl"
#include "g2mplsTypes.idl"

module g2rsvpte {

interface NorthBound {

boolean
| spCr eat e(in g2mplsTypes::Ispldent Ispld,
in g2mplsTypes::callldent callld,
in g2mplsTypes::IspParams Ispinfo,
in g2mplsTypes::recoveryParams recoverylnfo ,
in boolean setup)

raises(Types::InternalProblems);

boolean
| spAddEr oPar t (in g2mplsTypes::Ispldent Ispld,
in g2mplsTypes:.eroSeq eroltem)
raises(Types::InternalProblems, Types::CannotFet ch);
boolean
| spDel Er oPar t (in g2mplsTypes::Ispldent Ispld,
in g2mplsTypes::eroSeq eroltem)
raises(Types::InternalProblems, Types::CannotFet ch);
boolean
| spEnabl e(in g2mplsTypes::Ispldent Ispld)
raises(Types::InternalProblems, Types::CannotFet ch);
boolean
| spDi sabl e(in g2mplsTypes::Ispldent Ispld)
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

101

Grid-GMPLS high-level system design

raises(Types::InternalProblems, Types::CannotFet

boolean
| spDestroy(in g2mplsTypes::Ispldent Ispld)
raises(Types::InternalProblems, Types::CannotFet
boolean
| spSet Up(in g2mplsTypes::Ispldent Ispld)
raises(Types::InternalProblems, Types::CannotFet
boolean
| spSet Down(in g2mplsTypes::Ispldent Ispld)

raises(Types::InternalProblems, Types::CannotFet

typedef sequence<g2mplsTypes::Ispldent> Ispldent
| spl dent Seq getLsps()
raises(Types::InternalProblems);

boolean
| spGet Det ai | s(in g2mplsTypes::Ispldent Ispld,
out g2mplsTypes::callldent callld,
out g2mplsTypes::lspParams Ispinfo,

out g2mplsTypes::recoveryParamsrecovery
out g2mplsTypes::statesBundle states)
raises(Types::InternalProblems, Types::CannotFet

Ji
interface TnrControl {
void
act i onResponse(in Types::uint32 cookie,
in g2mplsTypes::tnrcResult result,
in long responseCtxt)
raises(Types::InternalProblems);
void
act i onNot i fy(in Types::uint32 cookie,
in g2mplsTypes::tnrcEvent event,
in long notifyCtxt)
raises(Types::InternalProblems);
Ji

k

ch);

ch);

ch);

ch);

Seq;

Info,

ch);

Code 7-8: G2.RSVP-TE external API IDL.

The g2rsvpted exposes the G2.RSVP-TE internal APl to g2pcerad, nccd and rcd daemons through the

NorthBound interface, and exposes callback-like interfaces to tnrcd through the TnrControl interface.

The NorthBound methods are mapped 1:1 with the G>.RSVP-TE internal API as shown in Figure 7-1.

NorthBound::IspCreate() G2RSVPTE_GRAPI::IspCreate()

NorthBound::IspAddEroPart()

G2RSVPTE_GRAPI::IspEroAttach()

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

102

Grid-GMPLS high-level system design

NorthBound::IspDelEroPart() G2RSVPTE_GRAPI::IspEroDetach()
NorthBound::IspEnable() G2RSVPTE_GRAPI::IspEnable()
NorthBound::IspDisable() G2RSVPTE_GRAPI::IspDisable()
NorthBound::IspDestroy() G2RSVPTE_GRAPI::IspDestroy()
NorthBound::IspSetUp() G2RSVPTE_GRAPI::IspForceUp()
NorthBound::IspSetDown() G2RSVPTE_GRAPI::IspForceDown()
NorthBound::getLsps() G2RSVPTE_GRAPI::getLsps()
NorthBound::IspGetDetails() G2RSVPTE_GRAPI::IspGetDetails()

Table 7-1: Mapping between internal and external G2.RSVP-TE API

The TnrControl interface methods are like asynchronous callbacks with the following behaviour:

e actionResponse(): allows the TNRC to deliver the result of the operation (identified by the cookie)
previously requested by the G2.RSVP-TE.

« actionNotify(): allows the TNRC to deliver an asynchronous notification about the specified operation to
the G>.RSVP-TE.

74 G2.RSVP-TE LSP FSM

The main element of the Phosphorus G2.RSVP-TE is the LSP, which is controlled across the signalling phases
of the protocol with a specific finite state machine. The LSP FSM tracks the creation and installation phase of
an LSP on a G2.RSVP-TE instance. The LSP is the result of a 2(3)-signalling tiers, i.e. Path-Resv (Path-Resv-
ResvConf). The FSM states and root events are explained in Table 7-2 and Table 7-3, while the overall FSM
picture with the transition events between states are shown in.Figure 7-2.

#
G2RSVP-TE LSP FSM definition
#

{FSM}

name = G2RSVPTE_LSP_FSM

definition-file = g2rsvpte_Isp.def

If graphviz-file is defined the graphviz file wil | be create
graphviz-file = g2rsvpte_lsp.dot

include-name = g2rsvpte_Isp.h

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

103

Grid-GMPLS high-level system design

#start-state = Down [optional]

#

Events

#

#

rootEvent = derivedEvent1, derivedEvent2, ...

#

{Events } A REMOVED Net po
RecvPath = evRecvPathOk, evRecvPathKo
RecvPathDown = evRecvPathDownOk, evRecvPathDo
RecvResvDown = evRecvResvDownOk, evRecvResvDo
RecvResv = evRecvResvOK, evRecvResvKo
RecvConfirm = evRecvConfirmOk, evRecvConfir
RecvPathTear = evRecvPathTearOk, evRecvPathTe
RecvResvTear = evRecvResvTearOk, evRecvResvTe
RecvPathErr = evRecvPathErrOk, evRecvPathAl
evRecvActivateErr, evRecvPathErrKo

RecvResVErr = evRecvResvEIrrOk, evRecvResvEr
RecvNotify = evRecvNotifyOk, evRecvNotify
RecvActivate = evRecvActivateOk, evRecvActiva
RecvPathTimer = evRecvPathTimer

RecvResvTimer = evRecvResvTimer

RecvPathTimeout = evRecvPathTimeout
RecvResvTimeout = evRecvResvTimeout

SendPath = evSendPath
SendResv = evSendResv
SendConfirm = evSendConfirm
SendPathDown = evSendPathDown
SendResvDown = evSendResvDown
SendPathTear = evSendPathTear
SendResvTear = evSendResvTear
#SendActivate = evSendActivate
XConnCompleted = evXConnCompleted
XConnErr = evXConnErr
XConnDown = evXConnDown
XConnPreempt = evXConnPreempt
#

States

#

state = statel [The first state is the start on
eventX -> dstState

#

state = state2

eventY -> dstState

#

{ States }

#

State = Down
evRecvPathOk -> PathReceived
evRecvPathKo -> Down
evSendPath -> PathReceived

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

stfix from rootEvents

wnKo

wnKo

, evRecvResvVeryKo

mKo

arKo

arKo

arm, evRecvPathErrCrankback,

rKo

Down, evRecvNotifyKo
teKo

e if start-state is not set]

104

Grid-GMPLS high-level system design

#

State = PathReceived
evRecvPathOk
evRecvPathKo
evRecvResvOk
evRecvResvKo

evRecvResvVeryKo
evRecvPathTearOk
evRecvPathTearKo
evRecvPathErrOk
evRecvPathErrKo

evRecvPathAlarm

HiHHIH#H#HE WAS PathProce

-> PathReceived
-> PathReceived
-> WaitEqptConf
-> PathReceived
-> Down
-> Down
-> PathReceived
-> Down
-> PathReceived
-> Down

evRecvPathErrCrankback -> PathReceived

evSendResv
evSendPathTear
evSendResvTear
evRecvPathTimer

-> WaitEqptConf

-> Down
-> Down
-> PathReceived

evRecvPathTimeout -> Down
evXConnErr -> Down
evXConnCompleted -> WaitResv

#

State = WaltEqptConf ###HH###HH# WAS Reso
evRecvPathOk -> WaitEqptConf
evRecvPathKo -> WaitEqptConf
evRecvResvOk -> WaitEqptConf
evRecvResvKo -> WaitEqptConf
evRecvResvVeryKo -> Down
evRecvPathTearOk -> Down
evRecvPathTearKo -> WaitEqptConf
evRecvResvTearOk -> Down
evRecvResvTearKo -> WaitEqptConf
evRecvPathErrOk -> Down
evRecvPathErrKo -> WaitEqptConf

evRecvPathAlarm -> Down

evRecvPathErrCrankback -> WaitEgptConf

evRecvResVErrOk -> WaitEqptConf
evRecvResVErKo -> WaitEqptConf
evSendPathTear -> Down
evSendResvTear -> Down
evRecvPathTimer -> WaitEqptConf
evRecvPathTimeout -> Down
evRecvResvTimer -> WaitEqptConf
evRecvResvTimeout -> Down
evXConnErr -> PathReceived

evXConnCompleted

-> WaitResvConf

#

State = WaitResv
evRecvPathOk -> WaitResv
evRecvPathKo -> WaitResv
evRecvResvOk -> WaitResvConf
evRecvResvKo -> WaitResv
evRecvResvVeryKo -> Down
evRecvPathTearOk -> Down
evRecvPathTearKo -> WaitResv
evRecvResvTearOk -> Down
evRecvResvTearKo -> WaitResv

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

ssed

urceWait

105

Grid-GMPLS high-level system design

evRecvPathErrOk
evRecvPathErrKo
evRecvPathAlarm

-> Down
-> WaitResv
-> Down

evRecvPathErrCrankback -> PathReceived

evRecvResVErrOk -> WaitResv

evRecvResVvErrKo -> WaitResv
evSendResv -> WaitResvConf
evSendPathTear -> Down
evSendResvTear -> Down
evRecvPathTimer -> WaitResv
evRecvPathTimeout -> Down
evXConnPreempt -> WaitResv

#

State = WaitResvConf HHHHHHHHHHHHE R WAS
evRecvPathOk -> WaitResvConf
evRecvPathKo -> WaitResvConf
evRecvPathDownOk -> TearDown
evRecvPathDownKo -> WaitResvConf
evRecvResvOk -> WaitResvConf
evRecvResvKo -> WaitResvConf
evRecvConfirmOk -> |nstalled
evRecvConfirmKo -> WaitResvConf
evRecvPathTearOk -> Down
evRecvPathTearKo -> WaitResvConf
evRecvResvTearOk -> Down
evRecvResvTearKo -> WaitResvConf
evRecvPathErrOk -> Down
evRecvPathErrKo -> WaitResvConf
evRecvPathAlarm -> Down
evRecvResvErrOk -> WaitResvConf
evRecvResvErrKo -> WaitResvConf
evSendConfirm -> |nstalled
evSendPathTear -> Down
evSendResvTear -> Down
evRecvPathTimer -> WaitResv
evRecvResvTimer -> WaitResv
evXConnPreempt -> WaitResvConf

#

State = Installed HiHHHHHHE WAS Acti ve
evRecvPathOk -> |nstalled
evRecvPathKo -> |nstalled
evRecvPathDownOk -> TearDown
evRecvPathDownKo -> Installed
evRecvResvOk -> |nstalled
evRecvResvKo -> Installed
evRecvResvVeryKo -> Down
evRecvResvDownOk -> TearDown
evRecvResvDownKo -> |nstalled
evRecvConfirmOk -> |nstalled
evRecvConfirmKo -> Installed
evRecvNotifyOk -> Installed
evRecvNotifyDown -> Down
evRecvNotifyKo -> Installed
evRecvPathTearOk -> Down
evRecvPathTearKo -> Installed
evRecvResvTearOk -> Down

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

WaitConf

106

Grid-GMPLS high-level system design

evRecvResvTearKo -> Installed
evRecvPathErrOk -> Down
evRecvPathErrKo -> Installed
evRecvPathAlarm -> |nstalled
evRecvResVvErrOk -> |nstalled
evRecvResVErrKo -> |nstalled
evRecvActivateOk -> Installed
evRecvActivateKo -> |nstalled
evRecvActivateErr -> Installed
evSendPathDown -> TearDown
evSendResvDown -> TearDown

evSendActivate -> |nstalled
evRecvPathTimer -> Installed
evRecvResvTimer -> |nstalled
evXConnErr -> |nstalled
evXConnCompleted -> Installed
evXConnDown -> |nstalled
evXConnPreempt -> Installed

#

State = TearDown W WAS Wa itTear
evRecvPathDownOk -> TearDown
evRecvPathDownKo -> TearDown
evRecvResvDownOk -> TearDown
evRecvResvDownKo -> TearDown
evRecvPathTearOk -> Down
evRecvPathTearKo -> TearDown
evRecvResvTearOk -> Down
evRecvResvTearKo -> TearDown
evRecvPathErrOk -> Down
evRecvPathErrKo -> TearDown
evRecvPathAlarm -> TearDown
evRecvResvErrOk -> TearDown
evRecvResvErrKo -> TearDown
evSendPathDown -> TearDown
evSendResvDown -> TearDown
evSendPathTear -> Down
evSendResvTear -> Down
evRecvPathTimeout -> Down
evRecvResvTimeout -> Down

Code 7-9: G2.RSVP-TE LSP FSM.

The LSP instance is created but no action or message has been received yet, or the LSP
Down o . : :
has been torn down and it is going to be completely deleted in the protocol instance.
. The first or refresh Path has been received (downstream node) or sent (upstream node)
PathReceived X ; ;
during the early phases of the signalling.
. The Resv has been received (upstream node) or sent (downstream node) but the
WaitEqgptConf . T ; ; ; . .
equipment is still working on the implementation of the requested configuration.
. The equipment implemented the requested configuration and the protocol is waiting a
WaitResv :
Resv for this LSP.
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

107

Grid-GMPLS high-level system design

WaitResvConf The protocol is waiting a ResvConf for this LSP (3-tiers signalling).

The 2(3)-signalling tiers have been completed successfully and the reservation session is
installed. Traffic is ok.

A Tear Down message has been received/sent (Path or Resv with ADMIN_STATUS)
and the LSP is waiting for the completion of the deletion signalling flow.

Installed

TearDown

Table 7-2: G2RSVP-TE LSP FSM: states

RecvPath A G2.RSVP-TE Path Message has been received.
RecvPathDown A G2.RSVP-TE Path Message with ADMIN_STATUS has been received.
RecvResvDown A G2.RSVP-TE Resv Message with ADMIN_STATUS has been received.
RecvResv A G2.RSVP-TE Resv Message has been received.
RecvConfirm A G2RSVP-TE Resv Confirm Message has been received.
RecvPathTear A G2.RSVP-TE PathTear Message has been received.
RecvResvTear A G2RSVP-TE Resv Tear Message has been received.
RecvPathErr A G2.RSVP-TE PathErr Message has been received.
RecvResvErr A G2.RSVP-TE ResvErr Message has been received.
RecvNotify A G2.RSVP-TE Notify Message has been received.
RecvPathTimeout A G2.RSVP-TE Path Timeout has occurred.
RecvResvTimeout A G2.RSVP-TE Resv Timeout has occurred.
SendPath A G2 RSVP-TE Path Message must be sent.
SendResv A G2.RSVP-TE Resv Message must be sent.
SendConfirm A G2 RSVP-TE Resv Confirm Message must be sent.
SendPathDown A G2 RSVP-TE Path Message with ADMIN_STATUS must be sent.
SendResvDown A G2.RSVP-TE Resv Message with ADMIN_STATUS must be sent.
SendPathTear A G2.RSVP-TE PathTear Message must be sent.

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

108

Grid-GMPLS high-level system design

SendResvTear A G2.RSVP-TE Resv Tear Message must be sent.
XConnCompleted The coss connection has been completed.
XConnErr The requested coss connection has been failed.
XConnDown The cross connection has gone down.
XConnPreempt The cross connection has been preempted.

Table 7-3: G2RSVP-TE LSP FSM: root events

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

109

|

Grid-GMPLS high-level system design

evRecuPathTimeout

T rserenn_

evRecvPathAlarm

euSentResyTear
ewRecuPathTearOk

evRecvPathErrok

ewRecyPathT imer

euzConnConpleted

EVREEV%ESVKU

euRecuResyTine WaitResv

euRecyResuOk

eviendResy

evRecwPathTimer

evRecvPathliounok
evRecvPathTimer,

euRecyREsUOk

evRecvResvEreOk

ewReCuPatRKD

‘ evRecyPathErrfran -

evReruPathik

Down - eusendPatiilear PathReceived

W ewComnErr

evSendResvwTear
euRecuPathTearOk

evRecvPathErrok_

evXConnErr

evRecuREsUOR

ewSendResy

WaitEqptConf euRecuResvErrOk

euRecuACt ivatekn

wiConnConpleted

MWaitResvConf
evRecvResvErrio

evRecyliotiFuko
evRecyResuTearko

evRecwAct ivatelk

evRecwReswieryko evRecvResyTimer

evRecvResuTear Ok
evRecwPathlk

evRecwPathErrko

ewRecuPathEreOk

evkConnCanpleted

euReCUREsVKD

evRecyCond evSendResuloun

evSendResuTear
evRecyllotiFylk

evRecvResvTearDk

euRecuREsVOK

evRecvPathTear Ok

ewRecuPathTimer

evRecvPathAlarm evRecvPathTearko

ewRecuConfirnko

eviendResvTear

ewRecuPathAlarn

evRecwPathTearOk
ewReCcuPathKn

ewSendPathTear

EvReevPathErrOlc evRecvPathTearOk

evRecvResvTeark

evRecvPathErrok

evRecybot i Fuboun

ewRecwPathTimeout.

evendResyOown

Installed evSendPathDown
evRecvResvDounOk

euReCURESWYErUKD

TearDown

euSendPathTear

evRecvResuT ineout

F

evRecvResvTearDk

eviendResvTear
ewRecuPathTearOk

evRecwPathErrOk

Figure 7-2: G°MPLS LSP finite state machine

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

110

l

Grid-GMPLS high-level system design

7.4.1 Example transitions

The Figure 7-3 shows an example of LSP signal up. The highlighted line represents events and transitions for
the Ingress node, whereas the dotted line represents events and transitions for the Egress node.

In this picture the TNRC notify (evXConnCompleted event) has been received after the evRecvResv /
evSendResv event.

Independently from the current state, in case of an error event, the FSM comes back to Down state.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

111

Grid-GMPLS high-level system design

Ingress Node ——»
Egress Node -..oococvene >

Figure 7-3: Example of G’MPLS LSP signalling setup

75 G2.RSVP-TE parsing and formatting

The G2.RSVP-TE parsing and formatting is based on the serialization and de-serialization of the internal
message and object classes by means of the stream operators as shown in Figure 7-4.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

112

Grid-GMPLS high-level system design

MemoryBuffer
/, N
e R G’RSVP-TE
e
; ________________________________ Jd
MemoryCursor

Figure 7-4: parsing and formatting sketch.

The MemoryBuffer class is the main data structure both for parsing and formatting functions. The
MemoryStream class, that has one instance of the MemoryBuffer, is used to convert a buffer into a G2.RSVP-
TE Message.

The parsing phase is described by the following steps:

¢ When the buffer is received from the SCNGW module, a MemoryBuffer is created.
« A MemoryStream object is instantiated from the MemoryBuffer.
e The stream operator of the MemoryStream is used to create a G2RSVP-TE Message.

The formatting phase is described by the following steps:

« When the G2RSVP-TE Message is ready to be sent a MemoryStream object is created from the
message by means of stream operator.

« The MemoryStream object has a MemoryBuffer instance created from the data of the G2Z2RSVP-TE
Message.

e The raw data into MemoryBuffer are sent to SCNGW module.

The MemoryCursor class is an helper object to make easier the serialisation and de-serialisation from
MemoryBuffer to G2.RSVP-TE Message and vice-versa. It has all the functions and utilities to get/set data
from/to MemoryBuffer object as shown in Code 7-10, Code 7-11 and Code 7-12.

extern MemoryCursor & operator << (MemoryCursor &, const Message &);
extern MemoryCursor & operator >> (MemoryCursor &, Message * &);

class MemoryCursor {
friend class MemoryBuffer;
friend MemoryCursor & operator >> (MemoryCursor & cursor,
ipvd_t & data);

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

113

Grid-GMPLS high-level system design

public:

private:

k

friend MemoryCursor & operator >> (MemoryCursor & cursor,
ipv6_t & data);

friend MemoryCursor & operator >> (MemoryCursor & cursor,
uint8_t& data);

friend MemoryCursor & operator >> (MemoryCursor & cursor,
uintlé_t& data);

friend MemoryCursor & operator >> (MemoryCursor & cursor,
uint32_t & data);

friend MemoryCursor & operator >> (MemoryCursor & cursor,
uint64_t& data);

friend MemoryCursor & operator >> (MemoryCursor & mc,

Message * & msQ);

friend MemoryCursor & operator << (MemoryCursor & cursor,
constipv4_t data);

friend MemoryCursor & operator << (MemoryCursor & cursor,
const ipv6_t data);

friend MemoryCursor & operator << (MemoryCursor & cursor,
const uint8_t data);

friend MemoryCursor & operator << (MemoryCursor & cursor,
const uintl6_t data);

friend MemoryCursor & operator << (MemoryCursor & cursor,
const uint32_t data);

friend MemoryCursor & operator << (MemoryCursor & cursor,
const uint64_t data);

friend MemoryCursor & operator << (MemoryCursor & cursor,

const Message & msg);

friend std::ostream & operator << (std::ostream & 0s,
const MemoryCursor & mb);

MemoryCursor(MemoryBuffer * buffer,
size t start,
size_t stop);
~MemoryCursor(void);

MemoryCursor & resize(size_t start, size_t stop);
MemoryCursor neighbor(size_t len);
size_t remainingSize(void);

size_t start(void);
size_t stop(void);

Il pointer to main buffer for this family of curso rs
MemoryBuffer * buffer_;

I/ buffer index (range [0, size -1])
size_t start_;
size_t stop_;

/I Cursor index: range [0, stop_ - start_ + 1]
Il if (current == stop_ - start_ + 1) => buffer is full
size_t current_;

Code 7-10: MemoryCursor class

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

114

Grid-GMPLS high-level system design

class MemoryBuffer {

public:

private:

3

friend std::ostream & operator << (std::ostream & 0s,
const MemoryBuffer & mb);

MemoryBuffer(uint8_t * buffer, size_t size);
MemoryBuffer(size_t size);
~MemoryBuffer(void);

MemoryCursor & cursor(void);

void print(std::ostream & 0s, size_t start, size_t stop) const;
size_t size(void) const;

const uint8_t * getData(void);

/I Checksum utils

uint1l6_t calculateChecksum(void) const;
void writeChecksum(void);

bool isChecksumOKk(void);

Il offset MUST have a range [0, size -1]

WOP(w8, uint8_t, HTONC); // void w8(size_t off , uint8_t d);
WOP(w16, uint16_t, htons);

WOP(w32, uint32_t, htonl);

WOP(w64, uint64_t, htonll);

WOP(w32_addr, ipv4_t, HTONC);

ROP(r8, uint8_t, NTOHC); // uint8_t r8(size_to ff);
ROP(r16, uint16_t, ntohs);

ROP(r32, uint32_t, ntohl);

ROP(r64, uint64_t, ntohll);

ROP(r32_addr, ipv4_t, NTOHC);

uint8_t * buffer_;
size_t size_;

Code 7-11: MemoryBuffer class

class MemoryStream {

friend MemoryStream & operator >> (MemoryStream & ms,
Message * & msQ);
friend MemoryStream & operator << (MemoryStream & ms,
const Message & msg);
friend std::ostream & operator << (std::ostream & 0s,
const MemoryStream & ms);
public:
MemoryStream(void);
MemoryStream(uint8_t * buffer, size_t size);
~MemoryStream(void);
void flushBuffer(void);
const uint8_t * getBufferData(void);
size_t getBufferDataSize(void) const;
private:
MemoryBuffer * buffer_;
Ji
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

115

Grid-GMPLS high-level system design

Code 7-12: MemoryStream class

All the G2.RSVP-TE protocol Messages, Objects and SubObjects have their own functions and the following
mandatory interfaces:

« stream operator
e set/get to set/get protocol data
< isConsistent method to check the consistency of the packets according to the standard.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

116

l

Grid-GMPLS high-level system design

8 Call Controllers

8.1 CC shared objects and functions (xCC)

The xCC shim software implements a set of common objects (Python classes) and methods that are used (as
is) or extended/replaced by the G2.NCC and G2.CCC protocols.

The xCC is implemented in Python 2.5 (code in <sw_root>/pyg2mpls/xcc/), and works in a real multi-threaded
environment (as compared to “fake” Quagga threads).

The xCC is based on a set of legacy Python modules, plus a number of modules purposely developed for the
Phosphorus-WP2 G2MPLS project. These modules are listed in the following:

= legacy ones (see docs about each module at http://docs.python.org/lib/module-<module-name>.html,
unless specified differently):
0 O0s
signal
sys
time
re
thread
threading
traceback
socket
xml (for Python = 2.5) or elementtree (for Python < 2.5) (http://docs.python.org/lib/module-
xml.etree.ElementTree.html)
0 omniORB and omniorbpy (http://omniorb.sourceforge.net/)
= developed for the Phosphorus-WP2 G2MPLS project (see section 14.4 for details):
0 baseobj
0 bits
0 corbahelper

O O OO 0o oo oo

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

117

l

Grid-GMPLS high-level system design

fsm
logger
netutils
protocol
timer
udpcomm
version
xmimsg

g2types

O O O 0O 0O o o oo

The xCC modules are composed of:
= ccdm.py: the base xCC data model
= ccsrv.py: XCC CORBA servant, for both the G2Z2NCC and the G2.CCC (the deviations in behaviour are

introduced by the specific classes)
= ccsigif.py: XxCC signalling interface wrapper and XML implementation

8.1.1 xCC data model

The xCC data model is depicted in Figure 8-1.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

118

Grid-GMPLS high-level system design

|
Protocol
|
|
l 1

A\ 4
TimersCalendar:J
N]

CorbaRoot

P ———

I
_ 12 (indirect, direct)
ProtoObject Sl
I
2 (pre:v, next)

Figure 8-1: The base xCC data model

12-==1==21/2

The main class is the CallController, which inherits directly from the Protocol class in the module protocol. This
class has a number of direct descendants (the CcSiglf<i/f> classes) and indirect descendants (inherited from
Protocol): the TimersCalendar, the CorbaRoot (with CORBA client and servants under it) and the UdpComm
classes.

The Call class is the core item for implementing the call data and behaviour, and links to:

= a couple of Neighbour classes: the previous (aka upstream) and next (aka downstream) Call
Controller (either CCC or NCC) with respect to the direction of call setup (from the initiator to the
receiver)

= anumber of timers, for both signalling (expiration timers on call setup, in order to clean states if the
call setup doesn’t converge in a period of time) and connection (aka LSP) setup (this is for NCC

only)

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

119

Grid-GMPLS high-level system design

= a number of sub-parameters. Worth to be highlighted, the CallParameters class, which links to the
call endpoints (either a legacy Tna or a G2 GnsTna).

8.1.2 XCC (CCC/NCC) External API

The API for both the CCC and NCC is specified in <sw_root>/idl /CallController.idl, and reported in Code 8-1.
The API has two CORBA interfaces: Mgmt and SouthBound.

The Mgmt interface allows to perform management-like operations on the CCC or NCC. In particular, the
foreseen usage scenarios for this interface are:

= Dynamic call creation and setup by the grid MW. In this case, the Mgmt methods at the CCC-a are
invoked by the G.UNI GW, that maps grid job requests from the MW into G2 Calls.

= SPC Calls. In this case, the Mgmt methods at the NCC-1 are invoked by some NMS.

= Command-Line Interface. The Mgmt methods are invoked by the implementation of the CCC or NCC
CLI (VTY, see section 14)

The SouthBound interface is used for the interactions between the Call Controller and the underlying Recovery

Controller, in the upward direction. Its main function is to allow the Recovery Controller to notify the Call
Controller about events regarding the recovery bundles (each attached to a Call in the Call Controller domain).

#include "types.idl"
#include "g2mplsTypes.idl"

module Cal | Controller {

interface Mgt {
typedef sequence<g2mplsTypes::callldent> calllde ntSeq;
typedef sequence<g2mplsTypes::recoBundleldent> re coBundleldentSeq;
typedef sequence<g2mplsTypes::Ispldent> Isplden tSeq;
boolean
cal | Creat e(inout g2mplsTypes::callldent id,
in g2mplsTypes::callParams callinfo,
in g2mplsTypes::recoveryParams recoveryln fo,
in g2mplsTypes::IspParams Ispinfo,
in g2mplsTypes::actorinfo actor)

raises(Types::InternalProblems);

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

120

Grid-GMPLS high-level system design

Project:

Deliverable Number:

Date of Issue:
EC Contract No.:
Document Code:

boolean
cal | Set Tna(in g2mplsTypes::callldent
in g2mplsTypes::resourcePosition
in g2mplsTypes::tnaResource
in g2mplsTypes::actorinfo

raises(Types::InternalProblems, Types::

boolean
cal | Set GasTna(in g2mplsTypes::callldent
in g2mplsTypes::resourcePosition
in g2mplsTypes::gridParams
in g2mplsTypes::actorinfo

raises(Types::InternalProblems, Types::

boolean
cal | AddEr oPar t (in g2mplsTypes::callldent
in g2mplsTypes::eroSeq
in g2mplsTypes::actorinfo

raises(Types::InternalProblems, Types::

boolean
cal | Enabl e(in g2mplsTypes::callldent
in g2mplsTypes::actorinfo

raises(Types::InternalProblems, Types::

boolean
cal | Di sabl e(in g2mplsTypes::callldent
in g2mplsTypes::actorinfo

raises(Types::InternalProblems, Types::

boolean
cal | Dest roy(in g2mplsTypes::callldent
in g2mplsTypes::actorinfo

raises(Types::InternalProblems, Types::

boolean
cal | Set Up(in g2mplsTypes::callldent
in g2mplsTypes::actorinfo

raises(Types::InternalProblems, Types::

boolean
cal | Set Down(in g2mplsTypes::callldent
in g2mplsTypes::actorinfo

raises(Types::InternalProblems, Types::

callldentSeq get Cal | s()
raises(Types::InternalProblems);

boolean

cal | Get Det ai | s(in g2mplsTypes::callldent
out g2mplsTypes::callParams
out g2mplsTypes::recoveryParams
out g2mplsTypes::IspParams
out g2mplsTypes::actorinfo
out g2mplsTypes::statesBundle
out recoBundleldentSeq

raises(Types::InternalProblems, Types::

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WP2-D2.3

id,
pos,
tnaRes,
actor)
CannotFet

id,
pos,
gnsTna,
actor)
CannotFet

id,
eroltem,
actor)

CannotFet

id,
actor)
CannotFet

id,
actor)
CannotFet

id,
actor)
CannotFet

id,
actor)
CannotFet

id,
actor)
CannotFet

id,
callinfo,
recovery

Ispinfo,
actor,
states,
recoBundles)
CannotFet

ch);

ch);

ch);

ch);

ch);

ch);

ch);

ch);

ch);

Info,

121

Grid-GMPLS high-level system design

boolean
cal | Get Tna(in g2mplsTypes::callldent id,
in g2mplsTypes::resourcePosition pos,
out g2mplsTypes::thaResource tnaRes)
raises(Types::InternalProblems, Types::CannotFet ch);
boolean
cal | Get GasTna(in g2mplsTypes::callldent id,
in g2mplsTypes::resourcePosition pos,
out g2mplsTypes::gridParams gnsTna)
raises(Types::InternalProblems, Types::CannotFet ch);
boolean

get RecoBundl eDet ai | s(in g2mplsTypes::recoBundleldentid,
out g2mplsTypes::recoveryParams info,
out g2mplsTypes::statesBundle states,
out IspldentSeq Isps)
raises(Types::InternalProblems, Types::CannotFet ch);

kh

interface Sout hBound {
enum callEvent {
CALLEVENT_CONN_READY,
CALLEVENT_CONN_FAILED_UP,
CALLEVENT_CONN_FAILED_DOWN,
CALLEVENT_CONN_DELETED

k

boolean get Not i fication(in g2mplsTypes::callldent id,
in callEvent event)
raises(Types::InternalProblems);

3

Code 8-1: CallController.idl: CCC and NCC API

The methods for the Mgmt interface are:

= callCreate(): allows to create a new call at the CCC-a or NCC-1; in case of NCC-1, this is the door for
setting up an SPC Call.

= callSetTna(): allows to specify a legacy TNA resource (TNA, + Data Link, + Label) (ingress or egress)
for the newly created Call (it has to be still “Idle”).

= callSetGnsTna():allows to specify a GNS TNA (ingress or egress) for the newly created Call (it has to
be still “Idle”).

= callAddEroPart(): allows to add a piece of Explicit Route to the newly created Call (it has to be still
“Idle”). The Call ERO allows to specify the sequence of domains (i.e. NCCs) to be traversed by the

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

122

Grid-GMPLS high-level system design

Call; each Call ERO element is a standard RSVP ERO, and the NCCs along the path are identified by,
either:

o their node id

o0 their ingress TE Link ids (w.r.t. the direction of the path)
callEnable() and callDisable(): allow to set the administrative status of the Call to “enabled” and
“disabled”, respectively. This is for future use, e.g. to temporarily make a call unavailable for usage,
without tearing it down.
callDestroy(): allows to remove a newly created Call (it has to be still “Idle”). In that status, no signalling
has occurred yet, and the call cannot disappear as a consequence of a teardown. An explicit command
is needed.
callSetUp() and callSetDown(): the access points for setting up and tearing down the Call, respectively.
When callSetUp() is invoked, a number of checks will occur on consistency and completeness of the
information made available ((GNS] TNAs, ERO, etc.).
getCalls(): allows to retrieve the list of the IDs of the Calls currently present at the NCC or CCC.
callGetDetails(): allows to retrieve part of the details of a specific Call (call parameters, LSP
parameters, recovery information, states, IDs of the recovery bundles attached to this call). Further

information is retrieved by:

callGetTna(): allows to retrieve the details on the legacy TNA resource at the ingress or egress
position.

callGetGnsTna(): allows to retrieve the details on the GNS TNA at the ingress or egress position.

The methods for the SouthBound interface are:

getNotification(): allows the Call Controller to receive notifications from the Recovery Controller about
its recovery bundles (aka “connections” in G.7713/Y.1704 terminology), attached to a Call. The main
events are:

0 anew recovery bundle is ready

0 anew recovery bundle has been torn down

0 the setup of a recovery bundle failed

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

123

Grid-GMPLS high-level system design

8.1.3

o the teardown of a recovery bundle failed

XCC Signalling Interfaces

The ccsigif module implements a generic wrapper for all the signalling interfaces that the CCC or NCC have to
cross with their transactions. These are:

G.I-NNI (CcSiglflnni). No signalling protocol is specifically mandated by ASON for the NCC-to-NCC
communication across the I-NNI (unless piggybacked on G.RSVP-TE signalling for connection setup).
IETF CCAMP introduces the usage of the G.RSVP-TE Notify message for I-NNI call signalling
purposes (RFC 4974, see D2.1 and D2.2), but with a number of unclear and incomplete points. Due to
these incompleteness and to the needed GNS enhancements, a dedicated and proprietary signalling
based on XML has been defined and implemented.

G.UNI (CcSiglfuni). To be based on OIF UNI 2.0 (see D2.1, D2.2, D2.7 for references)

G.E-NNI (CcSiglfEnni). To be based on OIF E-NNI 2.0 signalling (see D2.1, D2.2, D2.7 for references)
B-NNI (CcSiglfBnni). This is the Border Node-to-Node Interface, which implements the part of
signalling between UNI-N NCCs needed to support the concept of Indirect Call introduced in D2.1. This
is based on a proprietary signalling based on XML.

Mgmt (CcSiglfMgmt). Not a real signalling interface. It is currently a pure stub, and might be used in a

future engineering of the stack as the source point for SNMP traps (e.g. to let the NMS know when an
SPC Call is ready).

Each of these interfaces is instantiated and attached at the CallController level, and provides a gateway to the
underlying signalling functions (send and receive), e.g. through G.UNI RSVP or G.ENNI RSVP for G.UNI and
G.E-NNI, respectively, or a full implementation of the XML signalling specified.

8.1.3.1 G.I-NNI and B-NNI XML signalling

The specified signalling protocol is based on the ASON message (G.7713/Y.1704) types and includes all the
relevant information needed to setup the Call.

The supported messages are:

For Call setup:

0 SetupRequest

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

124

Grid-GMPLS high-level system design
0 Setuplindication
0 SetupConfirm
= For Call teardown:
0 ReleaseRequest
0 ReleaseConfirm

The basic message structure is as follows.

<IELEMENT ccsigmsg (header, body)>

<IELEMENT header (type, seqnum, sender)>
<IELEMENT type (#PCDATA ©)>
<IELEMENT segnum (#PCDATA)>
<IELEMENT sender (#PCDATA)>

<!IELEMENT body (name, client-name?, call-id?, indir ect?, rel-ind-call-id?,
emulated-if?, call-parms?, Isp-parms?, ero?, reason ?, errored-segnum?)>

<IELEMENT name (#PCDATA)>
<IELEMENT client-name (#PCDATA)>

<IELEMENT call-id (type, srcld, localld, segments?) >
<I[ELEMENT type (#PCDATA)>
<IELEMENT srcld (#PCDATA)>
<IELEMENT localld (#PCDATA)>

<IELEMENT indirect (#PCDATA)>

<IELEMENT rel-ind-call-id (type, srcld, localld, se gments?)>
<IELEMENT emulated-if (#PCDATA)>

<IELEMENT reason (#CDATA)>

<IELEMENT errored-segnum (#PCDATA)>

<IELEMENT ero (eroelem +)>
<IELEMENT eroelem (nodeld, teLink, upDataLink, upLa bel,
downDatalink, downLabel, loose)>
<IELEMENT nodeld (#PCDATA)>
<IELEMENT teLink (#PCDATA)>
<IELEMENT upDataLink (#PCDATA)>
<IELEMENT upLabel (#PCDATA)>
<IELEMENT downDatalLink (#PCDATA)>
<IELEMENT downLabel (#PCDATA)>
<IELEMENT loose (#PCDATA)>

® A string indicating one of the message types reported above.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

125

Grid-GMPLS high-level system design

<IELEMENT call-parms (originator, jobProject, jobNa me, gnstnas,
disjointness, recoveryType, startTime, endTime, tha res)>
<IELEMENT originator (#PCDATA)>
<IELEMENT jobProject (#CDATA)>
<IELEMENT jobName (#CDATA)>
<IELEMENT disjointness (#PCDATA)>
<IELEMENT startTime (#PCDATA)>
<IELEMENT recoveryType (#PCDATA)>
<IELEMENT endTime (#PCDATA)>
<IELEMENT tnares (ingress, egress)>
<IELEMENT ingress (dataLink, label, tha)>
<IELEMENT egress (dataLink, label, tha)>
<IELEMENT dataLink (#PCDATA)>
<IELEMENT label (#PCDATA)>
<IELEMENT tna (#PCDATA)>
<IELEMENT gnstnas (ANY 7)>

<IELEMENT Isp-parms (IspRole, IspType, swCap, encTy pe, gpid,
bandwidth, tnResAction, rroMode, setupPrio, holding Prio, linkProtMask,
includeAll, includeAny, excludeAny, useAcks, rapidR etryLimit,
rapidRetransintval, incrementValueDelta, refreshint erval,
crankbackScope, maxCbackRetrSrc, maxCbackRetrintmd) >

<IELEMENT IspRole (#PCDATA)>
<I[ELEMENT IspType (#PCDATA)>
<I[ELEMENT swCap (#PCDATA)>
<IELEMENT encType (#PCDATA)>
<IELEMENT gpid (#PCDATA)>

<I[ELEMENT bandwidth (#PCDATA)>
<I[ELEMENT tnResAction (#PCDATA)>
<I[ELEMENT rroMode (#PCDATA)>
<IELEMENT setupPrio (#PCDATA)>
<IELEMENT holdingPrio (#PCDATA)>
<IELEMENT linkProtMask (#PCDATA)>
<I[ELEMENT includeAll (#PCDATA)>
<I[ELEMENT includeAny (#PCDATA)>
<IELEMENT excludeAny (#PCDATA)>
<IELEMENT useAcks (#PCDATA)>
<!IELEMENT rapidRetryLimit (#PCDATA)>
<IELEMENT rapidRetransintval (#PCDATA)>
<IELEMENT incrementValueDelta (#PCDATA)>
<IELEMENT refreshinterval (#PCDATA)>
<IELEMENT crankbackScope (#PCDATA)>
<IELEMENT maxCbackRetrSrc (#PCDATA)>
<IELEMENT maxCbackRetrintmd (#PCDATA)>

An example of SetupRequest is reported in the following, already parsed:

" This is actually a structured element, as well, but its structure it is too complex to be reported here. Basically, its tag names and structure
are organized according to the basic GNS IDL types. See Appendix A for further details.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

126

Grid-GMPLS high-level system design

header:

type: 'SetupRequest'

segnum: 'i:1'

sender: '192.168.40.1'

body:

call-id:
localld: '0x0000000000000001"
segments:
srcld: 'ipv4#192.168.40.1'
type: 'CALLIDTYPE_OPSPEC'

name: 'CALLIDTYPE_OPSPEC#(ipv4#192.168.40.1):0x1'

indirect: 'b:0'

emulated-if: 'I-NNI'

call-parms:
originator: ISSUERTYPE_UNI_IF'
jobProject: 'progetto’
jobName: 'myjob'
gnstnas:
disjointness: 'DISJOINTNESS_NONE'
startTime: 'i:0'
recoveryType: 'RECOVERYTYPE_UNPROTECTED'

endTime: 'i:100'
tnares:
ingress:
dataLink: 'ipv4#0.0.0.0'
label:
tna: 'ipv4#10.10.1.101"
egress:
dataLink: 'ipv4#0.0.0.0'
label:
tna: 'ipv4#10.30.2.120'
Isp-parms:

maxCbackRetrIntmd: 'i:0'
rapidRetransintval: 'i:0'
rroMode: 'LSPRROMODE_TEL_DETAIL'
rapidRetryLimit: 'i:0'
gpid: '"GPID_LAMBDA'
incrementValueDelta: 'i:0'
holdingPrio: 'i:0'
setupPrio: 'i:0'
crankbackScope: 'CRANCKBACKSCOPE_EZ2E'
linkProtMask: 'PROTTYPE_UNPROTECTED'
excludeAny: 'i:0'
useAcks: 'i.0'
swCap: 'SWITCHINGCAP_LSC'
IspRole: 'LSPROLE_UNDEFINED'
includeAny: 'i:0'
IspType: 'LSPTYPE_SPC'
bandwidth: 'i:1000000'
maxCbackRetrSrc: 'i;:3'
refreshinterval; 'i.0'
encType: 'ENCODINGTYPE_LAMBDA'
tnResAction: 'LSPRESOURCEACTION_XCONNECT'
includeAll: 'i:0'
ero:
listelem-001:
elem:
downDataLink:

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

127

Grid-GMPLS high-level system design

downLabel:

loose: 'b:0'

nodeld:

teLink: 'ipv4#192.168.2.50'
upDataLink:

upLabel:

Code 8-2: Example of parsed SetupRequest.

8.2 G2.NCC — The Grid-GMPLS Network Call Controller

8.2.1 G2.NCC basics

The G2.NCC is the core component for the Grid-GMPLS end-to-end Service Plane. It implements the concept
of G2 Call, which extends that of ASON/GMPLS Call. The [G? Call® is the bridging element between the
G2MPLS Network Control Plane and the Service Plane functionalities. As such, it supports two important
features:

= |t incorporate information about the “service end-points”, be them legacy TNAs or non-network (grid)
resources (defined as “GNS TNASs” in software)

= |t offers gateway functions to the AuthN/AuthZ Infrastructure (developed in WP4), thus augmenting the
G.UNI and G.E-NNI with inter-carrier capabilities

The G2.NCC is implemented in Python 2.5 (code in <sw_root>/pyg2mpls/nccd/).

It shares a common shim software with the G2CCC (G2 Client Call Controller), located in
<sw_root>/pyg2mpls/xcc/. The shared software between G2NCC and G2.CCC implements a set of common
objects and functions, which are then inherited by the specialized objects and functions in G2NCC and

G2.CCC.

The description of the shared “xCC” software can be found in section 14.4.

8.2.2 G2.NCC software overview

The G2.NCC composing files are:

= config.py: protocol-specific configuration file

8 From now on, the G2 Call is simply referred to as “Call”.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

128

Grid-GMPLS high-level system design

main.py: start-up file, for launching the NCC
nccdm.py: the NCC data model, implementing the NetworkCallController and NetworkCall classes
ncall_fsm.py: the implementation of the transitions of the NCC Call FSM

ncall_fsm_desc.py: the description of the NCC Call FSM, automatically generated from
<sw_root>/tools/FSM/tools/ncc_call.conf.

The G*.NCC is implemented as a single process, and a number o threads (Figure 8-2):

The main G>.NCC thread (1), which starts up all the protocol components and enters the ominORB
run() cycle.

The FSM engine (1), which (in its configured usage) waits for FSM events to pop up in the FSM events
queue, and execute the related transitions

The Timers manager (1), which waits for the next timer delta to expire in the timers calendar queue,
and executes the related callback function

The UDP socket manager (1), which waits for UDP packets to appear in the UDP socket, receive them
and execute the related callback functions at protocol level

A number of ORB threads (N), for the execution of servant methods and client invocations.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

129

Grid-GMPLS high-level system design

G2.NCC main

Blocked on orb.run()

Timers manager
Waiting for next timer in
the calendar to expire, and
executing the related
callback function

FSM engine

Waiting for FSM events to
be posted in the events
gueue, and executing them

N 1
== =——==- bemm e i
I I
v v
ORB threads UDP socket manager
For client and servant Listening for UDP packets,
methods execution and executing the related

protocol receive callback

Figure 8-2: G2.NCC threads structure

8.2.3 G2.NCC data model

Figure 8-3 depicts the NCC Call data model. The main class is the NetworCallController, which inherits directly
from the CallController class in ccdm.py, with its signalling interfaces.

The NetworkCall class inherits from the Call class in ccdm.py, and, with respect to it, add links to some objects:

« one instance of the NetworkCallFsm class, whose methods collect all the in/out transitions of the NCC
Call FSM;

< amirror image of the underlying Recovery Bundle handled by the Recovery Controller (see section 8.3);

* an Call ERO, as a list of Eroltem(s).

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

130

Grid-GMPLS high-level system design

CallController

T————"r——--T

I
Cesiglfinni ' :

|
CcSiglfUni

2 (indirect, direct)

1 11 :1

CcSiglfEnni

CcSiglfBnni

timers
(signalling,
connection)

Neighbour

¢ == ——— = —— -

CcSiglfMgmt

CallParameters

f

RC RB

12-==1-=41/2
v v
TnaResource GnsTna

Figure 8-3: G2.NCC data model

8.2.3.1 TNA rules

When setting up a new call at the NCC-1 via management (callSetUp) or when the call is initiated by UNI
signalling, a check on the consistency of the provided TNAs (either legacy or GNS) is performed. The legacy
TNA is expressed in the form of a ThaResource, i.e. a TNA, plus a Data Link, plus a Label. Not all of this info
has to be non-null. From now on, the detailed TNA information (aka TnaResource) is indifferently referred to as

TNA.

The check algorithm is described in the following.

= Both TNAs (ingress and egress) should be present (either in the form of legacy resource or GNS)

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

131

Grid-GMPLS high-level system design

= Ifthe ingress TNA is a legacy resource,

o If the Data Link in the TNA resource is non-null, it should belong to the specified TNA, and both
of them should belong to the checking NCC. — If true, the check is over, with a positive result

o If a null Data Link is present, the check is limited to the TNA: it should belong to the checking
NCC. — If true, the check is over, with a positive result

o If we get here, the TNA does not belong to the checking node = this is an Indirect Call. The
checking NCC will ask the PCE which NCC owns the specified TNA, and set that node as the
“next” neighbour. — If found, the check is over, with a positive result.

= If the ingress TNA is not a legacy resource, it's for sure a GNS TNA. In this case, the call is always
Indirect: Direct Calls always need to specify a network TNA as the ingress point.

8.2.4 G2.NCC Call FSM

The FSM of the G2.NCC Call is “inspired” by ITU-T Rec. G.7713/Y.1704 (rev. 05/2006) and RFC 4974 (with a
3-tier Call signalling, instead of a simple two-tier); see D2.1 and D2.2 for references. According to the view of
the design team of the G2NCC, both recommendations have to be considered as informational suggestions
rather than real implementation guidelines. The principle followed is the IETF CCAMP one: the Call has to be
completely set up before any network connection (aka LSP) is initiated. Honouring this useful principle forced
the adoption of a 3-tier signalling, instead of a simple 2-tier as suggested by RFC 4974 (a minimum of 3-tier is
needed when every NCC along the path has to know when the Call is completely ready).

The core skeleton of the FSM is derived from G.7713/Y.1704 (rev. 05/2006), although a number of
modifications had to be introduced to make it a usable and working FSM.

The FSM specification is in <sw_root>/tools/FSM/tools/ncc_call.conf, and is reported in the following:

#
NCC CALL FSM definition
#

{FSM}

name = NCC_CALL_FSM

definition-file = ncc_call.def

If graphviz-file is defined the graphviz file wil | be create
graphviz-file = ncc_call.dot

#include-name = ncc_call.h

start-state = Idle #[optional]

#

Events

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

132

Grid-GMPLS high-level system design

#

#

rootEvent = derivedEventl, derivedEvent2, ...

#

{ Events }

inSetupRequest = inSetupRequestOk, inSetupRequestK o]
inSetuplndication = inSetuplndicationOk, inSetupln dicationKo
inSetupConfirm = inSetupConfirmOk, inSetupConfirmK o,
inSetupConfirmSkipConn

inReleaseRequest = inReleaseRequestOk, inReleaseRe questKo
inReleaselndication = inReleaselndicationOk, inRel easelndicationKo
SetupVerification = SetupVerificationOk, SetupVeri ficationKo
ReleaseVerification = ReleaseVerificationOk, Relea seVerificationKo,
ReleaseVerificationSkipConn

inCallSigError = inCallSigError

ConnectionReady = ConnectionReady

ConnectionFailed = ConnectionFailed

ConnSetupTimeout = ConnSetupTimeout

ConnectionVerified = ConnectionVerifiedOk, Connect ionVerifiedKo
ScnErrorOn = ScnErrorOn

ScnErrorOff = ScnErrorOff

ConnectionReleased = ConnectionReleased

ConnRelFailed = ConnRelFailed

ConnRelTimeout = ConnRelTimeout

#

States

#

state = statel [The first state is the start on e if start-state is not set]
eventX -> dstState

#

state = state2
eventY -> dstState

#
{ States }
see ITU-T Rec. G.7713/Y.1704 (05/2006) and RFC 49 74 (with a 3-tier Call signalling)
#
state = Idle # stable
inSetupRequestOk -> VerifyCallSetupRequest # aka 'SetReq’;
either from mgmt (e.g. setupCall), I-NNI (i.e. Noti fy msg), UNI, E-NNI (Path)
inSetupRequestKo -> #
#
state = VerifyCallSetupRequest
SetupVerificationOk -> CallSetupRequestlnitiated # aka
'SetVer'; verify ok should be automatic on downstre am NCC
SetupVerificationKo -> |dle # aka 'SetNVer'
inReleaseRequestOk -> |dle # aka 'RelReq’;
either from mgmt (e.g. teardownCall), I-NNI (i.e. N otify msg), UNI, E-NNI (PathDown,
ResvDown, PathErr)
inReleaseRequestKo -> #
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

133

Grid-GMPLS high-level system design

#
state = CallSetupRequestlnitiated # setup
inSetuplndicationOk -> CallSetupResponded # eit her from
I-NNI (i.e. Notify msg), UNI, E-NNI (Resv)
inSetuplndicationKo -> |dle #
inCallSigError -> |dle # either from I-NNI
(i.e. Notify msg), UNI, E-NNI (PathErr)
inReleaseRequestOk -> |dle # aka 'RelReq’;
either from mgmt (e.g. teardownCall), I-NNI (i.e. N otify msg), UNI, E-NNI (PathDown,
ResvDown, PathErr)
inReleaseRequestKo -> # aka 'RelReq’;
either from mgmt (e.g. teardownCall), I-NNI (i.e. N otify msg), UNI, E-NNI (PathDown,
ResvDown, PathErr)
#
state = CallSetupResponded # setup
inSetupConfirmOk -> SetupConnection # either fr om [-NNI
(i.e. Notify msg), UNI, E-NNI (ResvConf)
inSetupConfirmSkipConn -> Active # either from I-NNI
(i.e. Notify msg), UNI, E-NNI (ResvConf)
inSetupConfirmKo -> |dle #
inCallSigError -> |dle # either from I-NNI
(i.e. lack of ack to Notify), UNI, E-NNI (ResVErr)
inReleaseRequestOk -> |dle # aka 'RelReq’; eit her from
mgmt (e.g. teardownCall), I-NNI (i.e. Notify msg), UNI, E-NNI (PathDown, ResvDown,
PathErr)
inReleaseRequestOk -> |dle #
#
state = SetupConnection # setup (connections are being set up)
ConnectionReady -> VerifyCall # aka 'SetCon’; the
Recovery Bundle is up (Resv/ResvConf on last LSP in the RC for upstream/downstream
NCC)
ConnectionFailed -> ReleaseConnection # aka
'SetNCon'; the Recovery Bundle failed (ResvErr/Path Err on last LSP in the RC for
upstream/downstream NCC)
ConnSetupTimeout -> ReleaseConnection # aka
'SetExp'; the Recovery Bundle setup timed out
inReleaseRequestOk -> VerifyCallReleaseRequest # aka
'RelReq'; either from mgmt (e.g. teardownCall), I-N NI (i.e. Notify msg), UNI, E-NNI
(PathDown, ResvDown, PathErr)
inReleaseRequestKo -> # aka 'RelReq’;
either from mgmt (e.g. teardownCall), I-NNI (i.e. N otify msg), UNI, E-NNI (PathDown,
ResvDown, PathErr)
#
state = VerifyCall # setup
ConnectionVerifiedOk -> Active # aka 'SetCallVe r
nop, so far
ConnectionVerifiedKo -> ReleaseConnection # aka
'SetCallNVer' # nop, so far
inReleaseRequestOk -> VerifyCallReleaseRequest # aka
'RelReq'; either from mgmt (e.g. teardownCall), I-N NI (i.e. Notify msg), UNI, E-NNI
(PathDown, ResvDown, PathErr)
inReleaseRequestKo -> #
#
state = Active # stable
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

134

Grid-GMPLS high-level system design

ScnErrorOn -> SigError # aka
'SigErr'
inReleaseRequestOk -> VerifyCallReleaseRequest # aka
'RelReq'’; either from mgmt (e.g. teardownCall), I-N NI (i.e. Notify msg), UNI, E-NNI
(PathDown, ResvDown, PathErr)
inReleaseRequestKo > #
#
state = SigError # stable; not used, so far
ScnErrorOff -> Active # aka 'SigNErr'
#
state = VerifyCallReleaseRequest
ReleaseVerificationOk -> ReleaseConnection # aka
'RelVer'; verify ok should be automatic on downstre am NCC
ReleaseVerificationSkipConn -> CallReleaseRequestl nitiated # aka
'RelVer'; verify ok should be automatic on downstre am NCC
ReleaseVerificationKo -> |dle # aka 'RelNVer'
#
state = ReleaseConnection # release (connections a re being released)
ConnectionReleased -> CallReleaseRequestlnitiat ed #aka
'RelCon’
ConnRelFailed -> CallReleaseRequestlnitiated # a ka
'ReIlNCon'
ConnRelTimeout -> CallReleaseRequestlnitiated # aka
'RelExp’
#
state = CallReleaseRequestlnitiated # release
inReleaselndicationOk -> |dle #
inReleaselndicationKo -> |dle #
inCallSigError -> |dle #

Code 8-3: G2.NCC Call FSM.

The G2.NCC Call states are reported in the following table. The steady ones have their names in italic.

Idle The Call has been created, but no signalling has occurred on it yet.

The call setup signalling has been initiated (either a SetupRequest was
received from the network, or a management command has been issued),
and policy verification has started (i.e. an AuthZ request has been sent to the
VerifyCallSetupRequest AAI). Waiting for a reply to the policy verification.

Depending on the policy configuration, this state can be skipped at some
NCCs (e.g. it can be valid only for the ingress ones, downstream of UNI or E-
NNIs).

The policy verification concluded successfully (or it was simply skipped), and
CallSetupRequestlinitiated the SetupRequest message has been propagated downstream. Waiting for
an answer to it (Setuplndication).

A Setuplindication has been received from the downstream NCC (or CCC if
CallSetupResponded the downstream NI is a UNI). Waiting for the Call to be fully completed (i.e.
the NCC has to see a SetupConfirm concerning this Call).

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

135

Grid-GMPLS high-level system design

The SetupConfirm has been received (or sent, if the Call FSM is at NCC-1),
and the Call setup signalling has successfully completed. The setup of the
SetupConnection network connections has started (i.e. the creation and setup of Recovery
Bundles at the Recovery Controller have been commanded). Waiting for this
process to successfully complete.

The Call is now equipped with network connections (i.e. Recovery Bundles
and LSPs). This state can be optionally used at some NCCs (e.g. upstream

VerifyCall ones) to verify the Call connectivity across the domain. If this is not foreseen,
the Call jumps to the Active state.
The Call has now reached is up steady state: it has been authorized,

Active signalled, equipped with network connections and (optionally) verified at Data
Plane level.

SigError An alternate steady state w.r.t. the Active one: some signalling error has

occurred on the Call after its setup.

The call teardown signalling has been initiated (either a ReleaseRequest was
received from the network, or a management command has been issued),
and policy verification has started (i.e. an AuthZ request has been sent to the
VerifyCallReleaseRequest AAl). Waiting for a reply to the policy verification.

Depending on the policy configuration, this state can be skipped at some
NCCs (e.g. it can be valid only for the ingress ones, downstream of UNI or E-
NNIs).

The policy verification concluded successfully (or it was simply skipped); now
the teardown has been authorized. The teardown of network connections has
ReleaseConnection started (i.e. proper teardown commands have been issued to the Recovery
Controller concerning the Recovery Bundle associated to this Call). Waiting
for the network connections to be torn down.

All the network connections associated to this Call have been torn down (i.e.
no more RBs at RC, and LSPs at G2ZRSVP-TE), and the ReleaseRequest
CallReleaseRequestinitiated | message has been propagated upstream or downstream. Waiting for an
answer to it (Releaselndication); when it will come, the Call will jump back to
its Idle state and be deleted.

Table 8-1: G2NCC Call FSM: states

The following table reports the root events that feed the FSM. When a root event might result in different
detailed events, this is discussed case by case.

A SetupRequest has been received through one of the NCC signalling

interfaces: G.I-NNI, G.UNI, G.E-NNI, B-NNI or Mgmt. In the latter case, actually it
is a command from the management (i.e. via CORBA) which reached the NCC
Call.

A Setuplindication has been received through one of the NCC signalling
interfaces: G.I-NNI, G.UNI, G.E-NNI, B-NNI.

A SetupConfirm has been received through one of the NCC signalling interfaces:
G.I-NNI, G.UNI, G.E-NNI, B-NNI.

inSetupRequest

inSetuplndication

inSetupConfirm

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

136

Grid-GMPLS high-level system design

A ReleaseRequest has been received through one of the NCC signalling
interfaces: G.I-NNI, G.UNI, G.E-NNI, B-NNI or Mgmt. In the latter case, actually it
is a command from the management (i.e. via CORBA) which reached the NCC
Call.

A Releaselndication has been received through one of the NCC signalling
interfaces: G.I-NNI, G.UNI, G.E-NNI, B-NNI.

The Call setup policy verification concluded, either positively or negatively
(different derived events).

The Call teardown policy verification concluded, either positively or negatively
(different derived events).

Some call signalling error was received through one of the NCC signalling
interfaces: G.I-NNI, G.UNI, G.E-NNI, B-NNI.

The setup of the network connections (aka RB at the RC) concluded
successfully.

inReleaseRequest

inReleaselndication

SetupVerification

ReleaseVerification

inCallSigError

ConnectionReady

ConnectionFailed The setup of the network connections (aka RB at the RC) failed.

The setup of the network connections (aka RB at the RC) did not conclude within
the configured timeframe.

The Data Plane verification of the network connections (aka RB at the RC) has

ConnSetupTimeout

ConnectionVerified .
been carried out successfully.
ScnErrorOn Some error in the SCN occurred.
ScnErrorOff The pending errors in the SCN have been cleared.

The teardown of the network connections (aka RB at the RC) concluded

ConnectionReleased
successfully.

ConnRelFailed The teardown of the network connections (aka RB at the RC) failed.

The teardown of the network connections (aka RB at the RC) did not conclude

ConnRelTimeout within the configured timeframe.

Table 8-2: G2.NCC Call FSM: root events

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

137

Grid-GMPLS high-level system design

ReleaseverificationskipConn

inReleasendicationko

inCallSigError .

mR‘ElEasE[an
Releaseverificationk

1nRe] easeRequestik

inReleaseRequestok

inReleaseReques

ReleaseverificationOk

inReleaseReuestko

iRl easeRetuE;
etupierificationk

irReleaseRequestin inReleaseRequestio

ConnectionReleased

ConnRelFailed

ConnRelTingout,
inCalLSigErrar

Connect.ionerifiedik ScnErrarn

inSetupIndicationko

infeleaseRequestik

i ConnectionFailed -
irReleaseRequestOk CornBbIRTINER
[rE— Connect ionver1§1egks

Figure 8-4: G2.NCC Call FSM.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

138

Grid-GMPLS high-level system design

8.3 G2.CCC — The Grid-GMPLS Client Call Controller

8.3.1 G2.CCC basics

The G2.CCC provides a prototypal implementation of the client-end of the G2 Call. The client-side of the Call is
the access point for the creation of G2 services, and their request as GNS through the G.UNI. The G2 Call at the
CCC can be controlled in two ways:

= Automatically from job requests coming from the grid middleware, translated into Calls by the G.UNI
Gateway (see section 11).

= Via management, using the CORBA interface to the CCC.
The G2.CCC is implemented in Python 2.5 (code in <sw_root>/pyg2mpls/cccd/). It shares a common shim

software with the G2ZNCC (G2 Network Call Controller), located in <sw_root>/pyg2mpls/xcc/, as discussed
before for the NCC, and detailed in section 14.4.

8.3.2 G2.CCC software overview

The G2.CCC composing files are:
= config.py: protocol-specific configuration file
*= main.py: start-up file, for launching the CCC
= cccdm.py: the CCC data model, implementing the ClientCallController and ClientCall classes
= ccall_fsm.py: the implementation of the transitions of the CCC Call FSM

= ccall_ fsm_desc.py: the description of the CCC Call FSM, automatically generated from
<sw_root>/tools/FSM/tools/ccc _call.conf.

The G>.CCC is implemented as a single process, and a number o threads (Figure 8-5):

* The main G°.CCC thread (1), which starts up all the protocol components and enters the ominORB
run() cycle.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

139

Grid-GMPLS high-level system design

= The FSM engine (1), which (in its configured usage) waits for FSM events to pop up in the FSM events
queue, and execute the related transitions

= The Timers manager (1), which waits for the next timer delta to expire in the timers calendar queue,
and executes the related callback function

= The UDP socket manager (1), which waits for UDP packets to appear in the UDP socket, receive them
and execute the related callback functions at protocol level

= A number of ORB threads (N), for the execution of servant methods and client invocations.

(_)
G2.CCC main
Blocked on orb.run()
S J
|
1 I 1
———————————— Fom -
I I
\ 4 I v
. I ()
FSM engine : Timers manager
I Waiting for next timer in
Waiting for FSM events to I the calendar to expire, and
be posted in the events : executing the_related
queue, and executing them I callback function
L J
N I 1
=== === bemmmm oo - i
| |
v v
ORB threads UDP socket manager
For client and servant Listening for UDP packets,
methods execution and executing the related
protocol receive callback

Figure 8-5: G2.CCC threads structure

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

140

Grid-GMPLS high-level system design

8.3.3 G2.CCC data model

Figure 8-6 depicts the CCC Call data model. The main class is the ClientCallController, which inherits directly
from the CallController class in ccdm.py, with its signalling interfaces.

The ClientCall class inherits from the Call class in ccdm.py, and it is a simplified version of the NCC Call. It
points to one instance of the ClientCallFsm class, whose methods collect all the in/out transitions of the CCC
Call FSM.

CallController

_————— ===

11 11
! I
I

\ 4
CcSiglfUni 1
A 4
CcSiglfMgmt

|
|
I |
[&
[\ 4
| | CallParameters
1 (previnext) N ! .
v v 1U2emmte =212
Neighbour timers \ 4 \ 4
(signalling, TnaResource GnsTna
connection)

Figure 8-6: G2.CCC data model

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

141

Grid-GMPLS high-level system design

8.3.4 G2.CCC Call FsM

As in the case of the the NCC Call FSM, the FSM of the G2CCC Call is “inspired” by ITU-T Rec.
G.7713/Y.1704 (rev. 05/2006) and RFC 4974 (with a 3-tier Call signalling, instead of a simple two-tier); see
D2.1 and D2.2 for references.

With respect to the NCC Call FSM, the CCC Call FSM is simpler (less states and less events), mostly due to
the fact that the CCC has not to deal with network connections; i.e. it implements just the Service Plane part of
the Call.

The FSM specification is in <sw_root>/tools/FSM/tools/ccc _call.conf, and is reported in the following:

#
CCC CALL FSM definition
#

{FSM}

name = CCC_CALL_FSM

definition-file = ccc_call.def

If graphviz-file is defined the graphviz file wil | be create
graphviz-file = ccc_call.dot

#include-name = ccc_call.h

start-state = Idle #[optional]

#

Events

#

#

rootEvent = derivedEventl, derivedEvent?, ...
#

{ Events }

inSetupRequest = inSetupRequestOk, inSetupRequestK o}
inSetuplndication = inSetuplndicationOk, inSetupln dicationKo
inSetupConfirm = inSetupConfirmOk, inSetupConfirmK o}
inReleaseRequest = inReleaseRequestOk, inReleaseRe questKo
inReleaselndication = inReleaselndicationOk, inRel easelndicationKo
SetupVerification = SetupVerificationOk, SetupVeri ficationKo
ReleaseVerification = ReleaseVerificationOk, Relea seVerificationKo
inCallSigError = inCallSigError

ScnErrorOn = ScnErrorOn

ScnErrorOff = ScnErrorOff

#

States

#

state = statel [The first state is the start on e if start-state is not set]
eventX -> dstState

#

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

142

Grid-GMPLS high-level system design

state = state2
eventY -> dstState

#
{ States }
see ITU-T Rec. G.7713/Y.1704 (05/2006) and RFC 49 74 (with a 3-tier Call signalling)
#
state = Idle
stable
inSetupRequestOk -> VerifyCallSetupRequest # aka 'SetReq;
either from mgmt (e.g. setupCall), I-NNI (i.e. Noti fy msg), UNI, E-NNI (Path)
inSetupRequestKo -> #
#
state = VerifyCallSetupRequest
SetupVerificationOk -> CallSetupRequestlinitiated # aka 'SetVer';
verify ok should be automatic on downstream NCC
SetupVerificationKo -> |dle # aka 'SetNVer'
inReleaseRequestOk -> |dle # aka 'RelReq’;
either from mgmt (e.g. teardownCall) or UNI
inReleaseRequestKo -> #
#
state = CallSetupRequestlnitiated # setup
inSetuplndicationOk -> CallSetupResponded #
inSetuplndicationKo -> |dle #
inCallSigError -> |dle
from UNI
inReleaseRequestOk -> |dle # aka 'RelReq’;
either from mgmt (e.g. teardownCall) or UNI
inReleaseRequestKo -> # aka 'RelReq’;
either from mgmt (e.g. teardownCall) or UN
#
state = CallSetupResponded # setup; aka "Call Se tup Accepted"”
inSetupConfirmOk -> Active # from UNI
inSetupConfirmKo -> |dle #
inCallSigError -> |dle # from UNI
inReleaseRequestOk -> |dle # aka 'RelReq’; eith er from mgmt

(e.g. teardowncCall), I-NNI (i.e. Notify msg), UNI,

inReleaseRequestOk -> |dle #
#
state = Active

stable

ScnErrorOn -> SigError

inReleaseRequestOk
either from mgmt (e.g. teardownCall) or UNI
inReleaseRequestKo >,

#
state = SigError
stable; not used, so far
ScnErrorOff -> Active
#
state = VerifyCallReleaseRequest

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

-> VerifyCallReleaseRequest

E-NNI (PathDown, ResvDown, PathErr)

aka 'SigErr'

aka 'RelReq’;

aka 'SigNErr

143

Grid-GMPLS high-level system design

ReleaseVerificationOk -> CallReleaseRequestlnitiat ed # aka'RelVer';
verify ok should be automatic on downstream CCC
ReleaseVerificationKo -> |dle # aka 'RelNVer'
#
state = CallReleaseRequestinitiated # release
inReleaselndicationOk -> |dle #
inReleaselndicationKo -> |dle #
inCallSigError -> |dle #

Code 8-4: G2,.CCC Call FSM.

The G2.CCC Call states are reported in the following table. The steady ones have their names in italic.

Idle The Call has been created, but no signalling has occurred on it yet.

The call setup signalling has been initiated (either a SetupRequest was
received from the network, or a management/G.UNI GW command has been
issued), and policy verification has started (i.e. an AuthZ request has been
VerifyCallSetupRequest sent to the AAI). Waiting for a reply to the policy verification.

Depending on the policy configuration, this state can be skipped at some
CCCs, e.g. it can be valid only for the CCC-z, in order to allow or disallow
access to grid resources to the caller.

The policy verification concluded successfully (or it was simply skipped), and
CallSetupRequestlinitiated the SetupRequest message has been propagated downstream. Waiting for
an answer to it (Setuplindication).

A Setuplindication has been received from the downstream CCC (or CCC if
CallSetupResponded the downstream NI is a UNI). Waiting for the Call to be fully completed (i.e.
the CCC has to see a SetupConfirm concerning this Call).

The SetupConfirm has been received (CCC-z) or sent (CCC-a). The Call has
now reached is up steady state: it has been authorized and signalled.

An alternate steady state w.r.t. the Active one: some signalling error has
occurred on the Call after its setup.

The call teardown signalling has been initiated (either a ReleaseRequest was
received from the network, or a management command has been issued),
and policy verification has started (i.e. an AuthZ request has been sent to the
AAI). Waiting for a reply to the policy verification.

Depending on the policy configuration, this state can be skipped at some or
all CCCs.

The release request has been authorized (or just skipped), and the
ReleaseRequest message has been propagated upstream or downstream.
Waiting for an answer to it (Releaselndication); when it will come, the Call will
jump back to its Idle state and be deleted.

Active

SigError

VerifyCallReleaseRequest

CallReleaseRequestlinitiated

Table 8-3: G2.CCC Call FSM: states

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

144

Grid-GMPLS high-level system design

The following table reports the root events that feed the FSM. When a root event might result in different
detailed events, this is discussed case by case.

A SetupRequest has been received through one of the CCC signalling
interfaces: G.UNI or Mgmt. In the latter case, actually it is a command from the

inSetupRequest management or middleware via the G.UNI GW (i.e. via CORBA) which reached
the CCC Call.

inSetupindication A Setuplndication has been received through the CCC G.UNI signalling
interface.

inSetupConfirm A SetupConfirm has been received through the CCC G.UNI signalling interface.

A ReleaseRequest has been received through one of the CCC signalling
interfaces: G.UNI or Mgmt. In the latter case, actually it is a command from the
management or middleware via the G.UNI GW (i.e. via CORBA) which reached
the CCC Call.

A Releaselndication has been received through the CCC G.UNI signalling
interface.

The Call setup policy verification concluded, either positively or negatively
(different derived events).

The Call teardown policy verification concluded, either positively or negatively
(different derived events).

Some call signalling error was received through the CCC G.UNI signalling

inReleaseRequest

inReleaselndication

SetupVerification

ReleaseVerification

inCallSigError

interface.
ScnErrorOn Some error in the SCN occurred.
ScnErrorOff The pending errors in the SCN have been cleared.

Table 8-4: G2.CCC Call FSM: root events

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

145

Grid-GMPLS high-level system design

inReleaseRequestko

inSetupRequestko

inSetupRequestk

Setupberificationkn
inReleaseRequestik

j

SetupverificationOk inReleaseRequestko

inkeleaseRequestiko

ScnErrorin

inCallSigError

inSetuplndicationdk
inSetuplonfirmik

inSetupIndicationko

inReleaseRequestik

e inReleaseRequestik

inSetupConf irmko

inReleazeRequestOk

ReleazeVerificationDk
ReleazeVerificationko

inReleazelndicationko

inCallSigErraor

A

inReleazelndicationOk

Figure 8-7: G2.CCC Call FSM.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

146

Grid-GMPLS high-level system design

s Recovery Controller (RC)

9.1 Recovery Controller basics

The Recovery Controller (RC) is the key module for creating and handling the recovery (i.e. both protection and
restoration) functionalities. The Recovery Controller is not actually mandated in any of the ASON functional
modules or PCs, but it is implied by the concept of a Call Segment transport with resiliency properties. The
Recovery Controller interfaces to the G2Z2RSVP-TE directly, and commands the creation, setup, teardown and
deletion of G2RSVP-TE LSPs. The G2.RSVP-TE, in its turn, keeps the RC informed about the status of the
requested LSPs, via a set of notifications (see section 9.5).

The RC implements the recovery of LSP introducing the concept of “Recovery Bundle " (RB, or RecoBundle).
A Recovery Bundle introduces a new functional layer between two ASON objects: the Call and the Connection.
In practical terms, the Call Controller responsible for setting up the transport network resources across the
administrative domain (i.e. the upstream NCC) will not create the LSPs directly, but will ask the underlying RC
to create a Recovery Bundle, with specific recovery features. The RC, in its turn, will equip the Recovery
Bundle with as many LSPs as needed by the specified recovery level. This might mean 1 (e.g. for unprotected,
or reoruting aka “on-the-fly” restoration) or 2 LSPs (e.g. for a 1+1 protection). Also, the RB will be set with a
specific behaviour, depending on the selected recovery (e.g. an RB with just 1 LSP in it will behave differently
on failures, depending if the selected behaviour is “unprotected” or “rerouting”).

The current implementation of the RC deals with intra-domain recovery only. Inter-domain recovery is affected
by pending architectural and protocol-specific issues (e.g. availability of inter-domain OAM) that go beyond the
scope of WP2 in Phosphorus.

The specified recovery types for G2MPLS are defined in <sw_root>/idl/g2mplsTypes.idl (a more detailed
discussion can be found in D2.1):

= Unprotected (RECOVERYTYPE_UNPROTECTED): no protection for this RB; just like having an LSP
directly attached to the overlay Call.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

147

Grid-GMPLS high-level system design
= 1+1 Protection (RECOVERYTYPE_PROTECTION): a typical 1+1 protection, which is a native feature in
SONET/SDH transport networks (SNCP), but a challenge for WSONs (LSC switching capability) or

Transport Ethernet networks.

= Pre-planned Protection (RECOVERYTYPE_PREPLANNED): protection path calculated before any failure
occurred, and “activated” when the failure occurs on the worker LSP.

= Rerouting restoration, aka On-the-fly (RECOVERYTYPE_OTF): no path are pre-calculated; everything is
performed (rerouting and signalling) when the worker failure occurs. Future releases will allow to
differentiate between “soft” (i.e. make-before-break) or “hard” (i.e. break-before-make) rerouting (according

to the IETF terminology, not the G.7713 one here). The RB FSM already support these two different styles.

= Revertive rerouting (RECOVERYTYPE_OTF_REVERTIVE): same as the classic rerouting, but the ability to
revert back to the original worker LSP, if its failure heals.

Currently, for fast prototyping reasons, the implemented recovery types are unprotected and hard rerouting.

More will be added in the future, according to the actual needs of the NRENs experimenting or deploying the
G2MPLS Control Plane.

9.2 Recovery Controller software overview

The RC is implemented in Python 2.5 (code in <sw_root>/pyg2mpls/rcd/). The composing files are:
= config.py: protocol-specific configuration file
= main.py: start-up file, for launching the RC
= rcdm.py: the RC data model, implementing the RecoveryController and RecoveryBundle classes
= rcsrv.py: the Recovery Controller CORBA servants
= recobundle_fsm.py: the implementation of the transitions of the Recovery Bundle FSM

= recobundle_fsm_desc.py: the description of the Recovery Bundle FSM, automatically generated from
<sw_root>/tools/[FSM/tools/rc_recobundle.conf.

The RC is implemented as a single process, and a number o threads (Figure 9-1):

e The main RC thread (1), which starts up all the protocol components and enters the ominORB run()

cycle.
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

148

Grid-GMPLS high-level system design

« The FSM engine (1), which (in its configured usage) waits for FSM events to pop up in the FSM events
gueue, and execute the related transitions

e The Timers manager (1), which waits for the next timer delta to expire in the timers calendar queue, and
executes the related callback function

« A number of ORB threads (N), for the execution of servant methods and client invocations.

RC main

Blocked on orb.run()

FSM engine Timers manager
Waiting for next timer in
the calendar to expire, and
executing the related

callback function

Waiting for FSM events to
be posted in the events
queue, and executing them

ORB threads

For client and servant
methods execution

Figure 9-1: RC threads structure

9.3 Recovery Controller data model

Figure 9-2 depicts the RC data model. The main class is the RecoveryController, which inherits directly from
the Protocol class in the module protocol. This class has a number of indirect descendants (inherited from
Protocol): the TimersCalendar and the CorbaRoot (with CORBA client and servants under it).

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

149

Grid-GMPLS high-level system design
The RecoveryBundle class is the core item for implementing the recovery behaviour, and links to:

« One instance of the RecoveryBundleFsm class, whose methods collect all the in/out transitions of the
RB FSM.

e The Lsp class, a mirror image of the corresponding LSP at the G2RSVP-TE level: it is needed to store
some basic data about the LSP; e.g. whether it exists or not, whether is up or not, some of its
parameters, etc.

* A number of timers for managing timeouts during the recovery procedures.

« The pointer (Callld) to the owning Call at the NCC level, plus a copy of its parameters (CallParameters,
mainly for the parameters related to the recovery properties of the Call).

Protocol NCC Call
S A
11 1 1 :
| I
!
I :
!

TimersCalendar

I
I
i N
| \ 4
[CorbaRoot
v
ProtoObject
1 1

G2.RSVP-TE LSP

Figure 9-2: RC data model

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

150

Grid-GMPLS high-level system design

9.4 RC Recovery Bundle FSM

The FSM of the Recovery Bundle is designed in such a way to allow for many possible recovery procedures.
This choice makes the FSM intrinsically more complex than a set of separate FSMs, one for each kind of RB
(according to the recovery type), but achieve a higher flexibility when it comes to dynamically change the
recovery type of an RB, with no service disruption.

The FSM specification is in <sw_root>/tools/FSM/tools/rc_recobundle.conf, and is reported in the following:

#

Recovery Controller (RC) - Recovery Bundle FSM d efinition

#

{FSM}

name = RC_RECOBUNDLE_FSM

definition-file = rc_recobundle.def

If graphviz-file is defined the graphviz file wil | be create

graphviz-file = rc_recobundle.dot
#include-name = rc_recobundle.h
start-state = Down #[optional]

#
Events
#
#

rootEvent = derivedEventl, derivedEvent?, ...

#

{ Events }
Workerlnstalled
Protectioninstalled
WorkerSigErr
ProtectionSigErr
WorkerDeleted
ProtectionDeleted
WorkerFailed

= evWorkerlInstalled
= evProtectioninstalled

= evWorkerSigErr

= evProtectionSigErr

= evWorkerDeleted

= evProtectionDeleted

= evWorkerFailedUseSR, evWorkerFai

evWorkerFailedMngErr, evWorkerFailedNoAction

ProtectionFailed
evProtectionFailedNotUseSR
WorkerHealed
ProtectionHealed
SwappingRoles
RetryTimer
ActivateLsp

SRLspRevert

evSRLspRevertNack, evSRLspRevertErr

RecoveryManualTrigger

RetryRecovery
evRetryRecoveryKo

ProtectionRedo

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

= evProtectionFailedNoAction#,

= evWorkerHealed

= evProtectionHealed

= evSwappingRoles
= evRetryTimer, evRetryTimeout

= evActivateLspXConnSet,
evActivateLspXConnUnset, evActivateLspNone, evActiv

ateLspErr
= evSRLspRevertReq, evSRLspRevertAc

= evRecoveryManualTrigger
= evRetryRecoveryOk, evRetryRecov

= evProtectionRedoOk, evProtectio

ledUseHR,

k,

erySROK,

nRedoErr

151

Grid-GMPLS high-level system design

ProtectionDismiss

evProtectionDismissErr

#
States
#

state = statel [The first state is the start on

eventX -> dstState

#

state = state2

eventY -> dstState

#
{ States }

#
state = Down

evWorkerlnstalled
evProtectionInstalled

ResvConf on worker

#

evWorkerSigErr
evProtectionSigErr

state = OneConnection

#

evWorkerlnstalled
evProtectionInstalled
evWorkerFailedUseSR
evWorkerFailedUseHR
evWorkerFailedMngErr
evWorkerFailedNoAction
evWorkerHealed
#evWorkerSigErr
evProtectionSigErr
evWorkerDeleted
evProtectionDeleted
evRecoveryManualTrigger
evRetryRecoveryOk
evRetryRecoverySROk
evRetryRecoveryKo
evProtectionRedoOk
evProtectionRedoErr
evSRLspRevertReq
evSRLspRevertErr
evSRLspRevertAck
evSRLspRevertNack

state = RestoringHard

#

evWorkerHealed
evWorkerDeleted
evWorkerSigErr
evRetryTimer
evRetryTimeout

state = RestoredHard

Project:

Deliverable Number:

Date of Issue:
EC Contract No.:
Document Code:

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WP2-D2.3

= evProtectionDismissOK,

e if start-state is not set]

-> OneConnection

-> OneConnection #if 1+1 and slow

>

-> LspBackuplnstalled
-> LspBackuplnstalled
-> RestoringSoft
-> RestoringHard

->
=
=
=
=>
-> Down
=>
-> RestoringSoft
->
-> RestoringSoft
->
-> LspBackuplnstalled
=
=>
=
=>
=
->

-> RestoredHard

-> RestoredHard
-> RestoredHard

-> OneConnection

152

Grid-GMPLS high-level system design

evWorkerlInstalled
evWorkerSigErr
evRetryTimer
evRetryTimeout

#

state = RestoringSoft
evWorkerHealed
evProtectionInstalled
evProtectionDeleted
evProtectionSigErr
evSwappingRoles

#

state = RestoredSoft
evWorkerHealed
evProtectionHealed
evProtectionDeleted
evProtectionSigErr
evRetryTimer
evRetryTimeout

#
state = LspBackuplnstalled

#evWorkerFailedNotUseSR

-> OneConnection
- .
- .
-> Down

-> .
=
-> OneConnection
-> OneConnection
-> RestoredSoft

- .
-> .
-> OneConnection
- .
- .
- .

-> Recovering

evWorkerFailedNoAction ->
#evProtectionFailedNotUseSR -> OneConnection
evProtectionFailedNoAction> .

evProtectionHealed =]

evWorkerHealed ->

evWorkerDeleted
evProtectionDeleted

evActivateLspXConnSet

evActivateLspNone
evActivateLspErr
evSRLspRevertReq
evSRLspRevertErr
evSRLspRevertAck
evSRLspRevertNack
evRetryRecoveryOk
evRetryRecoveryKo
evProtectionDismissOk
evProtectionDismissErr

#

state = Recovering
evWorkerHealed
evProtectionHealed

-> OneConnection
-> OneConnection
-> Recovering
=
- .
=
- .
>,
- .
-> OneConnection
-> .
-> OneConnection
-> .

-> LspBackuplnstalled
=>

#evProtectionFailedNotUseSR -> Reprotecting
evProtectionFailedNoAction> .

evActivateLspXConnUnset

evActivateLspNone
evActivateLspErr
evProtectionDeleted
evRetryRecoveryOk
evRetryRecoveryKo
evProtectionDismissOk
evProtectionDismissErr

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

-> LspBackuplnstalled
- .
- .
-> OneConnection
-> Reprotecting
-> .
-> Reprotecting
=

153

Grid-GMPLS high-level system design

#

state = Reprotecting
evWorkerHealed -> OneConnection
evProtectioninstalled -> Recovering
evProtectionSigErr >,
evWorkerDeleted -> Down
evProtectionDeleted -> .
evRetryRecoveryOk ->
evRetryRecoveryKo ->
evProtectionRedoOk -> Recovering
evProtectionRedoErr >,

Code 9-1: RC Recovery Bundle FSM.

The RB states are reported in the following table. The steady ones (depending on the recovery type) have their
names in italic.

The RB has been created, but has either no LSPs, or signalling on its LSP hasn’t
occurred yet. Steady state.

The RB has one of its LSPs installed (i.e. up). Arrival state for some recovery types
OneConnection (e.g. unprotected or rerouting), or transient state for others (which still need the
backup LSP to be installed).

A hard rerouting (i.e. a break-before-make on-the-fly restoration) has begun, but not
yet finished: here waiting for the worker LSP to be torn down.

Still in hard rerouting. The former (and failed) worker deletion has been carried out,
RestoredHard and the setup of a new worker LSP is now initiated. When the new worker LSP will be
installed successfully, the RB will go back to its OneConnection steady state.

A soft rerouting (i.e. a make-before-break on-the-fly restoration) has begun, but not

Down

RestoringHard

RestoringSoft yet finished: here waiting for the backup LSP to be ready (i.e. installed).
Still in soft rerouting. The new backup LSP setup has been carried out, and the
RestoredSoft deletion of the former (and failed) worker LSP is now initiated. When the former

worker LSP will be deleted successfully, the RB will go back to its OneConnection
steady state.

The RB has now 2 LSPs: steady state for any recovery (i.e. protection) scheme based
on 2 LSPs.

State where the activation of a pre-planned backup LSP is in progress, caused by a
Recovering failure in the worker LSP. Steady state until the worker LSP heals, then back to
LspBackuplnstalled.

LspBackuplnstalled

Reprotecting Substituting the backup LSP (be it pre-planned or not).

Table 9-1: RC Recovery Bundle FSM: states

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

154

Grid-GMPLS high-level system design

The following table reports the root events that feed the FSM. When a root event might result in different
detailed events, this is discussed case by case.

The worker LSP signalling (by G2.RSVP-TE) has successfully completed, and
the LSP is how up and running.

The backup LSP signalling (by G2.RSVP-TE) has successfully completed, and
the LSP is now up and running.

Some error(s) occurred during the signalling (by G2.RSVP-TE) of the worker

Workerlnstalled

Protectioninstalled

WorkerSigErr LSP, and its setup failed.

ProtectionSigEr Some errqr(s) occurr_ed during the signalling (by G2.RSVP-TE) of the backup
LSP, and its setup failed.

WorkerDeleted The teardown (by G2.RSVP-TE) of the worker LSP has successfully completed;

no instance of that LSP exists anymore at G2.RSVP-TE.

The teardown (by G2.RSVP-TE) of the backup LSP has successfully completed;
no instance of that LSP exists anymore at G2.RSVP-TE.

A Data (aka Transport) Plane failure (i.e. alarm) raised somewhere along the
worker LSP; G2.RSVP-TE might or might not have more detailed information of
WorkerFailed what happened, and where (i.e. at which node/link).

Depending on the properties of this RB, this root event will result in a detailed
event that brings to some next restoration state (e.g. soft or hard rerouting).

A Data (aka Transport) Plane failure (i.e. alarm) raised somewhere along the
ProtectionFailed backup LSP; G2 RSVP-TE might or might not have more detailed information of
what happened, and where (i.e. at which node/link).

The failure (aka alarm) at the worker LSP has disappeared “spontaneously”, i.e.

ProtectionDeleted

WorkerHealed without the intervention of any recovery procedure by the RC.
ProtectionHealed The failure (aka alarm) at the backup LSP has disappeared “spontaneously”, i.e.
without the intervention of any recovery procedure by the RC.
During a soft rerouting (aka make-before-break on-the-fly) restoration, the roles
of the backup LSP and of the worker LSP have “swapped”, i.e. the configuration
. of transport network resources at the two ends of the LSP (e.g. the SNCP in
SwappingRoles

SDH) have changed into a condition where the former worker LSP is not the
backup one, and vice versa. For some TN technology, waiting the swap is
necessary in order to be able to tear down the former worker LSP (now backup).
See RetryRecovery below; this root event only applies during the hard rerouting
RetryTimer restoration (when a failure in recovering is very dangerous: it might leave the RB
— and the Call — with no LSPs under it).

This event allows to “activate” a pre-planned backup LSP, i.e. change it from a
planned one (with either some forms of pre-signalling or not) into a real LSP.
ActivateLsp Depending on the RB properties and the RB setup/teardown phase, this root
event might result in making TN cross-connections, undoing them, or just no
action.

If the RB supports a soft rerouting restoration with reversion (i.e. a revertive on-
the-fly restoration), it will keep the former (and alarmed) worker LSP. This event
indicates that it is time to revert back to the former LSP (e.g. since the alarm on it
has cleared).

This event emulates the occurrence of a alarm on the worker LSP: the RB
recovery behaviour is triggered via management procedures.

SRLspRevert

RecoveryManualTrigger

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

155

l

Grid-GMPLS high-level system design

Something has failed during a recovery attempt, and a timer has been set to try
to recover in the future, or, at least, to clean up the situation and revert back to a
RetryRecovery steady state. This event might result in either an actual new attempt, or in
stopping any future attempts (e.g. the number of maximum retry times have been
reached).

Try again adding a backup LSP to this RB (it previously failed due to some
signalling reasons, probably).

Stop trying adding a backup LSP to this RB; the RB might end in a steady state
that is not the one foreseen by its recovery type.

ProtectionRedo

ProtectionDismiss

Table 9-2: RC Recovery Bundle FSM: root events

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

156

Grid-GMPLS high-level system design

evilorkersigErr

evProtectionSigEl

%
Down C ewProtectioninstalled)
evllorkerDelete

Figure 9-3: Recovery Bundle FSM

OneConnection

evProtect i onRedalk

ewllorkerDeleted

euRetryRecoverylk

evProtectionbeleted

evProtectionismissOl

ruRecoverysrOk

overyianual Trigger

ewvllorkerfailedlsesR
evProtectionDeleted

evProtectionSigErr

evilarkerfailedlseHR

evRetryTimeout

evRetryTineout

evljorkerDeleted

EUMDPkErF?\;EdNﬂRCtmn

LspBackupInstalle W

ewProtectionDeleted

evPratectioninstalled

ewlorkerHealed

RestoringSoft

ewPratectionDeleted

evllorkertealed

RestoringHard

ewlorkerInstal led

|

evhct ivatelspXConnS

evhlorkertealed

evllorkerDeleted

evllorkerSigErr

ewllorkerHealed

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WP2-D2.3

evProtectionDismissErr

ewPratectionFailedbofction

EvPrutﬁnHEalEd

Recowvering

evPror?%nHealed

RestoredSoft

evllorkerSigErr

RestoredHard

" evProtectionlns|
evProtectionRedall,

evProtectjonDeleted
evProtectionSigErr
evRetryRecoveryllk

evRetruReooverylo

evProtﬁnRedoEr‘r

Reprotecting

157

Grid-GMPLS high-level system design

9.5 Recovery Controller External APIs

The API for the Recovery Controller is specified in <sw_root>/idl /RecoveryController.idl, and reported in Code
9-2. The API has two CORBA interfaces in the RecoveryController module: NorthBound and SouthBound.

The NorthBound interface implements the communication between the Network Call Controller and the
Recovery Controller, in the southbound direction (i.e. commands from the NCC to the RC).

The SouthBound interface is used by the Recovery Controller to receive notifications from the G2RSVP-TE
about the handled LSPs.

#include "types.idl"
#include "g2mplsTypes.idl"

module RecoveryControl | er {

interface Nor t hBound {
typedef sequence<g2mplsTypes::recoBundleldent> r bldentSeq;
boolean
r bCr eat e(in g2mplsTypes::recoBundleldent id,

in g2mplsTypes::callldent callld,
in g2mplsTypes::callParams callinfo,
in g2mplsTypes::recoveryParams recoverylnfo,
in g2mplsTypes::IspParams Ispinfo,
in boolean setup)

raises(Types::InternalProblems);

boolean
r bAddEr oPar t (in g2mplsTypes::recoBundleldent id,
in g2mplsTypes::eroSeq eroltem)
raises(Types::InternalProblems, Types::CannotFet ch);
boolean
rbEnabl e(in g2mplsTypes::recoBundleldent id)
raises(Types::InternalProblems, Types::CannotFet ch);
boolean
rbDi sabl e(in g2mplsTypes::recoBundleldent id)
raises(Types::InternalProblems, Types::CannotFet ch);
boolean
rbDest r oy(in g2mplsTypes::recoBundleldent id)
raises(Types::InternalProblems, Types::CannotFet ch);
boolean
r bSet Up(in g2mplsTypes::recoBundleldentd)
raises(Types::InternalProblems, Types::CannotFet ch);
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

158

Grid-GMPLS high-level system design

boolean
r bSet Down(in g2mplsTypes::recoBundleldent id)
raises(Types::InternalProblems, Types::CannotFet

rbldentSeq get RecoBundl es()
raises(Types::InternalProblems);

boolean
rbCet Det ai | s(in g2mplsTypes::recoBundleldentid,
out g2mplsTypes::callldent
out g2mplsTypes::recoveryParams
out g2mplsTypes::IspParams
out g2mplsTypes::statesBundle
raises(Types::InternalProblems, Types::CannotFet

Ji
interface Sout hBound {
enum IspDetailedEvent {
LSPDETAILEDEVENT_PATH,
LSPDETAILEDEVENT_RESV,
LSPDETAILEDEVENT_CONFIRM,
LSPDETAILEDEVENT_NOTIFY,
LSPDETAILEDEVENT_DOWN,
LSPDETAILEDEVENT_ERR
Ji
enum IspEvent {
LSPEVENT_READY,
LSPEVENT_SIGERROR,
LSPEVENT_FAILURE,
LSPEVENT_HEALING,
LSPEVENT_GOINGDOWN
Ji
struct eventinfo {
IspEvent event;
Ji
enum sigPhase {
SIGPHASE_SETUP,
SIGPHASE_TEARDOWN,
SIGPHASE_RECOVERY
Ji
enum tnResourceAction {
TNRESOURCEACTION_XCONN,
TNRESOURCEACTION_PROTECT,
TNRESOURCEACTION_JOIN [* for MRN */
Ji
boolean not i fyLspNew(in g2mplsTypes::Ispldent
in g2mplsTypes::callldent callld,
in g2mplsTypes::IspParams
boolean not i fyLspDel et ed(in g2mplsTypes::Ispldent
boolean noti fylLspEvent (in g2mplsTypes::Ispldent
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

ch);

callld,
recoverylnfo,
Ispinfo,
states)
ch);

Ispident,

ident);

Ispident,

159

Grid-GMPLS high-level system design

in eventinfo evinfo);

boolean tel |l TNResour ceAct i on(in g2mplsTypes::Ispldent Ispident,
in sigPhase phase,
out tnResourceAction action);

k

Code 9-2: Recovery Controller external APIs IDL.

The methods for the NorthBound interface are:

= rbCreate(): allows the NCC to create (and start setting up, if the flag is set) a new RB at the RC. The
Call ID is passed down to the RB and stored, to create an bi-directional association between the Call
and the RB, and to allow the RB to later pass the Call ID to the G2.RSVP-TE for LSP signalling
purposes. Same applies to the Call parameters.

= rbAddEroPart(): allows the NCC to add a piece of Explicit Route to the newly created RB (it has to be
still “Down”). This might be useful in some contexts, e.g. if the NCC would need to set an RB scope
(i.e. destination node) narrower than the whole domain.

= rbEnable() and rbDisable(): allow to set the administrative status of the RB to “enabled” and “disabled”,
respectively. This is for future use, e.g. to temporarily make an RB unavailable for usage, without
tearing it down.

= rbDestroy(): allows to remove a newly created RB (it has to be still “Down”). In that status, no evolution
has occurred yet, and the RB cannot disappear as a consequence of a teardown. An explicit command
is needed.

= rbSetUp() and rbSetDown(): the access points for setting up and tearing down the RB, respectively.
When rbSetUp() is invoked, the Recovery Controller will start adding the needed LSPs to the RB, and
telling the G2.RSVP-TE to set them up. Vice versa for the tear down procedure.

= getRecoBundles(): allows to retrieve the list of the IDs of the RBs currently present at the RC.

= rbGetDetails(): allows to retrieve the details of a specific RB (associated Call ID, recovery parameters,
LSP parameters,states). Further information is retrieved by:

The methods for the SouthBound interface are:

= notifyLspNew(): the signalling of a new LSP has reached this RC (usually located at the egress Border
Controller of the domain, since RB signalling starts from the ingress, as a practical rule). The new LSP

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

160

Grid-GMPLS high-level system design

can be associated to a specific Call thanks to the Call ID transported, and thus to the specific RB
owned by that Call. As a result of this notification, the triplet <Call, RB, LSP> is bundled.

notifyLspDeleted(): the teardown of an LSP has completed; G2.RSVP-TE will destroy this LSP instance
soon exiting this method, and the RB has to align with that and evolve its FSM accordingly.

notifyLspEvent(): invoked by G2.RSVP-TE to notify some specif events on the LSP that might be of
interest for the RB, i.e.:

0 LSPEVENT_READY: the LSP setup signalling has successfully completed: the LSP is up and
running, and installed from the RB’s viewpoint.

0 LSPEVENT_SIGERROR: some signalling errors have occurred on this LSP, either during the
setup or teardown phases.

0 LSPEVENT_FAILURE: failure (aka alarming) of some transport network resources (i.e. node or
link) along the path of this LSP. G2.RSVP-TE might or might not know more about this failure.

0 LSPEVENT_HEALING: the previously mentioned failure has disappeared; the LSP is working
again now.

0 LSPEVENT_GOINGDOWN: the teardown signalling of this LSP has begun, and not as a result
of a previous rbSetDown() from this RC (i.e. probably the other-end RB has started a teardown
of the LSP).

tellTNResourceAction(): invoked by G2.RSVP-TE at LSP end nodes (either ingress or egress) to know
what exactly it should do when installing transport network resources. This is a critical action, where
only the RB knows exactly what to do, since the action depends much on information beyond the single
LSP treated by the G2.RSVP-TE: the role of the LSPs (i.e. worker or backup), its relationship with other
LSPs in the RB, etc. Depeding on the signalling phase, the basic actions could be:

0 TNRESOURCEACTION_XCONN: ask the TNRC to create a simple cross-connection.

0 TNRESOURCEACTION_PROTECT: ask the TNRC to add a protection to a previously existing
cross-connection, with this protecting label.

0 TNRESOURCEACTION_JOIN: ask the TNRC to stitch resources (i.e. labels) belonging to
different ISCs (i.e. Interface Switching Capabilities). Needed for the future support of Multi-
Region Network / Multi-Layer Network (MRN/MLN) features.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

161

Grid-GMPLS high-level system design

0 G°MPLS Path Computation Engine Routing
Algorithm (G °.PCE-RA)

101 G?.PCE-RA basics

In the Phosphorus-g2mpls stack the roles of the G°.PCE-RA are to:

« store the global view of the network topology (multi-domain including also grid sites with their own
resources)

e provide an interface for the other modules to request routes and other routing queries (e.g. TNA
resolution) across the overall topology.

For these purposes, G°.PCE-RA interacts with:

« the OSPF process, which exports LSDB contents in terms of G2.PCE-RA data structures;

« the Network Call Controller process , which is the main requester for call routes, topology queries, etc.

« the G.RSVP-TE process, which requests G°.PCE-RA for ERO computation/completion in case of
sparse EROs during LSP signalling or crankback;

« G°.PCE-RA VTY interface, which is mainly used for printing topology/module information and testing
the path computation module by means of dummy requestsg.

The G®.PCE-RA component is broken down into sub-components, each responsible fro specific tasks.
The G%PCE-RA Thread Master manages and schedules the activities of the QUAGGA pseudo-threads of the

G°.PCE-RA process, thus coordinating the incoming/outgoing messages from the two external interfaces, the
IPC middleware stratum and the VTY.

° The dummy route computations does not imply the signaling of the produced ERO(s), but they have impact on the bandwidth estimation
mechanism of the GZ.PCE-RA; thus, subsequent call route requests from NCC or LSP route from G.RSVPTE could not be fulfilled, if they
are done within the expiration time of the estimation and no topology update has occurred in the meanwhile.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

162

Grid-GMPLS high-level system design

G2.PCERA

g2pcera
library

1 i 1
IPC IPC IPC
VTY an= == g2pcera g2mplsTopology Irm
£ e servant servant client

G2.PCERA G2.PCERA
G2.PCERA L Computation API) L Topology API)
Thread Master T I
2 | |
4 ¢ >
G2.PCERA | | G2.PCERA
Algorithms DATA MODEL

Figure 10-1: The G*>.PCE-RA component break-down.

The IPC G°.PCE-RA servants implement the CORBA sever side for the topology updates and the route
computations, while the IPC LRM client is used by the G°.PCE-RA to retrieve the routerlD of the hosting
G°MPLS controller, which will act in the topology as root node.

The VTY G°.PCE-RA library implements the specific G°.PCE-RA VTY commands (parsing and processing) for
printing topology/module information and testing the path computation module by means of dummy requests.

G°.PCE-RA data model and algorithms sub-components represent the core engine of the overall process and
are detailed in the following sections for sake of clarity.

The CORBA client and servants and the VTY library are interfaced to the core G°.PCE-RA processing engine
through an internal common API, which is split in two namespaces: one for topology, the other for
computations.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

163

Grid-GMPLS high-level system design

The first APl namespace, i.e. topology, is used to directly access (create, update, destroy) data model
structures, in which the Grid and network topology is stored.

On the contrary, the computations API directly access the G°.PCE-RA algorithms, which run in a nearly read-
only mode on the topology, get the topology view as it is at the time of request execution and can just update
Path Computation related elements of the data model.

102 Topology view in G 2PCE-RA

The G®.PCE-RA topological view of the network is always node-centric, because each G*MPLS controller in the
domain builds up its own topology map depending on the information managed by the IGP (OSPF-TE).
According to the G*MPLS specifications [PH-WP2-D2.1] and [PH-WP2-D2.2], the G>.PCE-RA on a NE holds a
complete TE detail of the Area/Domain®® it belongs to. In case of multi-domain operation across the E-NNI, the
G®.PCE-RA holds a summarized view of the other domains, in terms of inter-domain links between domains
and — optionally — intra-domain links within the domains. This hierarchical routing model provides a more
scalable approach to the inter-domain problem.

An example topology view that can be built into G>.PCE-RA is provided in the following Figure 10-2 and Figure
10-3.

Routing Control
Domain Level 1
(inter-domain)

{4l

Grid site C.1

{41

Grid site C.2

{4}

Grid site A.1

Control Control Control
Domain Domain Domain
A B C
(my net.domain)

Figure 10-2: Mixed topology with three domains, inter and intra-domain te-links and Grid sites.

% |n this document Area and Domain are synonymous, since no support for multi-area routing within a single control domain is needed.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

164

l

Grid-GMPLS high-level system design

Control Domain A is the root domain, it connects a Grid site with resources (GN1), it is attached to Control
Domain B (transit), can reach Control Domain B (transit) that connects other Grid sites with resources (GS-C.1
and GS-C.2).

The resulting topology view is shown in Figure 10-3. G°.PCE-RA contains in its topology the three Grid nodes
(GS-A.1, GS-C.1 and GS-C.2) and a number of network nodes, some of them belonging to the domain core
(NN2, NN6), others operating on the domain edge (NN1), others acting as domain border nodes (NN3, NN5)
and others learns as domains (RC2, RC3).

RC3 Gs-C.1

,/zTELS RC2 .
'-:’Q" Al 'Q

L -) AN

.~ A . ! H H

e o -

i TELs

TELs
NN5 / / Gs-C.2
X y
TELs TELs

0 D
O efelMeet= 0 > TNA to GridNode binding
O NetNode with G.OUNI (TNAs) and G.I-NNI <— |ntra domain I-NNI link
O NetNode with G.I-NNI only <+ - = > |nter domain E-NNI link
O NetNode with G.I-NNI and G.E-NNI Gt > Intra domain E-NNI link
. Domain NetNode

A& J

Figure 10-3: G*>.PCE-RA representation of the previous mixed topology.

Bidirectional connectivity between network nodes (domain or not) is obtained though TE-Links (intra-domain I-
NNI, inter-domain E-NNI or intra-domain E-NNI).

Association between Grid nodes and their Provider Edge routers is maintained through the TNA.

The topology concept is implemented by the G2.PCE-RA data model described in the following section.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

165

Grid-GMPLS high-level system design

103 G2.PCE-RA data model

The G®.PCE-RA data model is sketched in Figure 10-4, and follows a hierarchical structure in which an
ancestor element includes a set of child sub-elements, reported in the following sub-sections with their contents
hghlighted.

Figure 10-4: The base G°.PCE-RA data model.

The hierarchy mechanism has been generalized though templates as shown in the following:

template <bool REP, class P> class Ancestor {

public:
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

166

Grid-GMPLS high-level system design

Ancestor(P * p) {
llassert(p);

parent_ =p;
reparenting_ = REP;

~Ancestor(void) {
/I mindless
parent_ = 0;

}

/I returns the parent
P * parent(void) {
return parent_;

}
I/l assign the new parent and returns the previous one
P * reparent(P * p) {
lassert(p);
P * tmp;
if (Ireparenting_) {
G2PCERA_ERROR("Reparenting not allowed!");
return O;
}
tmp = parent_;
parent_ = p;
return tmp;
}

private:
P * parent_;
bool reparenting_;

h

Code 10-1: Ancestor template.

Most of the types used on the G>.PCE-RA data model elements can be found in <sw_root>/lib/g2mpls_types.h
and <sw_root>/g2pcerad/g2pcera_common.hh.

10.3.1 G2.PCE-RA instance

class G2PCERA {
public:
G2PCERA(void);
G2PCERA(uInt32_t rootNodeld,
spfType_t spfSelector = spfDijkstra);

~G2PCERA(void);
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

167

Grid-GMPLS high-level system design

uint32_t rootNodeld(void);
spfType_t spfSelector(void);
bool loadTopology(void);
const Topology * getTopology(void);
bool attachGnsCall(GnsCall *
bool detachGnsCall(GnsCall *
GnsCall * getGnsCall(const call_ident_t & id);
std::list<GnsCall *> getGnsCalls(void);
size_t getGnsCallsCount(void);
private:

gnsCallldent_t

callldMangle(const call_ident_t &

ptr);
ptr);

id);

spfType_t spfSelector_;
uint32_t rootNodeld_
Topology * topology_;
std::map<gnsCallldent_t, GnsCall *> gnsCalls_;
5
Code 10-2: G2.PCE-RA instance.
10.3.2 GNS calls
/l map keys
typedef std::stringgnsCallldent_t; // key
class GnasCal l: public Ancestor<true, &PCERA> {
public:
GnsCall(G2PCERA * parent,
const call_ident_t & ident,
const ero_hop_t & srcHop,
const ero_hop_t & dstHop,
const call_info_t & callinfo,
const recovery_info_t & recinfo,
const Isp_info_t & Ispinfo);

~GnsCall(void);

call_ident_t ident(void);
void dump(std::string & prefix,
bool recursive);
bool attachConnection(lsp_role_t
Connection Ptr);
bool detachConnection(lsp_role_t

_ _ Connection Ptr);
Connection * getConnection(lsp_role_t role);

disjointness_level_t getDisjoinnessLevel(void);

bool isConfirmed(void);
void isConfirmed(bool flag);
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

role,

role,

168

Grid-GMPLS high-level system design

private:
void

call_ident_t
ero_hop_t
ero_hop_t
call_info_t
recovery_info_t
Isp_info_t

Connection *
Connection *

disjointness_level_t

bool

h

checkDisjoinnessLevel(void);

ident_;
srcHop_;
dstHop_;
callinfo_;
recinfo_;
Ispinfo_;

primary_;
secondary_;

disjoinnessLevel_;

isConfirmed_;

Code 10-3: GNS calls.

10.3.3 Connections

cl ass Connection: public Ancestor<true, GisCall> {

public:
Connection(GnsCall *
Isp_ident_t
~Connection(void);

void

bool

bool

std::list<ero_hop_t>
private:

Isp_ident_t

std::list<ero_hop_t>

h

parent,
ident);

dump(std::string & prefix,

bool recursive);
addEroHop(bool onTop,
const ero_hop_t &hop);
delEroHop(const ero_hop_t & hop);
getEro(void);
ident_;
ero_;

Code 10-4: Connections.

10.3.4 Topology

/I map keys

typedef uint32_t nodeKey _t;

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

169

Grid-GMPLS high-level system design

cl ass Topol ogy: public Ancestor<true, &QPCERA> {
public:
Topology(G2PCERA * parent);
~Topology(void);
bool attachNode(Node * ptr);
bool detachNode(Node * ptr);
Node * getNode(node_ident_t ident);
GridNode * getGridNode(uint32_t peRouterld);
std::list<Node *> getNodes(void);
bool modTotNodesCount(uint32_t howMany,
bool add);
bool modTotLinksCount(uint32_t howMany,
bool add);
bool modTotTnasCount(uint32_t howMany,
bool add);
void dump(std::string & prefix,
bool recursive);
bool getData(topology_summary_data t & data);
private:
uint32_t totNodes_;
uint32_t totLinks_;
uint32_t totTnas_;
/I Maximum link cost in the topology
uint32_t maxLinkCost_;
/I Global SPF revision number
uint32_t spfRevision_;
std::map<nodeKey_t, Node *> nodes_;
5

Code 10-5: Topology.

10.3.5 Nodes
cl ass Node: public Ancestor<true, Topology> {
public:
Node(topo_node_type_t type,
uint32_t id);
~Node(void);
topo_node_type_t type(void);
node_ident_t ident(void);
void dump(std::string & prefix);
private:
topo_node_type_t type_;
uint32_t id_;
I
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

170

Grid-GMPLS high-level system design

Code 10-6: Node.

10.3.5.1

NetNode

class NetNode: public Node {

public:

private:

Project:

NetNode(uint32_t

id,

net_node_data t& data);

~NetNode(void);
void
bool
bool

bool
bool

dump(std::string & prefix,
bool recursive);

setData(const net_node_data_t & data);
getData(net_node_data_t & data);

attachOutLink(TeLink * ptr);
detachOutLink(TeLink * ptr);

std::list<TeLink *>getOutLinks(void);

size_t
TeLink *

bool

bool
std::list<Tna *>
size_t

Tna *

bool
bool
std::list<Node *>

uint32_t
void

uint32_t
void

uint8_t
void

bool
bool

getOutLinksCount(void);
getOutLink(const telink_ident_t & id);

attachTna(Tna * ptr);
detachTna(Tna * ptr);
getTnas(void);
getTnasCount(void);
getTna(const g2mpls_addr_t & id);

attachCandElems(Node * ptr);
detachCandElems(Node * ptr);
getCandElems(void);

rootCost(void);
rootCost(uint32_t newCost);

spfRevision(void);
spfRevision(uint32_t newRev);

nodeFlags(void); /I bitmask
nodeFlags(uint8_t newMask);

attachFwdLink(TeLink * ptr);
detachFwdLink(TeLink * ptr);

std::list<TeLink *>getFwdLinks(void);

bool

bool

opstate_t
admstate_t
uint32_t
std::list<uint16_t>

std::list<Tna *>

Phosphorus

Deliverable Number: D.2.3

Date of Issue:
EC Contract No.:
Document Code:

31/03/08
034115

fitinConstraints(uint32_t colors,
uintl6_t area);

is_domain_;
op_state_;
adm_state_;
te_colors_;
areas_;

tnas_;

Phosphorus-WP2-D2.3

171

Grid-GMPLS high-level system design

h

std::list<TeLink *>

links_; // outgoing links

/l Path Computation related members

std::list<Node *>
uint32_t

uint32_t

uint8_t
std::list<TeLink *>

Code 10-7: Net Node.

10.3.5.2

GridNode

candidateElems_;
rootCost_;
spfRevision_;
nodeFlags_;
/I cand. links

/I bitmask
fwdLinks_;

class GridNode: public Node {

public:

private:

Project:

Deliverable Number:

Date of Issue:
EC Contract No.:
Document Code:

GridNode(uint32_t

id,

grid_site_data_t &data);

~GridNode(void);

void

bool
bool
uint32_t

bool
bool
GridService *
GridService *

bool
bool
GridCompElem *
GridCompElem *

bool
bool
GridSubCluster *
GridSubCluster *

bool
bool
GridStorageElem *
GridStorageElem *

std::string *
geo_coords_t
uint32_t

std::map<uint32_t, GridService *>

Phosphorus
D.2.3
31/03/08
034115

dump(std::string & prefix,
bool recursive);

setData(const grid_site_data_t & data);
getData(grid_site_data_t &data);
getPeRouterld(void);

attachGridServices(GridService * ptr);

detachGridServices(GridService * ptr);
getGridService(void /* policy*/);
getGridService(uint32_t id);

attachGridCE(GridCompElem * ptr);

detachGridCE(GridCompElem * ptr);
getGridCompElem(void /* policy*/)
getGridCompElem(uint32_t id);

attachGridSubClusters(GridSubCluster * ptr)
detachGridSubClusters(GridSubCluster * ptr)

getGridSubCluster(void /* policy
getGridSubCluster(uint32_t id);

attachGridSE(GridStorageElem * ptr);

detachGridSE(GridStorageElem * ptr);
getGridStorageElem(void /* poli
getGridStorageElem(uint32_t id

name_;
location_;
peRouterld_;

gridServices_;

Phosphorus-WP2-D2.3

cy*));
);

172

Grid-GMPLS high-level system design

std::map<uint32_t, GridCompElem *> gridCompElems_ ;

std::map<uint32_t, GridSubCluster *> gridSubClust ers_;

std::map<uint32_t, GridStorageElem *> gridStorage Elems_;
I

Code 10-8: Grid Node.

10.3.5.3 Grid Subnodes

template <class DATA>
class GridSubNode : public Ancestor<true, GridNode >{
public:
GridSubNode(grid_subnode_ident_tident,
DATA & data) :
Ancestor<true, GridNode> (0) {
llassert(p);
ident_ = ident;
data_ = data;
}
~GridSubNode(void) {
/I mindless
}
grid_subnode_ident_t ident(void) {
return ident_;
}
bool setData(const DATA & data) {
data_ = data;
return true;
}
bool getData(DATA & data) {
data = data_;
return true;
}
void dump(std::string & prefix) {
G2PCERA_DEBUG("%s"DUMP_BARL1, prefix.c_str());
prefix += DUMP_TAB;
logDump(prefix, ident());
DATA data;
if (IgetData(data)) {
G2PCERA_ERROR("Cannot get data "
"from object in %s",
_ PRETTY_FUNCTION_);
return;
}
logDump(prefix, data);
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

173

Grid-GMPLS high-level system design

G2PCERA_DEBUG("%s"DUMP_BAR?2, prefix.c_str());

}
private:
grid_subnode_ident_t ident_;
DATA data_;
b5

Code 10-9: Grid Subnodes.

class GidService: public GidSubNode<grid service data t> {
public:
GridService(grid_subnode_ident_tsubNodeld,
grid_service_data_t & data) :
GridSubNode<grid_service_data_t>(subNodeld, data
~GridService(void) {};
I

typedef struct grid_service_data_mask {

uint32_t data:1;

uint32_t state:1;

uint32_t endpoint_addr:1;
} grid_service_data_mask_t;

typedef struct grid_service_data {

grid_service_data_mask_t mask_;
grid_service_info_t data;
grid_service_state_t state;
g2mpls_addr_t endpoint_addr;

} grid_service_data_t;

)

Code 10-10: Grid Service subnode.

class GridCompElem: public GridSubNode<grid_ce_dat a_t> {
public:
GridCompElem(grid_subnode_ident_t subNodeld,
grid_ce_data_t & data) :
GridSubNode<grid_ce_data_t>(subNodeld, data) {};
~GridCompElem(void) {};
I
typedef struct grid_ce_data_mask {
uint32_t Irms_info:1;
uint32_t host_addr:1;
uint32_t gatekeeper_port:1;
uint32_t job_manager:1;
uint32_t data_dir:1;
uint32_t default_storage_elem_id:1;
uint32_t jobs_state:1;
uint32_t jobs_stats:1;
uint32_t jobs_timeperf:1;
uint32_t jobs_timepolicy:1;
uint32_t jobs_loadpolicy:1;
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

174

Grid-GMPLS high-level system design

uint32_t free_job_slots_calendar:1;
} grid_ce_data_mask _t;

typedef struct grid_ce_data {

grid_ce_data_mask_t mask_;

grid_Irms_info_t Irms_info;

g2mpls_addr_t host_addr;

uint32_t gatekeeper_port;
std::string * job_manager;

std::string * data_dir;

uint32_t default_storage_elem_id;
grid_jobs_state_t jobs_state;
grid_jobs_stats_t jobs_stats;
grid_jobs_time_perf_t jobs_timeperf;
grid_jobs_time_policy_t jobs_timepolicy;
grid_jobs_load_policy_t jobs_loadpolicy;
std::map<uint32_t, uintl6_t> free_job_slots_calend ar;

} grid_ce_data_t;

Code 10-11: Grid Computational Element subnode.

class GidSubCl uster: public GidSubNode<grid subcluster data t>
public:
GridSubCluster(grid_subnode_ident_t subNodeld,
grid_subcluster_data_t & data) :
GridSubNode<grid_subcluster_data_t>(subNodeld, d ata){};
~GridSubCluster(void) {};
I
typedef struct grid_subcluster_data_mask {
uint32_t cpu:l,;
uint32_t 0s:1;
uint32_t memory:1;
uint32_t software:1;
uint32_t software_env_setup:1;
uint32_t subcluster_calendar:1;

} grid_subcluster_data_mask_t;

typedef struct grid_subcluster_data {

grid_subcluster_data_mask_t mask_;

grid_cpu_info_t cpu;

grid_os_info_t 0s;

grid_memory_info_t memory;

grid_application_t software;

std::string * software_env_setup;

std::map<uint32_t, grid_cpu_count_t> subcluster_ca lendar;

} grid_subcluster_data_t;

{

Code 10-12: Grid Subcluster subnode.

class GidStorageEl em public GidSubNode<grid se data t> {
public:
GridStorageElem(grid_subnode_ident_t subNodeld,
grid_se_data_t & data) :
GridSubNode<grid_se_data_t>(subNodeld, data) {};

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

175

Grid-GMPLS high-level system design

~GridStorageElem(void) {};

b

typedef struct grid_se_data_mask {
uint32_t storage_info:1;
uint32_t online_size:1;
uint32_t nearline_size:1;
uint32_t storage_area_name:1;
uint32_t storage_area_path:1;
uint32_t storage_area_info:1;
uint32_t se_calendar:1;

} grid_se_data_mask_t;

typedef struct grid_se_data {

grid_se_data_mask_t mask_;

grid_storage_info_t storage_info;

grid_storage_size_t online_size;

grid_storage_size t nearline_size;

std::string * storage_area_name;

std::string * storage_area_path;
grid_storage_area_info_t storage_area_info;
std::map<uint32_t, grid_storage_count_t> se_calend ar;

} grid_se_data_t;

Code 10-13: Grid Storage Element subnode

10.3.6 TNAs

class Tna: public Ancestor<true, NetNode> {
public:
Tna(const g2mpls_addr_t & id);
~Tna(void);

g2mpls_addr_tdent(void);

bool setRemNode(GridNode * ptr);
bool getRemNodeldent(node_ident_ t& ident);
void dump(std::string & prefix);

private:
g2mpls_addr_t ident_;
/I used for algorithm purposes
GridNode * remNode_;

h

Code 10-14: TNAs

10.3.7 TE Links

cl ass TeLink: public Ancestor<true, NetNode> {
public:
TeLink(telink_ident_t id);
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

176

Grid-GMPLS high-level system design

~TeLink(void);
topo_link_type_t type(void);
telink_ident_t ident(void);
void dump(std::string & prefix);
bool setData(const telink_com_data_t & data);
bool getData(telink_com_data_t & data);
bool setStates(const opstate_t & op,
const admstate_t & adm);
bool getStates(opstate_t & op,
admstate_t & adm);
bool appendlscs(const std::list<isc_t> & iscs);
bool removelscs(std::list<isc_t> & iscs);
bool getlscs(std::list<isc_t> & iscs);
bool setGenAvailBw(const avail_bw_per_prio_t&b w);
bool getGenAvailBw(avail_bw_per_prio_t & bw);
bool appendSrlgs(const std::list<uint32_t> &srl gs);
bool removeSrlgs(std::list<uint32_t> & srlgs);
bool getSrlgs(std::list<uint32_t> & srlgs);
bool appendCalEvents(const
std::map<uint32_t,avail_bw_per_prio_t> & cal);
bool removeCalEvents(std::map<uint32_t,avail_bw_ per_prio_t> &
cal);
bool getCalEvents(std::map<uint32_t,avail_bw_per _prio_t> &
cal);
bool fitinConstraints(const cspf_constr_t & data);
uint64_t linkCost(void);
void linkCost(uint64_t newCost);
private:
telink_ident_t ident_;
topo_link_mode_t mode_;
/l adminMetric__is the base OSPF link metric
uint32_t adminMetric_;
uint32_t teMetric_;
uint32_t teColorMask_;
uint8_t teProtectionTypeMask_;
uint32_t teMaxBw_;
uint32_t teMaxResvBw_;
opstate_t opState_;
admstate_t admState_;
std::list<isc_t> teSwCaps_;
avail_bw_per_prio_t teAvailBw_;
std::list<uint32_t> teSrlgs_;
std::map<uint32_t, avail_bw_per_prio_t> teLinkca lendar_;
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

177

Grid-GMPLS high-level system design

[/l used for algorithm purposes
Node *
TeLink *
int64_t
b5

remNode_;
reverseLink_;
linkCost_;

Code 10-15: TE Links

10.3.7.1 SDH/SONET TE Links

cl ass TeSdhSonet Li nk: public TeLink {

public:
TeSdhSonetLink(telink_ident_t id);
~TeSdhSonetLink(void);
void dump(std::string & prefix);
bool setData(const telink_tdm_data_t & data);
bool getData(telink_tdm_data_t & data);
bool setTdmAvailBw(const std::list<uint32_t> & f ts);
bool getTdmAvailBw(std::list<uint32_t> & fts);
bool fitinConstraints(const cspf_constr_t & data);
private:
gmpls_sdhsonet_stdarbcap_t stdArbConc_;
uint8_t hoMuxCapMask_;
uint8_t loMuxCapMask_;
uint32_t transparencyMask_;
uint32_t bisrRingld_;
std::list<uint32_t> freeTimeslots_;
I
10.3.7.2 LSC G.709 TeLinks
class TeG709Link: public TeLink {
public:
TeG709Link(telink_ident_t id);
~TeG709Link(void);
void dump(std::string & prefix,
bool recursive);
bool setData(const telink_Iscg709_data_t & data)
bool getData(telink_lscg709_data_t & data);
bool setLscG709AvailBw(const std::list<uint32_t> & foduk,
const std::list<uint32_t> & foch);
bool getLscG709AvailBw(std::list<uint32_t> &fod uk,
std::list<uint32_t> & foch);
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

178

Grid-GMPLS high-level system design

bool fitinConstraints(const cspf_constr_t & data);
private:

uint8_t odukMuxCapMask_;

std::list<uint32_t> unallocODUK_;

std::list<uint32_t> unallocOCh_;

h

Code 10-16: SDH/SONET TE Links

10.3.7.3 LSC WDM TE Links

class TeWdmLink: public TeLink {

public:
TeWdmLink(telink_ident_t id);
~TeWdmLink(void);
void dump(std::string & prefix,
bool recursive);
bool setData(const telink_Iscwdm_data_t& data);
bool getData(telink_Iscwdm_data_t & data);
bool setLscWdmAvailBw(const wdm_link_lambdas_bitm ap_t & bm);
bool getLscWdmAvailBw(wdm_link_lambdas_bitmap_t & bm);
bool fitinConstraints(const cspf_constr_t & data);
private:
uint32_t dispersionPMD_;
uint32_t spanLength_;
std::list<cwdm_amplifier_data_t> amplifiers_;
wdm_link_lambdas_bitmap_t lambdasBitmap_;
5

Code 10-17: LSC WDM TE Links

104 G2%PCE-RA internal API

10.4.1 Topology update in G 2.PCE-RA

The dynamic topology update process is generally managed by the routing protocol (i.e. OSPF-TE) through the
IPC, but also the VTY interface can inject topology elements for debugging purposes. Focusing on the OSPF
case, the G°.PCE-RA update can be triggered:

e upon the arrival of a new LSA;

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

179

Grid-GMPLS high-level system design

< when generating/re-generating an LSA.
The upload process is basically based on the filling up of G2.PCE-RA external data structures, depending the
type of the information contained in the LSA. These structures are then mangled by the IPC topology servant
and translated in internal types of the G°.PCE-RA process, to be used in the internal topology API of the

module.

The list of the topology related APlIs is provided in the following.

104.1.1 Topology related

pceraErrorCode_t
topol ogyCet (topology_summary_data_t & data,
std::string & resp);

10.4.1.2 Node generic

pceraErrorCode_t
nodeAdd(const node_ident_t& id,
std::string & resp);

pceraErrorCode_t
nodeDel (const node_ident_t& id,
std::string & resp);

std::list<node_ident_t>
nodeGet Al | (std::string & resp);

10.4.1.3 Network Node related

pceraErrorCode_t

net NodeUpdat e(uint32_t rid,
const net_node_data_t & data,
std::string & resp);

pceraErrorCode_t

net NodeGet (uint32_t rid,
net_node_data_t & data,
std::string & resp);
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

180

Grid-GMPLS high-level system design

10.4.1.4 Grid Node related

pceraErrorCode_t

gri dSi t eUpdat e(uint32_t siteld,
const grid_site_data_t& data,
std::string & resp);

pceraErrorCode_t

gri dSiteCet (uint32_t siteld,
grid_site_data_t & data,
grid_subnodes_t & snodes,
std::string & resp);

pceraErrorCode_t

gri dSubNodeDel (uint32_t siteld,
uint32_t id,
std::string & resp);

pceraErrorCode_t

gri dServi ceUpdat e(uint32_t siteld,
uint32_t id,
const grid_service_data_t & data,
std::string & resp);

pceraErrorCode_t

gridServi ceCet (uint32_t siteld,
uint32_t id,
grid_service_data_t & data,
std::string & resp);

pceraErrorCode_t

gri dConpEl enUpdat e(uint32_t siteld,
uint32_t id,
const grid_ce_data_t & data,
std::string & resp);

pceraErrorCode_t

gri dConpEl enCet (uint32_t siteld,
uint32_t id,
grid_ce_data_t & data,
std::string & resp);

pceraErrorCode_t

gri dSubC ust er Updat e(uint32_t siteld,

uint32_t id,
const grid_subcluster_data_t & data,
std::string & resp);

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code:

Phosphorus-WP2-D2.3

181

Grid-GMPLS high-level system design

pceraErrorCode_t

gri dSubCl ust er Get (uint32_t
uint32_t
grid_subcluster_data_t &
std::string &

pceraErrorCode_t

gri dSt or ageEl enpdat e(uint32_t
uint32_t
const grid_se_data_t &
std::string &

pceraErrorCode_t

gri dSt or ageEl enGet (uint32_t
uint32_t
grid_se_data_t &
std::string &

siteld,

data,
resp);

siteld,
id,
data,
resp);

siteld,

data,
resp);

10.4.1.5 TNA related

pceraErrorCode_t

t naAdd(const uint32_t &
const g2mpls_addr_t &
std::string &

pceraErrorCode_t

t nabDel (const uint32_t &
const g2mpls_addr_t &
std::string &

std::list<g2mpls_addr_t>
tnaCet Al | Fr onNode(const uint32_t &
std::string &

rid,

resp);

rid,

resp);

rid,
resp);

10.4.1.6 TE-Link related

pceraErrorCode_t
| i nkAdd(const telink_ident_t &
std::string &

pceraErrorCode_t
| I nkDel (const telink_ident_t &
std::string &

std::list<telink_ident_t>
teli nkGet Al'l Fr omNode(const uint32_t &

resp);

resp);

rid,

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

182

Grid-GMPLS high-level system design

std::string & resp);

pceraErrorCode_t

teli nkUpdat eCon(const telink_ident_t & id,
const telink_com_data_t & data,
std::string & resp);

pceraErrorCode_t

teli nkGet Con(const telink_ident_t & id,
telink_com_data_t & data,
std::string & resp);

pceraErrorCode_t

teLi nkUpdat eTdn(const telink_ident_t & id,
const telink_tdm_data_t & data,
std::string & resp);

pceraErrorCode_t

teli nkGet Tdn(const telink_ident_t & id,
telink_tdm_data_t & data,
std::string & resp);

pceraErrorCode_t

telLi nkUpdat eLscGr709(const telink_ident_t & id,
const telink_Iscg709_data_t & data,
std::string & resp);

pceraErrorCode_t

teli nkGet LscG709(const telink_ident_t & id,
telink_Iscg709_data_t & data,
std::string & resp);

pceraErrorCode_t

teli nkUpdat eLsc\Win(const telink_ident_t & id,
const telink_Iscwdm_data_t & data,
std::string & resp);

pceraErrorCode_t

teli nkCGet Lsc\Win(const telink_ident_t & id,
telink_Iscwdm_data_t & data,
std::string & resp);

pceraErrorCode_t

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

183

Grid-GMPLS high-level system design

telLi nkUpdat eSt at es(const telink_ident_t& id,
const opstate_t & opState,
const admstate_t & admState,
std::string & resp);

pceraErrorCode_t

teli nkCGet St at es(const telink_ident_t& id,
opstate_t & opState,
admstate_t & admState,
std::string & resp);

pceraErrorCode_t

teli nkUpdat eGenBw(const telink_ident_t & id,
const avail_bw_per_prio_t & bw,
std::string & resp);

pceraErrorCode_t

teLi nkGet GenBw(const telink_ident_t & id,
avail_bw_per_prio_t & bw,
std::string & resp);

pceraErrorCode_t

teli nkUpdat eTdnmBw(const telink_ident_t & id,
const avail_bw_per_prio_t & bw,
const std::list<uint32_t> freeTS,
std::string & resp);

pceraErrorCode_t

teLi nkGet TdnBw(const telink_ident_t & id,
avail_bw_per_prio_t & bw,
std::list<uint32_t> freeTS,
std::string & resp);

pceraErrorCode_t
telLi nkUpdat eLscG709Bw(const telink_ident_t & id,
const avail_bw_per_prio_t & bw,
const std::list<uint32_t> freeODUK,
const std::list<uint32_t> freeOCh,
std::string & resp);
pceraErrorCode_t
teli nkGet LscG709Bw(const telink_ident_t & id,
avail_bw_per_prio_t & bw,
std::list<uint32_t> freeODUK,
std::list<uint32_t> freeOCh,
std::string & resp);
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

184

Grid-GMPLS high-level system design

pceraErrorCode_t

teli nkUpdat eLscWinBw(const telink_ident_t & id,
const avail_bw_per_prio_t & bw,
wdm_link_lambdas_bitmap_t &bm,

std::string & resp);
pceraErrorCode_t
teli nkCGet Lsc\WinBw(const telink_ident_t & id,
avail_bw_per_prio_t & bw,
wdm_link_lambdas_bitmap_t & bm,
std::string & resp);
pceraErrorCode_t
teLi nkAppendSr | gs(const telink_ident_t & id,
const std::list<uint32_t> & srlgs,
std::string & resp);
pceraErrorCode_t
teli nkCGet Srl gs(const telink_ident_t & ident,
std::list<uint32_t> & srigs,
std::string & resp);
pceraErrorCode_t
teLi nkAppendCal endar (const telink_ident_t & id,
const std::map<uint32_t,avail_bw_per_prio_t > cal,
std::string & resp);
pceraErrorCode_t
telLi nkCGet Cal endar (const telink_ident_t & id,
std::map<uint32_t,avail_bw_per_prio_t> cal,
std::string & resp);
pceraErrorCode_t
teli nkAppendl sc(const telink_ident_t & id,
const std::list<isc_t> & iscs,
std::string & resp);
pceraErrorCode_t
teli nkCGet | sc(const telink_ident_t & id,
std::list<isc_t> & iscs,
std::string & resp);
h
Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

185

Grid-GMPLS high-level system design
10.4.2 Computation of routes in G 2.PCE-RA

Path computation is the main task of the G>.PCE-RA module, triggered by G>.PCE-RA users in different cases:

« by NCC, for the computation of the route of a call and then the primary and/or secondary LSPs in it;
* by G.RSVP-TE, for the ERO completion and the crankback management;
* by G°.PCE-RA VTY, for testing purposes.

All the SPF computations are provided by an implementation of the Dijkstra constrained algorithm, described in
terms of pseudo-code in Figure 10-5.

ﬂgorithmOonstrained Dijkstra \

define V = set of vertices in the given graph

define U = set of unvisited vertices in the given graph

define /, = set of neighbor vertices of vertex |

define P(1) = predecessor of vertex | along the path

define c,; = cost of the arc fromvertex | to vertex J

define d(1) = cunul ative path cost fromroot vertex Still vertex I
define S/D = source/destination vertex

define |,; = arc between vertex | and J

defi ne CONSTR = set of constraints the SPF nust satisfy

begin
step 1. d(S)=0;
if (I O /7gand (1,;, CONSTR)=TRUE) then d(l)= cg else d(l)= o
U= V{5
P(1)=S [OI1I OV

step 2. search J [U (I, ,;, CONSTR) = TRUE and d(J)= nin d(k), Ok JU;
u=Uu{J};
if J =D t hen END

step 3. (I O fyand!l [U do

if d(J)+ c; < d(l) then {d(1)=d(J)+ c, and P(l)=J3};
goto step 2

2 /

Figure 10-5: G*>.PCE-RA constrained Dijkstra pseudo-code.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

186

Grid-GMPLS high-level system design

The list of the topology related APlIs is provided in the following.

pceraErrorCode_t

nodeCet Fr omlna(const net_res_spec_t &

uint32_t &
std::string &

pceraErrorCode_t

nodeCet Fr ontensTna(const grid_res_spec_t &
const std::list<uint32_t>&

uint32_t &
uint32_t &
std::string &

pceraErrorCode_t

cal | Rout e(const ero_hop_t &
const ero_hop_t &
const call_ident_t &
const call_info_t &
const recovery_info_t &
const Isp_info_t &
std::list<ero_hop_t> &
std::string &

pceraErrorCode_t
cal | Fl ush(const call_ident_t &
std::string &

pceraErrorCode_t
cal | Confirn(const call_ident_t &
std::string &

pceraErrorCode_t

| spRout e(const ero_hop_t &
const ero_hop_t &
const call_ident_t &
const call_info_t &
const recovery_info_t &
const Isp_info_t &
const std::list<ero_hop_t> &
std::list<ero_hop_t> &
std::list<ero_hop_t> &
std::string &

Code 10-18: Topology-related APIs

tnaRes,
rid,
resp);

tnaGnsRes,
excludeSet,

netNodeld,

gridSiteld,

resp);

srcHop,
dstHop,
callld,
calllnfo,
recinfo,
Ispinfo,
wEro,
resp);

callld,
resp);

callld,
resp);

srcHop,
dstHop,

callld,
calllnfo,

recinfo,

Ispinfo,

excludeEro,
WETro,
pEro,
resp);

When a callRoute()with the request for computing two disjoint routes in the topology between the ingress and
egress TNAs occurs, the G°.PCE-RA provides two computational strategies:

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code:

Phosphorus-WP2-D2.3

187

Grid-GMPLS high-level system design

e the Two Step Algorithm (TSA), applied in case of no strict requirement on the disjointness of the
produced pair of routes, if any;
< the Bhandari’s algorithm, applied in case of maximally disjoint routes computations.
In both cases (i.e. TSA, Bhandari), the SPF computation (i.e. Dijkstra) is carried out after a specific topology
transformation which modifies link metrics. After the computation, topology is reverted to the original state in
order to process subsequent computation requests on a reliable topology representation.

The following figures summarize the relevant function call flow in the G°.PCE-RA code by means of flow
diagrams.

conput eOneRout e()

conput eDi sj oi nt Rout e()

call unprot.
or restored
on the fly

route N
Y exist

conput eMaxDi sj oi nt Rout es()

req. N
disjointness
matched

A 4

Figure 10-6: Actions on a callRoute().

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

188

Grid-GMPLS high-level system design

si nmpl eTopol ogyTr ansf or ()

Y
error
N

conput eOneRout e()

Y
error
N

si npl eTopol ogyRevert ()

error

Y
N

A 4

Figure 10-7: Actions on a computeDisjointRoute().

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

189

Grid-GMPLS high-level system design

bhandari Topol ogyTr ansf or m()

error

$

conmput eOneRout e()

!

bhandari I nterl ace()

error

§

bhandar i Topol ogyRevert ()

exi tOnErrror

error

v

i

Figure 10-8: Actions on a computeMaxDisjointRoutes().

105 G2%PCE-RA external API

10.5.1 Topology API

The G®.PCE-RA module exposes an external topology interface by means of CORBA servants. The API for the
communication with external modules is specified in the <sw_root>/idl/g2mplsTopology.idl and shown below. It
is strictly related to the semantic of the internal G>.PCE-RA AP for topology updates.

Common types used in this interface are specified in <sw_root>/idl/g2mplsTypes.idl and reported in Appendix
A.

#include "types.idl"
#include "g2mplsTypes.idl"

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

190

Grid-GMPLS high-level system design

#ifndef G2ZMPLSTOPOLOGY_IDL
#define G2ZMPLSTOPOLOGY_IDL

interface g2mplsTopology {

exception I nt er nal Probl ens {
string what;
Ji
exception Cannot Fet chNode {
g2mplsTypes::nodeld id;
string what;
Ji
exception Cannot Fet chSubNode {
g2mplsTypes::nodeld parentld;
g2mplsTypes::gridSubNodeld id;
string what;
Ji
exception Cannot Fet chLi nk {
g2mplsTypes:: TELinkld id;
string what;
Ji
exception Cannot Fet chTna {
g2mplsTypes::tnald id;
string what;
Ji

1
/I Topology related calls
1

boolean

nodeAdd(in g2mplsTypes::nodeldent id)
raises(InternalProblems);

boolean

nodeDel (in g2mplsTypes::nodeldent id)

raises(InternalProblems, CannotFetchNode);

g2mplsTypes::nodeldentSeq
nodeCet Al | ()
raises(InternalProblems);

boolean
net NodeUpdat e(in g2mplsTypes::nodeld id,
in g2mplsTypes::netNodeParams info)
raises(InternalProblems, CannotFetchNode);

boolean
net NodeGet (in g2mplsTypes::nodeld id,
out g2mplsTypes::netNodeParams info)
raises(InternalProblems, CannotFetchNode);

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

191

Grid-GMPLS high-level system design

Project:

[/ Grid related elements (from GLUE)
boolean
gridsiteUpdate(in g2mplsTypes::nodeld
in g2mplsTypes::gridSiteParams
raises(InternalProblems, CannotFetchNode);

boolean

gri dSiteGet (in g2mplsTypes::nodeld
out g2mplsTypes::gridSiteParams
out g2mplsTypes::gridSubNodes

raises(InternalProblems, CannotFetchNode);

boolean
gri dSubNodeDel (in g2mplsTypes::nodeld
in g2mplsTypes::gridSubNodeldent
raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode);

boolean
gri dServi ceUpdat e(in g2mplsTypes::nodeld
in g2mplsTypes::gridSubNodeld
in g2mplsTypes::gridServiceParams
raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode);

boolean
gridServiceGet (in g2mplsTypes::nodeld
in g2mplsTypes::gridSubNodeld
out g2mplsTypes::gridServiceParams
raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode);

boolean
gri dConpEl enpdat e(in g2mplsTypes::nodeld
in g2mplsTypes::gridSubNodeld
in g2mplsTypes::gridCEParams
raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode);

boolean
gri dConpEl entet (in g2mplsTypes::nodeld
in g2mplsTypes::gridSubNodeld
out g2mplsTypes::gridCEParams
raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode);

boolean
gri dSubCl ust er Updat e(in g2mplsTypes::nodeld
in g2mplsTypes::gridSubNodeld

in g2mplsTypes::gridSubClusterParams

raises(InternalProblems,
CannotFetchNode,

Phosphorus

Deliverable Number: D.2.3

Date of Issue:
EC Contract No.:
Document Code:

31/03/08
034115
Phosphorus-WP2-D2.3

info)

id,
info,
snodes)

siteld,
id)

siteld,
id,
info)

siteld,
id,
info)

siteld,
id,
info)

siteld,
id,
info)

siteld,
id,
info)

192

Grid-GMPLS high-level system design

CannotFetchSubNode);

boolean
gridsubCl ust er Get (in g2mplsTypes::nodeld siteld,
in g2mplsTypes::gridSubNodeldid,
out g2mplsTypes::gridSubClusterParamsinfo)
raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode);

boolean
gri dst orageEl enpdat e(in g2mplsTypes::nodeld siteld,
in g2mplsTypes::gridSubNodeld id,
in g2mplsTypes::gridSEParams info)
raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode);

boolean
gri dstorageEl entet (in - g2mplsTypes::nodeld siteld,
in g2mplsTypes::gridSubNodeld id,
out g2mplsTypes::gridSEParams info)
raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode);

/I TNA related
boolean
t nal dsAdd(in g2mplsTypes::nodeldent ident,
in g2mplsTypes::tnaldSeq seq)
raises(InternalProblems,
CannotFetchNode);

boolean
t nal dsDel (in g2mplsTypes::nodeldent ident,
in g2mplsTypes::tnaldSeq seq)
raises(InternalProblems,
CannotFetchNode,
CannotFetchTna);

g2mplsTypes::tnaldSeq
tnal dsGet Al | FromNode(in g2mplsTypes::nodeldent ident)
raises(InternalProblems,

CannotFetchNode);
I/ Link related
boolean
| i nkAdd(in g2mplsTypes::teLinkldent ident)
raises(InternalProblems);
boolean
| i nkDel (in g2mplsTypes::teLinkldent ident)

raises(InternalProblems, CannotFetchLink);

g2mplsTypes::teLinkldentSeq
teLi nkGet Al'l FromNode(in g2mplsTypes::nodeldent ident)
raises(InternalProblems);

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

193

Grid-GMPLS high-level system design

I link capabilities
boolean
teLi nkUpdat eCon(in g2mplsTypes::teLinkldent ident,
in g2mplsTypes::teLinkComParams info)
raises(InternalProblems, CannotFetchLink);

boolean
t eLi nkGet Con(in g2mplsTypes::teLinkldent ident,
out g2mplsTypes::teLinkComParams info)
raises(InternalProblems, CannotFetchLink);

boolean
teLi nkUpdat eTdn(in g2mplsTypes::teLinkldent ident,
in g2mplsTypes::teLinkTdmParams info)
raises(InternalProblems, CannotFetchLink);

boolean
t eLi nkGet Tdn(in g2mplsTypes::teLinkldent ident,
out g2mplsTypes::teLinkTdmParams info)
raises(InternalProblems, CannotFetchLink);

boolean
teLi nkUpdat eLscGr09(in g2mplsTypes::teLinkldent

ident,

in g2mplsTypes::teLinkLscG709Params info)

raises(InternalProblems, CannotFetchLink);

boolean
t eLi nkGet LscG709(in g2mplsTypes::teLinkldent
out g2mplsTypes::teLinkLscG709Params
raises(InternalProblems, CannotFetchLink);

boolean
teLi nkUpdat eLscWin(in g2mplsTypes::teLinkldent

ident,
info)

ident,

in g2mplsTypes::teLinkLscWdmParams info)

raises(InternalProblems, CannotFetchLink);

boolean
teli nkGet Lsc\Win(in g2mplsTypes::teLinkldent ident,
out g2mplsTypes::teLinkLscWdmParams info)
raises(InternalProblems, CannotFetchLink);

I link states
boolean
t eLi nkUpdat eSt at es(in g2mplsTypes::teLinkldent ident,
in g2mplsTypes::statesBundle states)
raises(InternalProblems, CannotFetchLink);

boolean
teli nkGet St at es(in g2mplsTypes::teLinkldent ident,
out g2mplsTypes::statesBundle states)
raises(InternalProblems, CannotFetchLink);

/'link bandwidth
boolean
t eLi nkUpdat eGenBw(in g2mplsTypes::teLinkldent ident,
in g2mplsTypes::availBwPerPrio bw)
raises(InternalProblems, CannotFetchLink);

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

194

Grid-GMPLS high-level system design

boolean
teli nkGet GenBw(in g2mplsTypes::teLinkldent ident,
out g2mplsTypes::availBwPerPrio bw)
raises(InternalProblems, CannotFetchLink);
boolean
t eLi nkUpdat eTdnmBw(in g2mplsTypes::teLinkldent ident,
in g2mplsTypes::availBwPerPrio bw,
in g2mplsTypes::freeCTPSeq freeTS)
raises(InternalProblems, CannotFetchLink);
boolean
teli nkGet TdnBw(in g2mplsTypes::teLinkldent ident,
out g2mplsTypes::availBwPerPrio bw,
out g2mplsTypes::freeCTPSeq freeTS)
raises(InternalProblems, CannotFetchLink);
boolean
teLi nkUpdat eLscGr09Bw(in g2mplsTypes::teLinkldent ident,
in g2mplsTypes::availBwPerPrio bw,
in g2mplsTypes::freeCTPSeq freeODUK,
in g2mplsTypes::freeCTPSeq freeOCh)
raises(InternalProblems, CannotFetchLink);
boolean
t eLi nkGet LscG709BwW(in g2mplsTypes::teLinkldent ident,
outg2mplsTypes::availBwPerPrio bw,
outg2mplsTypes::freeCTPSeq freeODUK,
outg2mplsTypes::freeCTPSeq freeOCh)
raises(InternalProblems, CannotFetchLink);
boolean
teLi nkUpdat eLscWinBw(in g2mplsTypes::teLinkldent ident,
in g2mplsTypes::availBwPerPrio bw,
in g2mplsTypes::teLinkWdmLambdasBitmap bm)
raises(InternalProblems, CannotFetchLink);
boolean
t eLi nkGet Lsc\WinmBw(in g2mplsTypes::teLinkldent ident,
out g2mplsTypes::availBwPerPrio bw,
out g2mplsTypes::teLinkWdmLambdasBitmap bm)
raises(InternalProblems, CannotFetchLink);
I/l append operations
boolean
t eLi nkAppendSr | gs(in g2mplsTypes::teLinkldent ident,
in g2mplsTypes::srlgSeq srigs)
raises(InternalProblems, CannotFetchLink);
boolean
teLinkGet Srl gs(in g2mplsTypes::teLinkldent ident,
out g2mplsTypes::srlgSeq srlgs)
raises(InternalProblems, CannotFetchLink);
boolean
teLi nkAppendCal endar (in g2mplsTypes::teLinkldent ident,
in g2mplsTypes::teLinkCalendarSeq cal)

raises(InternalProblems, CannotFetchLink);

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

195

l

Grid-GMPLS high-level system design

boolean
t eLi nkGet Cal endar (in g2mplsTypes::teLinkldent ident,
out g2mplsTypes::teLinkCalendarSeq cal)

raises(InternalProblems, CannotFetchLink);

boolean

teLi nkAppendl sc(in g2mplsTypes::teLinkldent ident,

in g2mplsTypes::iscSeq iscs)

raises(InternalProblems, CannotFetchLink);

boolean

teLi nkGet | sc(in g2mplsTypes::teLinkldent ident,

out g2mplsTypes::iscSeq iscs)
raises(InternalProblems, CannotFetchLink);

k
#endif // G2MPLSTOPOLOGY_IDL

Code 10-19: G2.PCE-RA Topology external API IDL.

10.5.2 Computation API

The G2.PCE-RA module exposes an external call/LSP interface by means of CORBA servants. The AP for the
communication with external modules is specified in the <sw_root>/idl/g2pcera.idl and shown below. It is strictly
related to the semantic of the internal G2.PCE-RA AP!I for route computations.

Common types used in this interface are specified in <sw_root>/idl/g2mplsTypes.idl and reported in Appendix
A.

#include "types.idl"
#include "g2mplsTypes.idl"

#ifndef G2PCERA_IDL
#define G2PCERA_IDL

interface G2PCERA {

exception I nt er nal Probl ens {
string what;
h
exception Cannot Fet chNode {
g2mplsTypes::nodeld id;
string what;
U
exception Cannot Fet chSubNode {
g2mplsTypes::nodeld parentld;
g2mplsTypes::gridSubNodeld id;
string what;
h
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

196

Grid-GMPLS high-level system design

exception Cannot Fet chLi nk {

g2mplsTypes::TELinkid id;
string what;
b
exception Cannot Fet chTna {
g2mplsTypes::tnald id;
string what;
h

I
/I Computation related calls
I

boolean
nodeCGet Fronna(in g2mplsTypes::tnaResource tnaRes,
out g2mplsTypes::nodeld node)
raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode,
CannotFetchLink,
CannotFetchTna);

boolean
nodeGet Fr onGnsTna(in g2mplsTypes::gridParams tnaGnsRes,
in g2mplsTypes::nodeldentSeq excludeSet,
out g2mplsTypes::nodeld netNodeld,
out g2mplsTypes::nodeld gridSiteld)
raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode,
CannotFetchLink,
CannotFetchTna);

boolean
cal | Rout e(in g2mplsTypes::eroltem srcHop,

in
in
in
n
n
n

g2mplsTypes::
g2mplsTypes::
g2mplsTypes::
g2mplsTypes::
g2mplsTypes::
g2mplsTypes::

eroltem
gridParams
callldent
callParams
recoveryParams
IspParams

out g2mplsTypes::eroSeq
raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode,
CannotFetchLink,
CannotFetchTna);

boolean

cal | Fl ush(in g2mplsTypes::callldent
raises(InternalProblems);

dstHop,
eTnaGnsRes,
callld,
calllnfo,
recinfo,
Ispinfo,
WEro)

callld)

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

197

Grid-GMPLS high-level system design

boolean

cal | Confirn(in

g2mplsTypes::callldent

raises(InternalProblems);

boolean

| spRout e(in g2mplsTypes::eroltem

g2mplsTypes::
g2mplsTypes::
g2mplsTypes::
g2mplsTypes::
g2mplsTypes::
g2mplsTypes::
out g2mplsTypes::
out g2mplsTypes::

eroltem
callldent
callParams
recoveryParams
IspParams
eroSeq

eroSeq

eroSeq

raises(InternalProblems,
CannotFetchNode,
CannotFetchSubNode,
CannotFetchLink);

)

#endif // G2PCERA_IDL

callld)

srcHop,
dstHop,
callld,
callinfo,
recinfo,
Ispinfo,
excludeEro,
WEro,
pEro)

Code 10-20: G2.PCE-RA Computation external API IDL.

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus
D.2.3
31/03/08
034115

Phosphorus-WP2-D2.3

198

l

Grid-GMPLS high-level system design

11 G.UNI-GW Adapter Design Specification

The main functionality of the G.UNI-GW Adapter is to map signalling and routing information from the WSAG
Server to G>.RSVP and G°.OSPF protocol controllers. On one side, the G.UNI-GW implements a Web Service
that accepts incoming messages from the WSAG Server. On the other, these requests are translated into
CORBA IDL calls to control the client Call Controller on the UNI-C side.

11.1 G.UNI-GW Adapter Transactions

The transactions mapped by the G.UNI-GW involve GNS requests and Grid information updates. Figure 11-1
depicts G.UNI-GW adapter design, showing the involved interfaces and transactions. Communications between
G.UNI-GW adapter and the rest of the modules is bidirectional, so depending on the situation (local or remote),
the information will flow in one way (WSAG Server — G.UNIGW adapter — Call Controller) or the other (Call
Controller — G.UNIGW adapter — WSAG Server).

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

199

Grid-GMPLS high-level system design

Figure 11-1: The GUNI-GW breakdown and transactions localization.

11.1.1 WSAG — WS-G.UNI Adapter — G.UNI-C RSVP PC (Signalli ng)

Three methods implement the signalling transactions that enable the creation and deletion of GNS:
CreateActivity, GetActivityStatuses, TerminateActivities.

CreateActivity

| CreateActivity(CreateActivityType *, CreateActivity Response *)

The CreateAcitivty method is used to request a Grid Network Service.

* Incoming parameters: CreateActivityType - Contains Grid and Network information required to
provision a GNS.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

200

Grid-GMPLS high-level system design

« Response parameters: CreateActivityResponseType - Contains a unique EndPointreference (EPR)
which identifies a certain activity. Usually, the address parameter of an EPR contains the URI of the V-
site that created the activity. This is required since the stage out process is initiated later on by the MSS
to simplify the workflow for the network scheduler.

« CORBA IDL Mapping:

callCreate

callSetTna

callSetGnsTna (ingress)

callSetGnsTna (egress)

callEnable

callSetup

« WSDL description:

O O O O O O

<l-- Message Types -->
<xsd:complexType name="CreateActivityType">
<xsd:sequence>
<xsd:element ref="bes-factory:ActivityDocument" />
<xsd:any namespace="##other" processContents="| ax" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:anyAttribute namespace="##other" processCont ents="lax"/>
</xsd:complexType>

<xsd:complexType name="CreateActivityResponseType">
<xsd:sequence>

<xsd:element name="Activityldentifier" type="ws a:EndpointReferenceType"/>
<xsd:element ref="bes-factory:ActivityDocument" minOccurs="0"/>
<xsd:any namespace="##other" processContents="| ax" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:anyAttribute namespace="##other" processCont ents="lax"/>
</xsd:complexType>

<l-- Message Elements -->

<xsd:element name="CreateActivity"
type="bes-factory:CreateActivity Type"/>

<xsd:element name="CreateActivityResponse"
type="bes-factory:CreateActivityResponseType"/>

<!-- Messages -->
<wsdl:message name="CreateActivityRequest">

<wsdl:part name="parameters" element="bes-factory :CreateActivity"/>
</wsdl:message>
<wsdl:message name="CreateActivityResponse">

<wsdl:part name="parameters" element="bes-factory :CreateActivityResponse"/>
</wsdl:message>

<!-- Port Type -->
<wsdl:portType name="BESFactoryPortType">
<wsdl:operation name="CreateActivity">
<wsdl:input
name="CreateActivity"
message="bes-factory:CreateActivityRequest"

wsa:Action="http://schemas.ggf.org/bes/2006/0 8/
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

201

Grid-GMPLS high-level system design

bes-factory/BESFactoryPortType/CreateActivity"/>
<wsdl:output

name="CreateActivityResponse"
message="bes-factory:CreateActivityResponse"
wsa:Action="http://schemas.ggf.org/bes/2006/0

bes-factory/BESFactoryPortType/CreateActivi

</wsdl:operation>
</wsdl:portType>

<l-- Bindings -->
<wsdl:binding name="BESFactoryBinding" type="bes-fa
<soap:binding style="document" transport="http://
<wsdl:operation name="CreateActivity">
<soap:operation soapAction="http://schemas.ggf.
bes-factory/BESFactoryPortType/CreateActivity
<wsdl:input name="CreateActivity">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="CreateActivityResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

GetActivityStatuses

GetActivityStatuses(GetActivityStatusesType *, GetA

The GetActivityStatuses method is used to request GNS status.

8/
tyResponse"/>

ctory:BESFactoryPortType">
schemas.xmlsoap.org/soap/http"/>

org/bes/2006/08/
">

ctivityStatusesResponseType *)

* Incoming parameters: GetActivityStatusType = Contains the GNS identifier of the activity to be check.
* Response parameters: GetActivityStatusResponseType - Contains the status of the requested GNS:

Pending, Running, Cancelled, Failed or Finished.

« CORBA IDL Mapping:
o callGetDetails
« WSDL description:

<!-- Message Types -->
<xsd:complexType name="GetActivityStatusesType">
<xsd:sequence>
<xsd:element name="Activityldentifier" type="ws
maxOccurs="unbounded" minOccurs="0"/>
<xsd:any namespace="##other" processContents="
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:anyAttribute namespace="##other" processCont
</xsd:complexType>

<xsd:complexType name="GetActivityStatusesResponseT
<xsd:sequence>
<xsd:element name="Response" type="bes-factory:

a:EndpointReferenceType"

ax" minOccurs="0"

ents="lax"/>

ype">

GetActivityStatusResponseType"

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

202

Grid-GMPLS high-level system design

maxOccurs="unbounded" minOccurs="0"/>
<xsd:any namespace="##other" processContents="
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:anyAttribute namespace="##other" processCont
</xsd:complexType>

<l-- Message Elements -->

<xsd:element name="GetActivityStatuses"
type="bes-factory:GetActivityStatusesType"/>

<xsd:element name="GetActivityStatusesResponse"
type="bes-factory:GetActivityStatusesResponseType

<!-- Messages -->

<wsdl:message name="GetActivityStatusesRequest">
<wsdl:part name="parameters" element="bes-factory

</wsdl:message>

<wsdl:message name="GetActivityStatusesResponse">
<wsdl:part name="parameters" element="bes-factory
</wsdl:message>

<!-- Port Type -->
<wsdl:portType name="BESFactoryPortType">
<wsdl:operation name="GetActivityStatuses">
<wsdl:input
name="GetActivityStatuses"
message="bes-factory:GetActivityStatusesReque
wsa:Action="http://schemas.ggf.org/bes/2006/0
bes-factory/BESFactoryPortType/GetActivityS
<wsdl:output
name="GetActivityStatusesResponse"
message="bes-factory:GetActivityStatusesRespo
wsa:Action="http://schemas.ggf.org/bes/2006/0
bes-factory/BESFactoryPortType/GetActivityS
</wsdl:operation>
</wsdl:portType>

<l-- Bindings -->
<wsdl:binding name="BESFactoryBinding" type="bes-fa
<soap:binding style="document" transport="http://
<wsdl:operation name="GetActivityStatuses">
<soap:operation soapAction="http://schemas.ggf.
bes-factory/BESFactoryPortType/GetActivitySta
<wsdl:input name="GetActivityStatuses">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="GetActivityStatusesResponse"
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

TerminateActivities

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

ax" minOccurs="0"

ents="lax"/>

">

:GetActivityStatuses"/>

:GetActivityStatusesResponse"/>

st"
8/
tatuses"/>

nse"
8/
tatusesResponse"/>

ctory:BESFactoryPortType">
schemas.xmlsoap.org/soap/http"/>

org/bes/2006/08/
tuses"/>

203

Grid-GMPLS high-level system design

TerminateActivities(TerminateActivitiesType *, Term

inateActivitiesResponseType *)

The TerminateActivities method is used to terminate a Grid Network Service.

« Incoming parameters: GetActivityStatusType > Contains the GNS identifier of the activity to be

terminated.

« Response parameters: GetActivityStatusResponseType = Contains the GNS identifier of the activity to
be terminated and the acknowledgement of the termination state.

« CORBA IDL Mapping:
o callDisable
o callDestroy
 WSDL description:

<l-- Message Types -->
<xsd:complexType name="TerminateActivitiesType">
<xsd:sequence>
<xsd:element name="Activityldentifier" type="ws
minOccurs="0" maxOccurs="unbounded"/>
<xsd:any namespace="##other" processContents="|
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:anyAttribute namespace="##other" processCont
</xsd:complexType>

<xsd:complexType name="TerminateActivitiesResponseT
<xsd:sequence>
<xsd:element name="Response" type="bes-factory:
minOccurs="0" maxOccurs="unbounded"/>
<xsd:any namespace="##other" processContents="|
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:anyAttribute namespace="##other" processCont
</xsd:complexType>

<l-- Message Elements -->

<xsd:element name="TerminateActivities"
type="bes-factory:TerminateActivitiesType"/>

<xsd:element name="TerminateActivitiesResponse"
type="bes-factory:TerminateActivitiesResponseType

<!-- Messages -->

<wsdl:message name="TerminateActivitiesRequest">
<wsdl:part name="parameters" element="bes-factory

</wsdl:message>

<wsdl:message name="TerminateActivitiesResponse">
<wsdl:part name="parameters" element="bes-factory
</wsdl:message>

<l-- Port Type -->
<wsdl:portType name="BESFactoryPortType">
<wsdl:operation name="TerminateActivities">
<wsdl:input
name="TerminateActivities"
message="bes-factory:TerminateActivitiesReque

a:EndpointReferenceType"

ax" minOccurs="0"

ents="lax"/>

ype">
TerminateActivityResponseType"

ax" minOccurs="0"

ents="lax"/>

">

:TerminateActivities"/>

:TerminateActivitiesResponse"/>

St

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

204

Grid-GMPLS high-level system design

wsa:Action="http://schemas.ggf.org/bes/2006/0 8/
bes-factory/BESFactoryPortType/TerminateAct ivities"/>
<wsdl:output
name="TerminateActivitiesResponse"

message="bes-factory:TerminateActivitiesRespo nse"
wsa:Action="http://schemas.ggf.org/bes/2006/0 8/
bes-factory/BESFactoryPortType/TerminateAct ivitiesResponse"/>

</wsdl:operation>
</wsdl:portType>

<l-- Bindings -->

<wsdl:binding name="BESFactoryBinding" type="bes-fa ctory:BESFactoryPortType">
<soap:binding style="document" transport="http:// schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="TerminateActivities">
<soap:operation soapAction="http://schemas.ggf. org/bes/2006/08/
bes-factory/BESFactoryPortType/TerminateActiv ities" />

<wsdl:input name=" TerminateActivities">
<soap:body use="literal"/>

</wsdl:input>

<wsdl:output name=" TerminateActivitiesResponse ">
<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>
</wsdl:binding>

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

205

Grid-GMPLS high-level system design

112 G.UNI-GW adapter Implementation

WS
dient/ Srve
r

Sgnalling
Request
Gontroller

Routing
Request
Gontroller

Corba
dient/ Server

Figure 11-2: GUNI-GW operation flow.

The G.UNI-GW adapter can be divided in five basic functional blocks (Figure 11-2):

= WS Client/Server: This functional block implements the Web Service towards the WSAG Client/Server.
The binding structures and stubs have been implemented using the open source gSoap 2.7.10 wsdl

compiler.

= Corba Client/Server: This functional block calls the client Call Controller methods. The implementation
uses the open source omniORB-4.1.2, which is a CORBA Object Request Broker (ORB) for C++.

= GUNI vty: This functional block implements the virtual terminal interface commands to manage the

G.UNI-GW adapter.

= Signalling Request Controller: This block translates WS GNS requests into CORBA IDL calls.

= Routing Request Controller: This block translates WS Grid update information into CORBA IDL calls.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

206

Grid-GMPLS high-level system design
11.2.1 File descriptions

e gunigw_main.cxx: Main GUNIGW process file.
o Initializes vty
o Starts WS Server
e gunigwd.cxx: Class GUNIGW_Master Implementation file.
e gunigw_vty: VTY commands file.
« BESFactoryBindingServer.cxx: GUNIGW Server Implementation file.
o Implements the methods to be called from WSAG-Server.
e gunigw_corba.cxx: Corba client source file.
« soapBESFactoryBindingService.cpp, soapBESFactoryBindingService.h, soapC.cpp, soapH.h,
soapStub.h: WS Binding files automatically generated by gSOAP from gouni-bes-factory.wsdl file.
e gouni-bes-factory.wsdl: WSDL file describing GUNI-GW Web Service.
* bes-factory.xsd, jsdl.xsd, ws-addr.xsd: Schema files for GUNI-GW Web Service types.

11.3 Example

Next, an example of a CreateActivity XML request is shown:

<sll:Envelope
xmins:s11=" http://www.w3.0rg/2003/05/soap-envelope
xmlns:wsa=" http://www.w3.0rg/2005/08/addressing

xmins:jsdI=" http://schemas.ggf.org/jsdl/2005/11/jsdl "
xmlns:bes-factory=" http://schemas.ggf.org/bes/2006/08/bes-factory ">
<s11:Body>

<bes-factory:CreateActivity>
<bes-factory:ActivityDocument>
<jsdl:JobDefinition>
<jsdl:JobDescription>
<jsdl:Application>
<jsdl:ApplicationName> W SDO\VK/jsdl:ApplicationName>
<jsdl:ApplicationVersion> 1. O<l/jsdl:ApplicationVersion>
</jsdl:Application>
<jsdl:DataStaging>

<jsdl:FileName> i nput . dat </jsdl:FileName>
<jsdl:FilesystemName> HOVE</jsdl:FilesystemName>
<jsdl:CreationFlag> dont Over wr i t e</jsdl:CreationFlag>
<jsdl:Source>

<jsdl:URI> http://source.org/input.dat </jsdl:URI>

</jsdl:Source>
</jsdl:DataStaging>
</jsdl:JobDescription>
</jsdl:JobDefinition>
</bes-factory:ActivityDocument>
</bes-factory:CreateActivity>
</s11:Body>
</s11:Envelope>

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

207

l

Grid-GMPLS high-level system design

12 G.UNI and G.E-NNI RSVP-TE

The G.UNI and G.E-NNI RSVP-TE protocol controllers are derived from the I-NNI G.RSVP-TE protocol
controller documented in section 7.

This is made possible by a specific design choice: the I-NNI G.RSVP-TE is a superset of G.I-NNI, G.UNI and
G.E-NNI objects and functions, specified in D2.2 and D2.7 for the signalling part. This includes (but it is not
limited to) the parsing and formatting of G.UNI and G.E-NNI specific objects (e.g. the GENERALIZED_ UNI),
that could cross the I-NNIs as RSVP opaque objects.

This design choice allowed to obtain a more flexible and complete G.RSVP-TE protocol controller, and easier
to maintain.

Some G.UNI and G.E-NNI specificities still exist in the G.UNI and G.E-NNI PCs, but have a limited impact and
are not relevant in a high-level software design discussion.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

208

l

Grid-GMPLS high-level system design

13 G2.OSPF-TE (I-NNI, E-NNI and UNI-N/C)

The overall OSPF-TE software architecture and details are documented in the QUAGGA v0.9.9.7 reference
documents.

The Phosphurus additions to migrate to G2OSPF-TE mainly consisted of the parsing and formatting of TE LSA
and the new Grid LSA, and impacted the following files:

= <sw_root>/ospfd/ospf_te.h

= <sw_root>/ospfd/ospf_te.c

= <sw_root>/ospfd/ospf_grid.h

= <sw_root>/ospfd/ospf_grid.c

= <sw_root>/ospfd/ospf_vty.c

Other areas of intervention concerned the network interface of OSPF, which is now sending and receiving

PDUs via its interface to the SCNGW. This work consisted of integrating an SCNGW Client in the OSPF, as
explained in section 6.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

209

Grid-GMPLS high-level system design

1 Software structure

The G®MPLS code is based on the substrate of Quagga v0.99.7 routing suite [QUAGGA-DOC] from which it
inherits the base OSPFv2 implementation and some common libraries and tools. Different functionalities and
modules are implemented in the form of independent processes. The phosphorus-g2mpls package includes
software components developed from scratch, base Quagga protocols extended for Grid and GMPLS support,
additional tools for the automatic generation of FSM skeletons, extensions to the Quagga library for GMPLS.

All the processes import the Quagga library and the common framework for Inter-Process Communication
(IPC). The main modules are identified in Figure 14-1 and a short description is provided. Detailed software
decomposition is specified in the following of this document.

141 Configuration process

The Phosphorus software configuration process inherits the Quagga one, which is based upon the commonly
called autotools suite. The autotools suite is mainly composed by three different GNU tools: autoconf
(http://www.gnu.org/software/autoconf), automake (http://www.gnu.org/software/automake) and libtool
(http://www.gnu.org/software/libtool). An in-depth overview for each tool is out of scope for this document. We
will present a simple overview of the process in the following chapters

14.1.1 The configuration process from the user perspective

The Phosphorus software package comes with a set of scripts built during the development process. The most
important script is “configure” and is available in the package root directory.

A user who wants to compile and install the package must run the “configure' script in order to prepare the
source tree to be built on a particular system. The actual build process is performed using the make program.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

210

Grid-GMPLS high-level system design

The “configure' script tests system features then makes the results of those tests available to the program while

it is being built.
phosphor us-g2npl s
L\
utils
N tnrcd g2rsvpted
W .
7\ Y — g2utils
BN [rnd guni rsvpd —
XCC
£\ £\
N
scngwd uni gwd
Ed 9 g g cccd
. . frm—
BN ospfd genni r svpd nccd
N
£\ L\
~| 9¢2pcerad genni gwd e
W .
W P — tool s
BN nccd pyg2npl s —
tests
hl pu—
i t . i t
mpor I pC mper cor basket
: lib
import import

Figure 14-1: Phosphorus G2MPLS code structure.

The usual commands that should be invoked from the root Phosphorus source directory are the following ones:

| Jconfigure & make all install

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WP2-D2.3

211

Grid-GMPLS high-level system design

At the end of the build procedure the software should be built and installed correctly on the host system.

14.1.2 The configuration process from the developer perspe ctive

The main input files for the configuration and building processes are the root “configure.ac' and all
"Makefile.am' scattered in the source tree. There is also a bunch of other files required by the autotools suite
which are interesting only from the maintainer point of view.

The autotools setup process requires some standard steps which are not needed anymore after the setup. The
developer which does not need to tweak the configuration process usually changes a subset of all Makefile.am
files of the source tree. The autotools setup is in charge of updating the developer environment consistently
upon a Makefile.am update.

The files produced by the autotools are not stored into the repository itself because they depend on the
developer versions of the autotools components. Stripping the repository from unnecessary files eases the
maintenance and shortens its size.

An ‘autogen.sh’ script which bootstraps a fresh checkout is provided in the root directory of the package, such
script simply rebuilds all the required files using the autotools suite available in the developer system.

14.2 Process start-up and monitoring

In order to start-up, shut-down and monitor the Phosphorus processes the ‘monit’ program has been selected
(http://www.tildeslash.com/monit). Monit is a widely spread utility for managing and monitoring, processes, files,
and directories on a UNIX systems. It can start a process if it does not run, restart it if it does not respond and
stop it if it uses too many resources.

Monit is controlled via a configuration file based on a free-format, token-oriented syntax. Monit logs messages
to syslog or to its own log file and sends notifies about error conditions and recovery status via customizable
alerts.

The following excerpt shows the format of the input configuration file:

#

Poll at 1-minute intervals.
#

set daemon 30

set mailserver your.mail.server

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

212

Grid-GMPLS high-level system design

#

Set syslog logging.

#

set logfile syslog facility log_daemon

#

Set a default mail from-address for all alert mes sages emitted by monit.
#

set mail-format { from: mail@domain}

#

Send alert to system admin on any event
#

set alert mail@domain

#

Enable http support

#

set httpd port 2621
allow localhost

#
check process scngwsd
#
check process scngwsd with pidfile /var/run/scngwsd .pid
start program = "/etc/monit/scngwsd.start"
stop program = "/etc/monit/scngwsd.stop"
if failed port 2620 type tcp with timeout 15 secon ds then restart
alert mail@domain
with mail-format {
from: mail@domain
subject: scngwsd $SEVENT - $ACTION
message: This event occurred on $HOST at $DATE.
Regards,
monit
}
if cpu is greater than 60% for 2 cycles then alert
if cpu > 80% for 5 cycles then restart
if mem > 20 MB then alert
if loadavg(5min) greater than 10 for 8 cycles then stop
if 3 restarts within 5 cycles then timeout

group quagga

#
check process Irmd
#
check process LRMd with pidfile /var/run/Irmd.pid
start program = "/etc/monit/lrmd.start"
stop program = "/etc/monit/lrmd.stop"
if failed port 2610 type tcp with timeout 15 secon ds then restart
alert mail@domain
with mail-format {
from: mail@domain
subject: Irmd $EVENT - $ACTION
message: This event occurred on $HOST at $DATE.
Regards,
monit

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

213

Grid-GMPLS high-level system design

if cpu is greater than 60% for 2 cycles then alert
if cpu > 80% for 5 cycles then restart
if mem > 20 MB then alert
if loadavg(5min) greater than 10 for 8 cycles then stop
if 3 restarts within 5 cycles then timeout
group quagga
#
check process tnrcd
#
check process tnrcd with pidfile /var/run/tnrcd.pid
start program = "/etc/monit/tnrcd.start"
stop program = "/etc/monit/tnrcd.stop”
if failed port 2610 type tcp with timeout 15 secon ds then restart
alert mail@domain
with mail-format {
from: mail@domain
subject: tnrcd $EVENT - $ACTION
message: This event occurred on $HOST at $DATE.
Regards,
monit

if cpu is greater than 60% for 2 cycles then alert

if cpu > 80% for 5 cycles then restart

if mem > 20 MB then alert

if loadavg(5min) greater than 10 for 8 cycles then stop
if 3 restarts within 5 cycles then timeout

group quagga

Code 14-1: Configuration file for stack start-up and monitoring.

14.3 Inter-process communication

The Quagga software is composed by a multitude of processes, all of them use a socket based
intercommunication library to exchange messages. The involved software is located in the ‘zebra‘and ‘lib’
directories (zebra/zserv.c, zebra/zserv.h, lib/zclient.c and lib/zclient.h files).

Such mechanism is easy to extend and simple to use in communication environments characterized by simple,
fixed size and unstructured messages. In a GMPLS context like the Phosphorus one it cannot be used because
messages present the opposite nature: they are usually highly structured, variable sized and often
unstructured.

In order to cope with such an environment the Quagga IPC mechanisms has been replaced using the CORBA
middleware.

The CORBA framework [CORBA] is an industry-level middleware, defined by the Object Management Group
(OMG), which allows to normalize the method-call semantics (in a language-independent fashion) among
application objects that are located either in the same address space (i.e. application) or remote address space

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

214

Grid-GMPLS high-level system design

(i.e. local or remote host). The CORBA framework adopts and Interface Definition Language (IDL) to specify
the interfaces between different modules, and are translated by IDL compilers into client and servant side code
in specific programming languages. The client code acts as a proxy in order to contact the server side. The
servant code is a skeleton which usually must be inherited and expanded to process the clients requests. An
ORSB is usually provided with all the libraries needed to handle CORBA communications, the ORB user simply
fills the logic portions involved in the communication.

CORBA has been selected because it is complete and powerful inter-process and inter-platform communication
architecture. The ORB adopted by the Phosphorus team is the one developed within the omniORB project
[omniORB], which is an LGPL (Lesser GPL) CORBA ORB for C++ and Python. It has been chosen for its ability
to provide CORBA features in a sufficiently light and manageable suite.

14.3.1 omniORB

OmniOrb is a robust CORBA ORB with C++ and Python bindings, it is largely CORBA 2.6 compliant and it is
fully interoperable with other CORBA ORBs.

omniORB is fully multithreaded. To achieve low call overhead, unnecessary call-multiplexing is eliminated. With
the default policies, there is at most one call in-flight in each communication channel between two address
spaces at any one time. To do this without limiting the level of concurrency, new channels connecting the two
address spaces are created on demand and cached when there are concurrent calls in progress. Each channel
is served by a dedicated thread. This arrangement provides maximal concurrency and eliminates any thread
switching in either of the address spaces to process a call.

Furthermore, to maximise the throughput in processing large call arguments, large data elements are sent as
soon as they are processed while the other arguments are being marshalled. With GIOP 1.2, large messages
are fragmented, so the marshaller can start transmission before it knows how large the entire message will be.

From version 4.0 onwards, omniORB also supports a flexible thread pooling policy, and supports sending
multiple interleaved calls on a single connection. This policy leads to a small amount of additional call
overhead, compared to the default thread per connection model, but allows omniORB to scale to extremely
large numbers of concurrent clients.

omniORB uses real C++ exceptions and nested classes. It keeps to the CORBA specification's standard
mapping as much as possible and does not use the alternative mappings for C++ dialects. The only exception
is the mapping of IDL modules, which can use either namespaces or nested classes.

omniORB relies on native thread libraries to provide multithreading capability. A small class library (omnithread)
is used to encapsulate the APIs of the native thread libraries. In application code, it is recommended but not
mandatory to use this class library for thread management. It should be easy to port omnithread to any platform
that either supports the POSIX thread standard or has a thread package that supports similar capabilities.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

215

Grid-GMPLS high-level system design

omniORB is available for download at the following URL.: http://omniorb.sourceforge.net

14.3.2 Quagga daemons and threads

Traditional routing software is made as a one process program which provides all of the routing protocol
functionalities. Quagga takes a different design approach: it is made from a collection of several daemons that
work together to build the routing table. There may be several protocol-specific routing daemons and zebra the
kernel routing manager.

For changing the kernel routing table and for redistribution of routes between different routing protocols, there is
a kernel routing table manager zebra daemon. It is easy to add a new daemon to the system without affecting
any other software. There is no need for these daemons to be running on the same machine.

At the moment the Quagga software was planned, the thread library which comes with GNU/Linux or FreeBSD
had some problems running reliable services such as routing software. The Quagga team decided to avoid
threads at all, preferring a select() approach for multiplexing system events.

Quagga software is divided into daemons. Each daemon run as a separate process and exchanges its data
with the others via a socket based communication. Each process is divided into quagga-threads, a quagga-
thread is a software simulated thread which use the select() approach. Each daemon is linked with the Quagga
library which provides a thread/event scheduler for the running process. The scheduler selects a timer, an
event, a thread or a network operation and runs its related handling procedure. Each running object must be
cooperative with the others, it must explicitly yield to the CPU in order to let the others run in multithread-like
environment.

14.3.3 omniORB integration in Phosphorus

While an ORB is multi-threaded by nature, the Quagga software is single-threaded by design.

In order to integrate omniORB with Quagga, without modifying the whole Quagga software base, a mutex
approach has been selected. The mutex separates the Quagga scheduler from the ORB main loop and let
them run in different time slices. The Quagga scheduler works as usual, serving pending tasks if available. In
the meanwhile the ORB is stuck to the mutex which prevents the ORB and a Quagga tasks to run in parallel.

When the scheduler detects an idle status (no pending threads to serve) unblocks the ORB by releasing the
mutex. The ORB main loop starts running, serving CORBA requests for a specific amount of time. When the
allocated time-slice elapses, the ORB gives back the control to the Quagga scheduler.

In order to implement the described behaviour the CORBA servants must follow the software-contract
described in 14.3.3.4

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

216

Grid-GMPLS high-level system design

14.3.3.1 CORBA clients and servers common calls

Both CORBA clients and CORBA servers (which could be composed by a set of CORBA servant) should call
the library provided corba_init() function at startup and corba_fini() function at shutdown.

The corba_init() function initializes the ORB data structures and resolves initial references to the root POA. The
corba_fini() function is provided for symmetry and should perform clean-up actions if needed.

14.3.3.2 CORBA clients utility library

Client side software should follow a standard initialization phase which is composed by the following calls:
a) corba_init()

b) corba_client_setup(): Retrieves the ORB reference, fetches the involved servant IOR, narrows the
reference and setups relevant data structures

The finalization phase is composed by the following calls:
a) corba_client_shutdown(): Performs clean-up actions if needed

b) corba_client_fini()

14.3.3.3 CORBA server tility library

A Quagga based CORBA server must adhere to the call sequence that follows:

a) corba_init()

b) corba_server_setup(): Retrieves the POA reference, activates the servant and builds the IOR file
describing the servant access point, stores the POA Manager reference for later usage and finally
activates the POA Manager

The finalization phase is composed by the following calls:

a) corba_server_shutdown(): Removes the IOR files which has been generated by corba_server_setup()

b) corba_fini()

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

217

Grid-GMPLS high-level system design

14.3.3.4 CORBA servants requirements

Each servant must use the following skeleton on each method:

type servant::method(parms)
STACK_LOCK();

STACK_UNLOCK();
}

Code 14-2: CORBA servant requirements

The STACK LOCK() and STACK_UNLOCK() provide the locking/unlocking mechanism which drives the
CORBA/Quagga behaviour. A missing STACK_LOCK()/STACK_UNLOCK() will cause unpredictable results in
the whole server process

144 G2MPLS base Python modules

The founding Python modules developed for the G2MPLS project in WP2 are briefly explained in the following:
baseob)j

The baseobj module introduce a number of basic object to be used by the Python-based protocol controllers,
such as: BasicObject: a wrapper for the native Python object with a number of extra features (e.g. logging
facilities); BasicLock and BasicLocksTable: wraps the thread locks to make deadlocks easily debuggable;
BasicTable and ParmsBox: wraps basic dicts with locking facilities, in order to provide a powerful tool to
prevent a simultaneous access to critical objects (e.g. the table of Calls at the CCC or NCC).

bits

Introduces some classes for bitmask and address (node IDs, IPv4, IPv6, NSAP, MAC) manipulation.
corbahelper

An extensive wrapper to ease the creation of omniORB servants and clients. l.e. it provides safe wrappers for
client method invocations (e.g. retrying to read the IOR on transient exceptions), or the powerful and flexible

creation of omniORB servant classes and related methods, with minimum involvement in details of the
omniORB inner workings required from the programmers of protocol controllers.

fsm

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

218

Grid-GMPLS high-level system design
This module implements a flexible and configurable Finite State Machine engine. The FSM architecture is in
line with that specified for the G2MPLS framework (e.g. based on root events and detailed events, and
supporting both inbound and outbound transitions). The FSM has a queue of incoming events that can be
posted in a blocking or non-blocking fashion, and are executed by a thread sleeping on the queue. When
multiple instances of FSM exist (e.g. one per Call), the scalability of the system is greatly enhanced by
configuring the execution of all the transitions with a single thread, rather than multiple threads (one per FSM).
logger

A module implementing tracing facilities, with log classes and differentiated tracing levels for each class.
netutils

Allows to retrieve some info about the SCN interfaces of the G2MPLS controller.

protocol

The classes in this module incorporate some basic functionalities in order to simplify the development of
protocol controllers and protocol objects. In particular, the Protocol class already include a number of functions
related to the logging facility, the initialization and handling of CORBA, timers, network communication and
FSM. Any protocol class derived from this (e.g. the NetworkCallController) will inherit all these functionalities
automatically. The ProtoObiject class does the same for protocol objects, such as the Call.

timer

The timer module implements a calendar of timer events where all the timers of a protocol controller are
scheduled. This solution drastically increases the scalability of the timers management: just one timer (i.e.
thread) is needed for the whole calendar independently of the number of scheduled events, compared to the
standard solution where 1 thread exists per each scheduled timer.

udpcomm

Implements an UDP client and server.

xmlmsg

Implements a parser and formatter of XML-based signalling messages.

g2types

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

219

Grid-GMPLS high-level system design
This module includes a number of classes for the management of G2MPLS stuff; e.g. identifiers (Data Link, TE

Link, labels, TNA, LSP, Call, Recovery Bundle, etc.) and clusters of parameters (transport network resources,
LSP parameters, Call parameters, recovery parameters).

145 Software daemons

14.5.1 Irmd

This module is responsible for the management of the relationships among TE-links, Data-links, Control
channels and SCN interfaces. The TE-links are the result of a bundling procedure applied to a number of
physical component data-links with the eligibility for being part of the same logical construct.
The functionalities of the LRM comprise:
e Selection and allocation/de-allocation of resources (<Data-link, label>) in TE-link for signalling
purposes,
« Management of the TE-link status and bundling information for topology purposes.

Irmd exposes interfaces to gunirsvpd, g2rsvpted, tnrcd, ospfd, scngwd and g2nccd.

Irmd is not part of Quagga routing suite and is developed from scratch.

14.5.2 scngwd

This module is responsible for the management of the dualism between the Transport Network and Signalling
Network. In transmission, it correlates SDUs sent by the G*°MPLS protocols towards TE-link source/destinations
to the actual and active control channel and SCN interface configured on the G°MPLS controllers for that TE-
links pair.

In reception, scngwd selects the protocol instance and TE-link on which the SDUs received from the SCN
interface must be sent to.

The scngwd module is further broken down in two sub-modules as described in Table 14-1.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

220

Grid-GMPLS high-level system design

SCNGW
(SCN Gateway)

SCNGW client
(SCNGWC)

Library offering a wrapped socket API, to be linked by
each protocol wanting communication across the SCN.
It acts as an access i/f to the SCNGW server, and has 2
channels with it: 1 for data, 1 for control (e.g. open/close
sockets, etc.)

SCNGW server
(SCNGWS)

Separate process (i.e. a socket manager) handling
(tunnelled) communication through the SCN for one or
more clients. It maps TN resources (TE links) into SCN
resources (control i/fs) via the TE links <-> CCs
association.

Table 14-1: SCNGW breakdown in sub-modules.

scngwd exposes interfaces to gunirsvpd, gennirsvpd, g2rsvpted, ospfd, Irmd.

scngwd is not part of Quagga routing suite and is developed from scratch.

14.5.3 tnrcd

This module is responsible for abstracting the technology specific details of the transport network resources for
control plane use. The main functionalities of the Transport Network Resource Controller are:

« translation and maintenance of the bindings between the technology specific name space for transport
resources (e.g. in DWDM equipments: <port, wavelength>; in TDM: <port, virtual container>; in
Ethernet: <port, VLANs>) and the G2ZMPLS name space (<data-link, label>)

e translation between the technology specific configurations for transport resources (e.g. cross-
connections, protections, etc.) and the G°MPLS corresponding actions

< binding maintenance among the resources (e.g. cross-connections, bookings, protections/restorations,

etc.).

The tnrcd module is further broken down in two sub-modules as described in Table 14-2.

TNRC

(Transport Network
Resource Controller)

TNRC-AP

(TNRC Abstract Part)

Process offering a generic API for the configuration &
monitoring of the TN resources. It will abstract the TN
resource description, and provide an atomic grouping of
actions that might be composed by a set of local
management sub-actions on the equipment.

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus
D.2.3
31/03/08
034115

Phosphorus-WP2-D2.3

221

Grid-GMPLS high-level system design

Lower part of the process, loaded as plug-in, and
offering the upper part an API specific to the equipment
considered. It will name resources based on the
underlying TN technology and SwCap. The core part of
the TNRC-SP is likely to be dependent on the controlled
equipment (e.g. based on some proprietary SNMP MIB
sub-tree supported for configuration and monitoring).

TNRC-SP
(TNRC Specific Part))

Table 14-2: TNRC breakdown in sub-modules.

tnrcd exposes interfaces to Irmd, gunirsvpd, gennirsvpd, g2rsvpted and g2nccd.

tnred is not part of Quagga routing suite and is developed from scratch.

14.5.4 ospfd

This module is the OSPF routing protocol extended with GMPLS TE and Grid-GMPLS extensions (derived from
the GLUE schema mapping). The module implements the routing instance for the I-NNI interface between
G’MPLS nodes. Some preliminary E-NNI extensions and control of two instances (the I-NNI's and the E-NNI's
one) is also implemented as part of the extensions for G°MPLS interfacing (Task 2.2 - Activity A2.2.2).

ospfd exposes interfaces to Irmd, pcerad and scngwd.

ospfd in phosphorus-g2mpls is extended for G°MPLS with respect to the Quaggav0.99.7 baseline.

14.5.5 g2rsvpted

This module is the RSVP-TE signalling protocol extended with GMPLS TE and Grid-GMPLS extensions
(derived from the JSDL schema mapping). The module implements the I-NNI signalling between G°MPLS
nodes.

g2rsvpted exposes interfaces to Irmd, tnrcd, g2nccd, pcerad and scngwd.

g2rsvpted is not part of Quagga routing suite and is developed from scratch.

14.5.6 gunirsvpd

This module is the UNI RSVP signalling protocol extended with OIF UNI-RSVP and Grid-GMPLS extensions
(derived from the JSDL schema mapping). The module implements the G.UNI signalling between a G°MPLS
user and the node at the edge of a G°MPLS domain.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

222

Grid-GMPLS high-level system design
gunirsvpd exposes interfaces to Irmd, tnrcd, g2nced and scngwd.

gunirsvpd is not part of Quagga routing suite and is developed from scratch.

14.5.7 gennirsvpd

This module is the E-NNI RSVP signalling protocol extended with OIF ENNI-RSVP and Grid-GMPLS
extensions (derived from the JSDL schema mapping). The module implements the G.E-NNI signalling between
two border nodes of adjacent G°?MPLS domains.

gennirsvpd exposes interfaces to Irmd, tnrcd, g2nced and scngwd.

gennirsvpd is not part of Quagga routing suite and is developed from scratch.

14.5.8 g2nccd

This module is the GNS Transaction and G°MPLS Call Controller. It controls (setup and recovery) the end-to-
end call and in particular the segment implemented by the G>MPLS domain in which it operated.

g2nccd exposes interfaces to Irmd, tnrcd, g2rsvpted, gunirsvpd, gennirsvpd and pcerad.

g2nccd is not part of Quagga routing suite and is developed from scratch.

14.5.9 g2pcerad

This module implements the routing algorithm for the path computation of call segments.
g2pcera exposes interfaces to g2rsvpted, g2nccd and ospfd.

g2pcera is not part of Quagga routing suite and is developed from scratch.

14.5.10 lib

This library contains many common utilities of the Quagga framework that have been extended for G°MPLS
purposes. The core VTY implementation as well as the zebra client/server and the redefinition and control of
zebra pseudo-threads are part of the original Quagga v0.997 baseline. Common GMPLS types and addresses

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

223

l

Grid-GMPLS high-level system design

as well as some related set/get/print utilities have been added to the Quagga baseline. The library is linked by
all the processes in the phosphorus-g2mpls.

lib in phosphorus-g2mpls is extended for G?MPLS with respect to the Quaggav0.99.7 baseline.

14.5.11 pyg2mpls

This folder is the collection of Python-based protocol controllers (CCC, NCC and RC), plus a number of
common utilities (utils/, g2utils/, xcc/). The protocol controllers are contained in cccd, nccd and rcd,
respectively.

The NCC VTY is implemented in <sw_root>/nccd/.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

224

l

Grid-GMPLS high-level system design

15 References

As explained in section 1, the references listed here are only those directly functional to this document. For a
list of the references to standards appearing in this document, please point to D2.1, D2.2 and D2.7.

[PH-WP2-D2.1]
[PH-WP2-D2.2]

[PH-WP2-D2.6]

[PH-WP2-D2.7]
[QUAGGA-DOC]
[CORBA]
[omniORB]

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus deliverable D2.1, “The Grid-GMPLS Control Plane architecture”.

Phosphorus deliverable D2.2, “Routing and Signalling Extensions for the Grid-GMPLS Control
Plane”.

Phosphorus deliverable D2.6, “Deployment models and solutions of the Grid-GMPLS Control
Plane”.

Phosphorus deliverable D2.7, “Grid-GMPLS network interfaces”.

The Quagga Software Routing Suite documentation. http://www.quagga.net/docs/docs-info.php

http://www.corba.org/
http://omniorb.sourceforge.net/

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WP2-D2.3

225

Grid-GMPLS high-level system design

16 Acronyms

AAl
ANSI
API
ARGON
ASON
BB
BGRP
BoD

BR

CE

CIM
COPS
CORBA
CP

CPE
CPU
CR-LDP
DCM
DCN
DRAC
DVB
DWDM
EGEE
EC
EMS
E-NNI
ERO
ETSI

Project:

Authentication, Authorisation, and Accounting
Authentication and Authorization Infrastructure
American National Standards Institute
Application Programming Interface

Allocation and Reservations in Grid-enabled Optical Networks
Automatically Switched Optical Network
Bandwidth Broker

Border Gateway Reservation Protocol
Bandwidth on Demand

Border Router

Computing Element

Computer Integrated Manufacturing

Common Open Policy Protocol

Common Object Request Broker Architecture
Control Plane

Customer Premises Equipment

Central Processing Unit

Constraint-based Label Distribution Protocol
Distributed Call and Connection Management
Data Communication Network

Dynamic Resource Allocation Controller
Digital Video Broadcasting

Dense Wavelength Division Multiplexing
Enabling Grids for E-sciencE

European Commission

Execution Management Services

Exterior NNI

Explicit Route Object

European Telecommunications Standards Institute

Phosphorus

Deliverable Number: D.2.3

Date of Issue:
EC Contract No.:
Document Code:

31/03/08
034115
Phosphorus-WP2-D2.3

l

226

Grid-GMPLS high-level system design

EU European Union

FCAPS Fault, Configuration, Accounting, Performance, Security
G.CR-LDP G’MPLS CR-LDP

G.OSPF-TE GMPLS OSPF-TE

G.UNI Grid UNI

G.UNI-C G.UNI - Client

G.UNI-N G.UNI - Network

G.RSVP-TE GMPLS RSVP-TE

G2MPLS Grid-GMPLS (enhancements to GMPLS for Grid support)
GE Gigabit Ethernet

GEANT Pan-European Gigabit Research Network
GGF Global Grid Forum

GHPN Grid High Performance Networking

GIS Grid Information Service

GLUE Grid Laboratory Uniform Environment
GMPLS Generalized MPLS

GNS Grid Network Service

GRAM Grid Resource Allocation and Management
GSMP General Switch Management Protocol

HW Hardware

IANA Internet Assigned Numbers Authority

IDM GEANT?2 Inter-domain Manager

IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

I-NNI Interior NNI

P Internet Protocol

IPR Intellectual Property Right

IPSec IP security

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

IS-1S Intermediate System to Intermediate System
ITU International Telecommunication Union
JSDL Job Submission Description Language
LAN Local Area Network

LDP Label Distribution Protocol

LRMS Local Resource Management System

LSA Link State Advertisement

LSDB Link State Database

LSP Label Switched Path

LSR Label Switch Router

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

227

Grid-GMPLS high-level system design

MAC Media Access Control

MAN Metropolitan Area Network

MP Management Plane

MPLS Multi Protocol Label Switching

MPI Message Passing Interface

NCP Network Control Plane

NJS Network Job Supervisor

NMS Network Management System

NNI Network to Network Interface

NO Network Operator

NREN National Research and Education Network
NRPS Network Resource Provisioning Systems
NSAP Network Service Access Point

NSP Network Service Plane

NTP Network Time Protocol

OAM Operations, Administration and Maintenance
OGF Open Grid Forum

OGSA Open Grid Services Architecture

OIF Optical Internetworking Forum

os Operating System

OSPF Open Shortest Path First protocol
OSPF-TE OSPF with Traffic Engineering extensions
O-UNI Optical UNI

P2MP Point to Multi Point

PON Passive Optical Network

POSIX Portable Operating System Interface
QoS Quality of Service

RB Recovery Bundle (aka RecoBundle)

RC Routing Controller

RFC Request for Comments

RSVP Resource reSerVation Protocol
RSVP-TE RSVP with Traffic Engineering extensions
RTP Real-time Transport Protocol

SDO Standard Developing Organizations

SE Storage Element

SLA Service Level Agreement

SLS Service Level Specification

SME Small and Medium Enterprise

SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol

SP Service Provider

SPF Sender Policy Framework

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

228

Grid-GMPLS high-level system design

sw
TE
TGC
TL-1
TLS
TLV
T™MF
TO
TP
UCLP
UNI
UML
URI
VLAN
VPN
WAN
WG
WP
WS
WSON
XML

Project:

Software

Traffic Engineering

Trusted Computing Group
Transaction Language 1
Transport Layer Security
Type-Length-Value protocol fields
Tele Management Forum
Telecom Operator

Transport Plane

User-Controlled Lightpath Provisioning system
User to Network Interface

Unified Modeling Language
Uniform Resource Identifier
Virtual LAN

Virtual Private Network

Wide Area Network

Working Group

Work Package

Web Service

Wavelength Switched Optical Network
Extensible Markup Language

Phosphorus

Deliverable Number: D.2.3

Date of Issue:
EC Contract No.:
Document Code:

31/03/08
034115
Phosphorus-WP2-D2.3

l

229

l

Grid-GMPLS high-level system design

rppendix A COMMoON types

The Phosphorus G°MPLS common types used on the external interfaces among processes are specified in the
<sw_root>/idl/g2mplsTypes.idl file.

It is useful to report this detailed information here, since it can be easily read by humans, and provide an
interesting insight of the overall G2MPLS data model.

Al Identifiers

/I Neighbour & adjacency
typedef Types::uint32 nodeld;
typedef nodeld adjacencyld;

I/l generic address

typedef Types::uint32 addrIPv4;
typedef Types::uint32 addrIPv6[4];
typedef Types::uint32 addrUnnum;
typedef Types::uint8 addrNSAP[20];
typedef Types::uint8 addrMACI6];

i struct addrUnnum {

Il nodeld node;

i Types::uint32 addr;

U

enum addrType {
ADDRTYPE_IPV4,
ADDRTYPE_IPVS,
ADDRTYPE_UNNUM,
ADDRTYPE_NSAP,
ADDRTYPE_MAC

h

union addr switch (addrType) {
case ADDRTYPE_IPV4: addrlPv4 ipv4;

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

230

Grid-GMPLS high-level system design

case ADDRTYPE_IPV6: addrIPv6 ipv6;
case ADDRTYPE_UNNUM: addrUnnum unnum;
case ADDRTYPE_NSAP: addrNSAP nsap;
case ADDRTYPE_MAC: addrMAC mac;
b5
A2 Label identifier
enum labelType {
LABELTYPE_L32,
LABELTYPE_L60
b
union labelld switch (labelType) {
case LABELTYPE_L32: Types::uint32 label32;
case LABELTYPE_LG60: Types::uint64 label60;
b5
A3 TE-Link and Data Link
enum linkldType {
LINKIDTYPE_IPV4,
LINKIDTYPE_IPVS,
LINKIDTYPE_UNNUM
b
union linkld switch (linkldType) {
case LINKIDTYPE_IPV4: addrIPv4 ipv4;
case LINKIDTYPE_IPVG6: addrIPv6 ipv6;
case LINKIDTYPE_UNNUM: addrUnnum unnum;
b
typedef linkld TELinkld;
typedef linkld DLinkld;
enum adjType {
ADJTYPE_UNI,
ADJTYPE_INNI,
ADJTYPE_ENNI
I

A4 TNA identifier

enum tnaldType {
TNAIDTYPE_IPV4,
TNAIDTYPE_IPVS6,

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code:

Phosphorus-WP2-D2.3

231

Grid-GMPLS high-level system design

TNAIDTYPE_NSAP
kh

union tnald switch (tnaldType) {
case TNAIDTYPE_IPV4:
case TNAIDTYPE_IPV6:
case TNAIDTYPE_NSAP:

addrlPv4 ipv4;
addrIPv6 ipve6;

addrNSAP nsap;
b

typedef sequence<tnald> tnaldSeq;

A5 Call, Recovery Bundle and LSP identifiers

enum callldType {
CALLIDTYPE_NULL,
CALLIDTYPE_OPSPEC,
CALLIDTYPE_GLOBUNIQ

h

enum sourceldType {
SOURCEIDTYPE_IPV4,
SOURCEIDTYPE_IPVS,
SOURCEIDTYPE_NSAP,
SOURCEIDTYPE_MAC

h

union sourceld switch (sourceldType) {
case SOURCEIDTYPE_IPV4:
case SOURCEIDTYPE_IPVE:
case SOURCEIDTYPE_NSAP:
case SOURCEIDTYPE_MAC:

addrlPv4 ipv4;

addrIPv6 ipv6;
addrNSAP nsap;
addrMAC mac;

h

struct segments {
Types::uint8
Types::uint32

intISeg[3];
natlSeg[3];

struct callldent {
callldType idType;
segments segs;
sourceld srcld;
Types::uint64 localld;

struct recoBundleldent {

Project:

nodeld
nodeld
Types::uint32

struct Ispldent {
nodeld

Phosphorus

Deliverable Number: D.2.3

Date of Issue:
EC Contract No.:
Document Code:

31/03/08
034115

Phosphorus-WP2-D2.3

srcAddr;
dstAddr;
tunld;

dstNodeld;

232

Grid-GMPLS high-level system design

nodeld srcNodeld;
Types::uint32 tunld;
Types::uint32 extTid;
Types::uint32 Ispld;

A6 GMPLS extensions

enum labelState {
LABELSTATE_FREE,
LABELSTATE_BOOKED,
LABELSTATE_XCONNECTED,
LABELSTATE_BUSY

h

enum resourcePosition {
RESOURCEPOSITION_INGRESS,
RESOURCEPOSITION_EGRESS

h

enum operState {
OPERSTATE_UP,
OPERSTATE_DOWN

h

enum adminState {
ADMINSTATE_DISABLED,
ADMINSTATE_ENABLED
I

struct statesBundle {
operState opState;
adminState admState;

h

enum recoveryType {
RECOVERYTYPE_UNPROTECTED,
RECOVERYTYPE_PROTECTION,
RECOVERYTYPE_PREPLANNED,
RECOVERYTYPE_OTF,
RECOVERYTYPE_OTF_REVERTIVE

h

enum disjointness {
DISJOINTNESS_NONE,
DISJOINTNESS_LINK,
DISJOINTNESS_NODE,
DISJOINTNESS_SRLG

h

enum switchingCap {
SWITCHINGCAP_PSC 1, //
SWITCHINGCAP_PSC_2, //

1,
2,

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

233

Grid-GMPLS high-level system design

SWITCHINGCAP_PSC 3, // =3,
SWITCHINGCAP_PSC_4, // = 4,
SWITCHINGCAP_L2SC , // = 51,
SWITCHINGCAP_TDM , // = 100,
SWITCHINGCAP_LSC , // = 150,
SWITCHINGCAP_FSC // = 200

h

enum encodingType {
ENCODINGTYPE_PACKET ,// =1,

ENCODINGTYPE_ETHERNET =2,
ENCODINGTYPE_ANSI_ETSI_PDH , // =3,

ENCODINGTYPE_RESERVED_1 =4,
ENCODINGTYPE_SDH_SONET 1 =5,
ENCODINGTYPE_RESERVED_2 11 =6,

ENCODINGTYPE_DIGITAL_WRAPPER, // = 7,
ENCODINGTYPE_LAMBDA ,// =8,
ENCODINGTYPE_FIBER =9,

ENCODINGTYPE_RESERVED_3 Il =10,
ENCODINGTYPE_FIBERCHANNEL , // = 11,

ENCODINGTYPE_G709_ODU =12,
ENCODINGTYPE_G709_OC /=13,

h

enum genPid {

GPID_ASYNCH_E4 =5,
GPID_ASYNCH_DS3 T3 ,//= 6,
GPID_ASYNCH_E3 =7,

GPID_BIT_SYNCH E3 ,//= 8,
GPID_BYTE_SYNCH_E3 ,//= 9,
GPID_ASYNCH_DS2 T2 ,// =10,
GPID_BIT_SYNCH_DS2_T2 =11,
GPID_ASYNCH_E1 =13,
GPID_BYTE_SYNCH_E1 ,// =14,

Project:

GPID_BYTE_SYNCH_31DS0 Il =15,
GPID_ASYNCH_DS1 _T1 ,//=16,
GPID_BIT_SYNCH_DS1_T1 =17,
GPID_BYTE_SYNCH_DS1_T1 1l =18,

GPID_VC_11_IN_VC 12 ,// =19,
GPID_DS1_SF_ASYNCH /=22,
GPID_DS1_ESF_ASYNCH |, // = 23,
GPID_DS3_M23_ASYNCH , // = 24,
GPID_DS3_C_PARITY_ASYNCH |, // = 25,
GPID_VT_LOVC I =26,
GPID_STSSPE_HOVC =27,
GPID_POS_NOSCRAMBLING_16CRC, // = 28,
GPID_POS_NOSCRAMBLING_32CRC, // = 29,
GPID_POS_SCRAMBLING_16CRC , // = 30,
GPID_POS_SCRAMBLING_32CRC , // = 31,

GPID_ATM_MAPPING , =32,
GPID_ETHERNET , I =33,
GPID_SONET_SDH , =34,
GPID_DIGITAL_WRAPPER , I = 36,

GPID_LAMBDA Il =37,
GPID_ANSI_ETSI_PDH , // = 38,
GPID_LAPS_X85 X86 /=40,

GPID_FDDI =41,
GPID_DQDB =42,
Phosphorus

Deliverable Number: D.2.3

Date of Issue:
EC Contract No.:
Document Code:

31/03/08
034115
Phosphorus-WP2-D2.3

234

Grid-GMPLS high-level system design

GPID_FIBERCHANNEL_3 , // =43,

GPID_HDLC Il = 44,
GPID_ETH_V2_DIX Il =45,
GPID_ETH_802_3 Il = 46,
GPID_G709_ODUJ =47,
GPID_G709_OTUK Il = 48,
GPID_CBR_CBRA Il =49,
GPID_CBRB , Il = 50,
GPID_BSOT Il =51,
GPID_BSNT Il =52,
GPID_IP_PPP_GFP , Il =53,
GPID_ETHMAC_GFP Il =54,
GPID_ETHPHY_GFP , Il =55,
GPID_ESCON , Il =56,
GPID_FICON Il = 57,

h

enum protType {

PROTTYPE_NONE , Il =0x00,
PROTTYPE_EXTRA , Il =0x01,
PROTTYPE_UNPROTECTED , Il =0x02,
PROTTYPE_SHARED , Il = 0x04,

PROTTYPE_DEDICATED_1TO1 , Il =0x08,
PROTTYPE_DEDICATED_1PLUS1, // =0x10,
PROTTYPE_ENHANCED /I = 0x20,

enum crankbackScope {
CRANCKBACKSCOPE_NONE ,
CRANCKBACKSCOPE_E2E ,
CRANCKBACKSCOPE_BOUNDARY
CRANCKBACKSCOPE_SEGMENTBASED

h

enum issuerType {
ISSUERTYPE_MANAGEMENT _IF,
ISSUERTYPE_UNI_IF,
ISSUERTYPE_ENNI_IF

h

struct actorinfo {
issuerType issuer;
boolean forceCommand;

h

enum IspType {
LSPTYPE_SPC, // Soft permanent connection
LSPTYPE_PC, // Permanent connection
LSPTYPE_SC /[Switched connection

h

enum IspResourceAction {
LSPRESOURCEACTION_XCONNECT,
LSPRESOURCEACTION_BOOK

kh

enum IspRroMode {

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

235

Grid-GMPLS high-level system design

LSPRROMODE_OFF, /I no RRO recording
LSPRROMODE_TEL_DETAIL, Il recoding just up to TE- links
LSPRROMODE_DL_DETAIL, /I recoding just up to Data -links
LSPRROMODE_ALL // recoding all up to labels

Ji
/I Transport Network resource
struct tnResource {

TELinkld teLink;
DLinkId dataLink;
labelld label;
I
struct tnaResource {
tnald tna;
DLinkld dataLink;// only if _v!=0
labelld label; //onlyif_vI=0
b

A7 Grid extensions
A.7.1 Signalling-specific
I/ Grid Site Network Assigned address
typedef Types::uint32 gsnald;
struct rangeSpec {
boolean valid;
Types::uint32 lowerBound;
boolean IbIncluded;
Types::uint32 upperBound;
boolean ublncluded;
I
/I GRID APPLICATION
enum gridApplicationType {
GRIDAPPLICATIONTYPE_UNKNOWN, // = 0x0000,
GRIDAPPLICATIONTYPE_WISDOM , // = 0x0001,
GRIDAPPLICATIONTYPE_KODAVIS, // = 0x0002,
GRIDAPPLICATIONTYPE_TOPS , // = 0x0003,
GRIDAPPLICATIONTYPE_DDSS , // = 0x0004,
GRIDAPPLICATIONTYPE_INCA , // = 0x0005,
GRIDAPPLICATIONTYPE_OTHER /I = OXFFFF,
I
struct gridApplication {
boolean valid;
gridApplicationType type;
Types::uint32 mjrRev;
Types::uint32 mnrRev;
Types::uint32 bldFix;
h
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

236

Grid-GMPLS high-level system design

/I GRID HOST ID

enum gridHostType {
GRIDHOSTTYPE_UNDEFINED,
GRIDHOSTTYPE_IPV4,
GRIDHOSTTYPE_IPVS,
GRIDHOSTTYPE_NSAP

kh

union gridHostld switch (gridHostType) {
case GRIDHOSTTYPE_UNDEFINED: long value;
case GRIDHOSTTYPE_IPV4: addriPv4 ipv4;
case GRIDHOSTTYPE_IPV6: addrlPv6 ipv6;
case GRIDHOSTTYPE_NSAP: addrNSAP nsap;

h

/I FS RESOURCES

enum gridFsName {
GRIDFSNAME_UNKNOWN, // = 0x00,
GRIDFSNAME_HOME , // = 0x01,
GRIDFSNAME_ROOT , // = 0x02,
GRIDFSNAME_SCRATCH, // = 0x03,
GRIDFSNAME_TMP |, // = 0x04,
GRIDFSNAME_OTHER // = OXFF

h

enum gridFsType {
GRIDFSTYPE_UNKNOWN , //= 0x00,
GRIDFSTYPE_SWAP , //= 0x01,
GRIDFSTYPE_TEMPORARY , //= 0x02,
GRIDFSTYPE_SPOOL , //= 0x03,
GRIDFSTYPE_NORMAL , //= 0x04,
GRIDFSTYPE_OTHER /I= OXFF

h

struct gridFsResources {

boolean valid;
gridFsName fsName;
gridFsType fsType;
rangeSpec diskSpace;
string mountPoint;
string mountSource;

h

Il SYSTEM CAPABILITIES
enum gridOsType {

GRIDOSTYPE_UNKNOWN , /1= 0x0000,
GRIDOSTYPE_MACOS , /1= 0x0001,
GRIDOSTYPE_ATTUNIX , //I= 0x0002,
GRIDOSTYPE_DGUX , /= 0x0003,
GRIDOSTYPE_DECNT , /1= 0x0004,
GRIDOSTYPE_TRU64_UNIX , [/= 0x0005,
GRIDOSTYPE_OPENVMS , //I= 0x0006,
GRIDOSTYPE_HPUX , /[I= 0x0007,
GRIDOSTYPE_AIX , /I= 00008,
GRIDOSTYPE_MVS , //= 0x0009,
GRIDOSTYPE_0OS400 , /I= 0x000A,
GRIDOSTYPE_OS_2 , /[I= 0x000B,

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

237

Grid-GMPLS high-level system design

GRIDOSTYPE_JAVAVM , /= 0x000C,
GRIDOSTYPE_MSDOS , /= 0x000D,
GRIDOSTYPE_WIN3X , /= 0XO00E,
GRIDOSTYPE_WIN95 , /= 0xO0OF,
GRIDOSTYPE_WIN98 , /= 0x0010,
GRIDOSTYPE_WINNT /= 0x0011,
GRIDOSTYPE_WINCE , l/= 0x0012,
GRIDOSTYPE_NCR3000 /= 0x0013,
GRIDOSTYPE_NETWARE , /= 0x0014,
GRIDOSTYPE_OSF , l/= 0x0015,
GRIDOSTYPE_DC_OS , /= 0x00186,

GRIDOSTYPE_RELIANT_UNIX , //= 0x0017,
GRIDOSTYPE_SCO_UNIXWARE , //= 0x0018,
GRIDOSTYPE_SCO_OPENSERVER , //= 0x0019,

GRIDOSTYPE_SEQUENT , ll= OX001A,
GRIDOSTYPE_IRIX , /l= 0x001B,
GRIDOSTYPE_SOLARIS , ll= 0x001C,
GRIDOSTYPE_SUNOS , ll= 0x001D,
GRIDOSTYPE_U6000 , /= OX001E,
GRIDOSTYPE_ASERIES , ll= OX001F,
GRIDOSTYPE_TANDEMNSK , ll= 0x0020,
GRIDOSTYPE_TANDEMNT , ll= 0x0021,
GRIDOSTYPE_BS2000 , ll= 0x0022,
GRIDOSTYPE_LINUX , ll= 0x0023,
GRIDOSTYPE_LYNX , Il= 0x0024,
GRIDOSTYPE_XENIX , ll= 0x0025,
GRIDOSTYPE_VM , ll= 0x00286,
GRIDOSTYPE_INTERACTIVE_UNIX , //= 00027,
GRIDOSTYPE_BSDUNIX , ll= 0x0028,
GRIDOSTYPE_FREEBSD , ll= 0x0029,
GRIDOSTYPE_NETBSD , ll= 0X002A,
GRIDOSTYPE_GNU_HURD , ll= 0x002B,
GRIDOSTYPE_0S9 , ll= 0x002C,
GRIDOSTYPE_MACH_KERNEL , //= 0x002D,
GRIDOSTYPE_INFERNO , /= OX002E,
GRIDOSTYPE_QNX , ll= 0X002F,
GRIDOSTYPE_EPOC , /= 0x0030,
GRIDOSTYPE_IXWORKS , Il= 0x0031,
GRIDOSTYPE_VXWORKS , ll= 0x0032,
GRIDOSTYPE_MINT , ll= 0x0033,
GRIDOSTYPE_BEOS , Il= 0x0034,
GRIDOSTYPE_HP_MPE , ll= 0x0035,
GRIDOSTYPE_NEXTSTEP , /= 0x0036,
GRIDOSTYPE_PALMPILOT , /= 0x0037,
GRIDOSTYPE_RHAPSODY , Il= 0x0038,
GRIDOSTYPE_WINDOWS_2000 , //= 0x0039,
GRIDOSTYPE_DEDICATED , lI= 0X003A,
GRIDOSTYPE_OS_390 , /l= 0x003B,
GRIDOSTYPE_VSE , ll= 0x003C,
GRIDOSTYPE_TPF , /l= 0x003D,

GRIDOSTYPE_WINDOWS_R_ME , //= OX003E,
GRIDOSTYPE_CALDERA_OPEN_UNIX , /= 0x003F,

GRIDOSTYPE_OPENBSD , [/I= 0x0040,
GRIDOSTYPE_WINDOWS_XP , [I=0x0042,
GRIDOSTYPE_Z_OS , /1= 0x0043,
GRIDOSTYPE_OTHER /1= OXFFFF,
b

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

238

Grid-GMPLS high-level system design

enum gridCpuArch {
GRIDCPUARCH_UNKNOWN , //= 0X00,
GRIDCPUARCH_SPARC , //=0X01,
GRIDCPUARCH_POWERPC , //= 0X02,
GRIDCPUARCH_X86 , //=0X03,
GRIDCPUARCH_X86_32 , //= 0X04,
GRIDCPUARCH_X86_64 , //= 0X05,
GRIDCPUARCH_PARISC , //= 0X06,
GRIDCPUARCH_MIPS , //I= 0X07,
GRIDCPUARCH_IA64 , //= 0XO08,
GRIDCPUARCH_ARM , //= 0X09,
GRIDCPUARCH_OTHER //= OXFF,

I

struct gridOslInfo {
boolean valid;
gridOsType type;
Types::uint32 mjrRev;
Types::uint32 mnrRev;
Types::uint32 bldFix;

b

struct gridSysCap {
boolean valid;
gridOsInfo 0s;
gridCpuArch cpuArch;
boolean exclusiveAccess;

b

/| DATA STAGING

enum gridStagingCreationFlag {
GRIDSTAGINGCF_UNKNOWN , 110x1
GRIDSTAGINGCF_OVERWRITE , //0x1
GRIDSTAGINGCF_APPEND , 110x2
GRIDSTAGINGCF_DONTOVERWRITE //0x4

b
struct gridDataStaging {
boolean valid;
gridFsName fsName;
gridStagingCreationFlag cf;
boolean delOnTermination;
string fileName;
string source;
string target;

h

struct gridParams {
gridApplication

application; // #01

gridHostld candHost; Il #02
gridFsResources fileSystemRes; /I #03
gridSysCap systemCaps; // #04
rangeSpec indCpuSpeed; // #05
rangeSpec indCpuTime; // #06
rangeSpec indCpuCount; // #07
rangeSpec indNetBw; Il #08
rangeSpec indPhyMem; // #09

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code:

Phosphorus-WP2-D2.3

239

Grid-GMPLS high-level system design

rangeSpec indVirMem; // #10
rangeSpec indDiskSpace]f/ #11
rangeSpec totCpuTime; // #12
rangeSpec totCpuCount; // #13
rangeSpec totPhyMem; /[#14
rangeSpec totVirMem; // #15
rangeSpec totDiskSpace]/ #16
rangeSpec totResCount; // #17
gridDataStaging dataStaging; // #18
gsnald gridSite; Il #19

A.7.2 Routing-specific

struct geoCoords {

boolean valid;
Types::uint32 latResolution;
Types::uint64 latitute;
Types::uint32 lonResolution;
Types::uint64 longitude;

I

struct gridSiteParams {
string name;
geoCoords location;
nodeld peRouterld;

I

typedef Types::uint32 gridSubNodeld;

enum gridSubNodeType {
GRIDSUBNODETYPE_UNKNOWN,
GRIDSUBNODETYPE_SERVICE,
GRIDSUBNODETYPE_COMPUTINGELEMENT,
GRIDSUBNODETYPE_SUBCLUSTER,
GRIDSUBNODETYPE_STORAGEELEMENT

k
struct gridSubNodeldent {
gridSubNodeld id;
gridSubNodeType type;
Ji
typedef sequence<gridSubNodeldent> gridSubNodelden tSeq;
struct gridSubNodes {
gridSubNodeldentSeq services;
gridSubNodeldentSeq compElems;
gridSubNodeldentSeq subClusters;
gridSubNodeldentSeq storageElems;
Ji

enum gridServiceType {
SERVICE_UNKNOWN ,
ORG_GLITE_WMS ,

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

240

Grid-GMPLS high-level system design

ORG_GLITE_RGMA_LATESTPRODUCER ,
ORG_GLITE_RGMA_STREAMPRODUCER ,
ORG_GLITE_RGMA_DBPRODUCER ,
ORG_GLITE_RGMA_CANONICALPRODUCER ,
ORG_GLITE_RGMA_ARCHIVER ,
ORG_GLITE_RGMA_CONSUMER ,
ORG_GLITE_RGMA_REGISTRY ,
ORG_GLITE_RGMA_SCHEMA ,
ORG_GLITE_RGMA_BROWSER ,
ORG_GLITE_RGMA_PRIMARYPRODUCER ,
ORG_GLITE_RGMA_SECONDARYPRODUCER ,
ORG_GLITE_RGMA_ONDEMANDPRODUCER ,
ORG_GLITE_VOMS ,
ORG_GLITE_FIREMANCATALOG ,
ORG_GLITE_SEINDEX ,
ORG_GLITE_METADATA ,
ORG_GLITE_CHANNELMANAGEMENT ,
ORG_GLITE_FILETRANSFER ,
ORG_GLITE_FILETRANSFERSTATS ,
ORG_GLITE_CHANNELAGENT ,
ORG_GLITE_KEYSTORE ,
ORG_GLITE_FAS ,
ORG_GLITE_GLITEIO ,

SRM ,

GSIFTP

ORG_EDG_LOCAL_REPLICA_CATALOG ,
ORG_EDG_REPLICA_METADATA_CATALOG ,
ORG_EDG_SE ,
IT_INFN_GRIDICE ,

MYPROXY ,

GUMS ,

GRIDCAT

EDU_CALTECH_CACR_MONALISA ,
OPENSSH ,

MDS_GIIS ,

BDII ,

RLS

DATA_LOCATION_INTERFACE ,
PBS_TORQUE_SERVER ,
PBS_TORQUE_MAUI
UNICORE_CORE_TARGETSYSTEMFACTORY ,
UNICORE_CORE_TARGETSYSTEM ,
UNICORE_CORE_STORAGEMANAGEMENT ,
UNICORE_CORE_FILETRANSFER ,
UNICORE_CORE_JOBMANAGEMENT ,
UNICORE_CORE_REGISTRY
UNICORE_WORKFLOW_WORKFLOWFACTORY ,
UNICORE_WORKFLOW_WORKFLOWMANAGEMENT ,
UNICORE_WORKFLOW_SERVICEORCHESTRATOR ,
UNICORE_WORKFLOW_GRIDRESOURCEINFORMATIONSERVICE,
UNICORE_CISINFORMATIONPROVIDER ,
SERVICE_OTHER

h

struct gridServicelnfo {

boolean valid;
gridServiceType type;
Types::uint32 mjrRev;

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

241

Grid-GMPLS high-level system design

Types::uint32 mnrRev;
Types::uint32 bldFix;

h

enum gridServiceState {
GRIDSERVICESTATE_UNKNOWN,
GRIDSERVICESTATE_OK,
GRIDSERVICESTATE_WARNING,
GRIDSERVICESTATE_CRITICAL,
GRIDSERVICESTATE_OTHER

b

struct gridServiceParams {
gridServicelnfo data;
gridServiceState state;
gridHostld endPointAddr;

b

enum gridLrmsType {
GRIDLRMSTYPE_UNKNOWN,
GRIDLRMSTYPE_OPENPBS,
GRIDLRMSTYPE_LSF
GRIDLRMSTYPE_CONDOR,
GRIDLRMSTYPE_BQS
GRIDLRMSTYPE_CONDORG,
GRIDLRMSTYPE_FBSNG ,
GRIDLRMSTYPE_TORQUE ,
GRIDLRMSTYPE_PBSPRO ,
GRIDLRMSTYPE_SGE
GRIDLRMSTYPE_NQE
GRIDLRMSTYPE_FORK
GRIDLRMSTYPE_OTHER

Ji

struct gridLrmslInfo {
boolean valid;
gridLrmsType type;
Types::uint32 mjrRev;
Types::uint32 mnrRev;
Types::uint32 bldFix;

Ji

enum gridCeSeState {
GRIDCESESTATE_UNKNOWN
GRIDCESESTATE_QUEUING ,
GRIDCESESTATE_PRODUCTION,
GRIDCESESTATE_CLOSED ,
GRIDCESESTATE_DRAINING

h
struct gridJobsState {
boolean valid;
Types::uint32 freeJobSlots; // just 16 Isbs
gridCeSeState state;
h
struct gridJobsStats {
boolean valid;
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

242

Grid-GMPLS high-level system design

Types::uint32

Types::uint32

Types::uint32
Ji

struct gridJobsTimePerf {
boolean
Types::uint32
Types::uint32

Ji

struct gridJobsTimePolicy {
boolean
Types::uint32
Types::uint32
Types::uint32
Types::uint32

Ji

struct gridJobsLoadPolicy {

boolean
Types::uint32
Types::uint32
Types::uint32
Types::uint32
Types::uint32
Types::uint8
boolean

h

struct JobSlotsCalendarEvent {
Types::uint32
Types::uint32

runningJobs;
waitingJobs;
totalJobs;

valid;
estimatedResponseTime;
worstResponseTime;

valid;
maxWallclocktime;
maxObtainableWallclockTime;
maxCpuTime;
maxObtainableCpuTime;

valid;
maxTotalJobs;
maxRunningJobs;
maxWaitingJobs;
assignedJobSlots; // 16 Isbs
maxSlotsPerJobs; // 16 Isbs
priority;

preemptionFlag;

unixTime;
JobSlots; // just 16 Isbs

I
typedef sequence<JobSlotsCalendarEvent>JobSlotsCa lendarSeq;
struct gridCEParams {
gridLrmslInfo Irmslinfo;
gridHostld hostAddr;
Types::uint32 gatekeeperPort;
string jobManager;
string dataDir;
gridSubNodeld defaultStorageElemld;
gridJobsState jobsState;
gridJobsStats jobsStats;
gridJobsTimePerf jobsTimePerf;
gridJobsTimePolicy jobsTimePolicy;
gridJobsLoadPolicy jobsLoadPalicy;
JobSlotsCalendarSeq freeJobSlotsCalendar;
I

struct gridCpuCount {
Types::uint32
Types::uint32

struct subClusterCalendarEvent {

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

physical;
logical;

243

Grid-GMPLS high-level system design

Types::uint32 unixTime;
gridCpuCount cpuCount;

I

typedef sequence<subClusterCalendarEvent> subClust

struct gridCpulnfo {

boolean valid;
gridCpuCount cpuCounts;
gridCpuArch CcpuArch;

I

struct gridMemorylInfo {
boolean valid;
Types::uint32 ramSize;
Types::uint32 virtualMemorySize;

struct gridSubClusterParams {

gridCpulnfo cpu;

gridOsInfo 0s;

gridMemoryInfo memory;
gridApplication software;

string softwareEnvironmentSetup;
subClusterCalendarSeq subClusterCalendar;

h

enum gridStorageArch {
GRIDSTORAGEARCH_UNKNOWN
GRIDSTORAGEARCH_DISK
GRIDSTORAGEARCH_TAPE
GRIDSTORAGEARCH_MULTIDISK,
GRIDSTORAGEARCH_OTHER

Ji
struct gridStoragelnfo {
boolean valid;
gridStorageArch arch;
gridCeSeState state;
Types::uint32 accessProtocolsMask;
Types::uint32 controlProtocolsMask;
Ji
struct gridStorageSize {
boolean valid;
Types::uint32 total;
Types::uint32 used;

enum gridStorageRetentionPolicy {
GRIDSTORAGERETENTIONPOLICY_UNKNOWN
GRIDSTORAGERETENTIONPOLICY_CUSTODIAL,
GRIDSTORAGERETENTIONPOLICY_OUTPUT ,
GRIDSTORAGERETENTIONPOLICY_REPLICA

kh

enum gridStorageAccessLatency {

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

erCalendarSeq;

244

Grid-GMPLS high-level system design

A.8

Project:

GRIDATORAGEACCESSLATENCY_UNKNOWN ,
GRIDATORAGEACCESSLATENCY_ONLINE ,
GRIDATORAGEACCESSLATENCY_NEARLINE,
GRIDATORAGEACCESSLATENCY_OFFLINE

h

enum gridStorageExpirationMode {
GRIDSTORAGEEXPIRATIONMODE_UNKNOWN ,
GRIDSTORAGEEXPIRATIONMODE_NEVER_EXPIRE ,
GRIDSTORAGEEXPIRATIONMODE_WARN_WHEN_EXPIRED ,
GRIDSTORAGEEXPIRATIONMODE_RELEASE_WHEN_EXPIRED

Ji

struct gridStorageArealnfo {
boolean valid;
Types::uint32 totalOnlineSize;
Types::uint32 freeOnlineSize;
Types::uint32 reservedTotalOnlineSize;
Types::uint32 totalNearlineSize;
Types::uint32 freeNearlineSize;
Types::uint32 reservedNearlineSize;
gridStorageRetentionPolicyretentionPolicy;
gridStorageAccessLatency accesslLatency;
gridStorageExpirationMode expirationMode;

Ji

struct gridStorageCount {
Types::uint32 freeOnlineSize;
Types::uint32 logicalCpus;

struct seCalendarEvent {

Types::uint32 unixTime;
gridStorageCount storageCount;

k

typedef sequence<seCalendarEvent> seCalendarSeq;

struct gridSEParams {

gridStoragelnfo storagelnfo;
gridStorageSize onlineSize;
gridStorageSize nearlineSize;
string storageAreaName;
string storageAreaPath;
gridStorageArealnfo storageArealnfo;
seCalendarSeq seCalendar;

GNS call parameters

struct callParams {
string name;
Types::uint32 startTime;

Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

245

Grid-GMPLS high-level system design

Types::uint32 endTime;

string jobName; /I GNS Call

string jobProject; // GNS Call

/Inodeld destNid;

/lendPoint iEp; /l ing endpt

/lendPoint eEp; /I egr endpt
b5

A.9 Recovery parameters

struct recoveryParams {
recoveryType recType;
disjointness disjType;

kh

enum IspRole {
LSPROLE_UNDEFINED,
LSPROLE_WORKER,
LSPROLE_BACKUP

A.10 LSP parameters

struct IspParams {
IspType type;
IspRole role;
switchingCap swCap;
encodingType encType;
genPid gpid;
Types::uint32 bw; // encoded IEEE FP
Types::uint32 setupPrio;
Types::uint32 holdingPrio;
Types::uint32 excludeAny;
Types::uint32 includeAny;
Types::uint32 includeAll;
protType linkProtMask;
crankbackScope crankback;
Types::uint32 maxCbackRetriesSrc;
Types::uint32 maxCbackRetriesIntmd;
IspResourceAction action;
IspRroMode rroMode;
Types::uint32 refreshinterval;
boolean activateAck;
Types::uint32 rapidRetransminterval;
Types::uint32 rapidRetryLimit;
Types::uint32 incrementValueDelta;
h

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

246

Grid-GMPLS high-level system design

A11 ERO
struct eroltem {
nodeld node;
TELinkld teLink;
DLinkld upstreamDatalLink;
DLinkld downstreamDataLink;
labelld upstreamLabel;
labelld downstreamLabel;
boolean loose;
b
typedef sequence<eroltem> eroSeq;
A.12 LRM specific
typedef sequence<TELinkld> TELinkldSeq;
typedef sequence<DLinkld> DLinkldSeq;
struct TELinkParameters {
statesBundle states;
/I XXX ADD TE info
b
struct DLinkParameters {
statesBundle states;
switchingCap swCap;
encodingType encType;
Types::uint32 maxBandwidth;
Types::uint32 maxResBandwidth;
Types::uint32 availBandwidthPer Prio[8];
Types::uint32 maxLSPbandwidth[8 I
Types::uint32 minLSPband width;
struct TELinkData {
TELinkld localld;
TELinkld remoteld;
nodeld neighbour;
TELinkParameters parms;
b
typedef sequence<TELinkData> TELinkData Seq;
struct DLinkData {
DLinkld localld;
DLinkld remoteld;
DLinkParameters parms;
b
typedef sequence<DLinkData> DLinkDataS eq;
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

247

Grid-GMPLS high-level system design

A.13 TNRC specific

enum xcDirection {
XCDIR_UNIDIRECTIONAL,
XCDIR_BIDIRECTIONAL,
XCDIR_BCAST

h

enum tnrcResult {
TNRC_RESULT_NOERROR,
TNRC_RESULT_EQPTDOWN,
TNRC_RESULT_PARAMERROR,
TNRC_RESULT_NOTCAPABLE,
TNRC_RESULT_BUSYRESOURCES,
TNRC_RESULT_INTERNALERROR,
TNRC_RESULT_GENERICERROR

Al4s G°.PCE-RA specific

typedef sequence<Types::uint32> areaSeq;

enum nodeType {
NODETYPE_UNKNOWN,
NODETYPE_NETWORK,
NODETYPE_GRID

b
struct nodeldent {
nodeld id;
nodeType type;
b
typedef sequence<nodeldent> nodeldentSeq;

struct netNodeParams {

boolean isDomain;
statesBundle state;

Types::uint32 colors;

areaSeq areas;

h

enum linkType {
LINKTYPE_UNKNOWN,
LINKTYPE_TE,
LINKTYPE_TE_SDHSONET,
LINKTYPE_TE_G709,
LINKTYPE_TE_WDM

kh

enum linkMode {
LINKMODE_UNKNOWN ,

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

248

Grid-GMPLS high-level system design

LINKMODE_P2P_UNNUMBERED
LINKMODE_P2P_NUMBERED ,
LINKMODE_MULTIACCESS

LINKMODE_ENNI_INTERDOMAIN,
LINKMODE_ENNI_INTRADOMAIN

Ji
struct iscParamsGen {
switchingCap swCap;
encodingType encType;
Types::uint32 maxLSPbandwidth[8 1;

struct iscParamsPsc {

switchingCap swCap;
encodingType encType;
Types::uint32 maxLSPbandwidth[8];
Types::uint32 minLSPbandwidth;
Types::uint32 interfaceMTU; // 16 Isbs

Ji

struct iscParamsTdm {
switchingCap swCap;
encodingType encType;
Types::uint32 maxLSPbandwidth[8];
Types::uint32 minLSPbandwidth;
Types::uint8 indication;

Ji

union isc switch (switchingCap) {
case SWITCHINGCAP_PSC _1:
case SWITCHINGCAP_PSC_2:
case SWITCHINGCAP_PSC_3:
case SWITCHINGCAP_PSC_4:

iscParamsPsc psc;
case SWITCHINGCAP_TDM :
iscParamsTdm tdm;

case SWITCHINGCAP_L2SC :
case SWITCHINGCAP_LSC :
case SWITCHINGCAP_FSC :

iscParamsGen gen;
I
typedef sequence<isc> iscSeq;
typedef Types::uint32 availBwPerPrio[8];
struct teLinkCalendarEvent {
Types::uint32 unixTime;
availBwPerPrio availBw;
I
typedef sequence<teLinkCalendarEvent> teLinkCalend arSeq;
typedef sequence<Types::uint32> srlgSeq;
struct teLinkldent {
nodeld localNodeld;
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

249

Grid-GMPLS high-level system design

Project:

Date of Issue:

TELinkld

nodeld

TELinkld

linkType
b

typedef sequence<teLinkldent>

struct teLinkComParams {

linkMode
Types::uint32
Types::uint32
Types::uint32
Types::uint8
Types::uint32
Types::uint32

Ji

struct freeCTPEntry {
Types::uint8
Types::uint32

Ji

typedef sequence<freeCTPEntry>

struct teLinkTdmParams {
Types::uint32
Types::uint32
Types::uint32
Types::uint32

Ji

struct teLinkLscG709Params {
Types::uint32
k

struct teLinkWdmAmplifierEntry {
Types::uint32
Types::uint32

tg/pedef sequence<teLinkWdmAmplifierEntry>

struct teLinkLscWdmParams {
Types::uint32
Types::uint32
amplifiersSeq

I
typedef sequence<Types::uint8>

struct teLinkWdmLambdasBitmap {
// in ITU DWDM format
Types::uint32
Types::uint32

bitmapSeq
b
Phosphorus
Deliverable Number: D.2.3
31/03/08
034115

EC Contract No.:
Document Code:

Phosphorus-WP2-D2.3

localld;
remoteNodeld;
remoteld;

type;

teLinkldentSeq;

mode;
adminMetric;
teMetric;
teColorMask;
teProtectionTypeMask;
teMaxBw;
teMaxResvBw;

sigType;
ctps; // 24 Isbs

freeCTPSeq;
hoMuxCapMask;
loMuxCapMask;

transparencyMask;
blsrRingld;

odukMuxCapMask;

gain;
noiseFigure;

amplifie
dispersionPMD;

spanLength;
amplifiers;

bitmapSeq; // numL

baseLambda; // ITU DWDM format
numLambdas; // 16 Isbs

bitmap;

rsSegq;

ambdas/32 +1

250

Grid-GMPLS high-level system design

rppendix 8 AUtomatic FSM skeleton generation

This tool provides a framework for the human-readable definition of Finite State Machines (FSM) and automatic
generation of the skeleton code for its implementation. The tool also provides a Graphviz .dot output file, which
can be used to produce a graphical representation of FSM states and transitions events to improve readability.
Some of the G°MPLS FSMs have been briefly described in the sections above.

The FSM automatic generation tool is a framework based on three main parts:

« Configuration file: describes states, events and transitions of the FSM.

« Template file: the core of the generation tool, it is responsible of reading the configuration file and
generating the skeleton code according to design pattern strategy for state pattern.

e Generated code: both core generated files, that must not be modified and the partial skeleton files,
where users must add the specific code for state transitions.

The following sections describe a case-study to generate a really simple FSM, made of four states and three
events.

B.1 Configuration file

If the graphviz-file is specified the tool provides a Graphviz .dot file to generate a traditional graphical
representation of the FSM. If the start-state is not set, the first state is the beginning state.

The event description allows both the definition of simple root_events (that can be mapped 1:1 with the derived
ones) and complex root_events that can be split into derived ones at run time, according to specific transitions
code. In the last case a support virtual state is created.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

251

Grid-GMPLS high-level system design

#

FSM definition

#

st/lev eventl event2 event3
#

statel statel state2 state3
statel statel - -

state2 - state2 -

state3 - - state3
{FSM }

name = TEST_FSM
definition-file = test.def
graphviz-file = test.dot
include-name = test.h
start-state = statel

#
Events
#
{ Events }
root_eventl23 = eventl, event2, event3
#
States
#
{ States }
State = statel
eventl -> statel
event2 -> state2

event3 -> state3

State = statel
eventl -> statel

State = state2
event2 -> state2

State = state3
event3 -> state3

B2 Template file

Template file is the core file in charge of generating the skeleton of FSM according to State pattern.

The State pattern is a solution to the problem of how to make behaviour depend on state. The main steps are:

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

252

Grid-GMPLS high-level system design

« Define a "context" class to present a single interface to the outside world.

« Define a State abstract base class that holds all the transition of the state machine.

« Represent the different "states" of the state machine as derived classes of the State base class.
« Define state-specific behaviour in the appropriate State derived classes.

* Maintain a pointer to the current "state" in the "context" class.

e The “context” class does nothing more that immediately delegate to the current “state”.

e To change the state of the state machine, change the current "state" pointer.

The State pattern does not specify where the state transitions will be defined. The choices are two: the
"context" object, or each individual State derived class. The advantage of the latter option is ease of adding
new State derived classes. The disadvantage is each State derived class has knowledge of (coupling to) its
siblings, which introduces dependencies between subclasses.

The FSM skeleton generation tool uses the first approach, storing all the transitions in a Matrix template class
shown in Code 16-1.

#ifndef FSMGEN_UTILITY
#define FSMGEN_UTILITY

#include <iostream>
#include <stdio.h>
#include <string>
#include <map>
#include <list>
#include <stdlib.h>

/ /
I* Utility - Matrix class */
/ /

template <class ROW, class COLUMN, class DATA>
class Matrix {

public:
Matrix() { }
~Matrix() { }
[/lfriend class Fsm;
/I Copy operator
Matrix(const Matrix<ROW, COLUMN, DATA>& m) { matri X_ = m.matrix_; }
1
I/l Type definitions
1
typedef ROW * rowlter;
typedef const ROW * const_rowlter;
typedef COLUMN * collter;
typedef const COLUMN * const_collter;
typedef DATA * datalter;
typedef const DATA * const_datalter;
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

253

Grid-GMPLS high-level system design

1

/I Iterator support

1

rowlter begin(void);

const_rowlter begin(void) const;

rowlter end(void);

const_rowlter end(void) const;

rowlter next(rowlter rowlt);

const_rowlter next(const_rowlter rowlt) const;
collter begin(rowlter rowlt);

const_collter begin(const_rowlter rowlt) const;
collter end(rowlter rowlt);

const_collter end(const_rowlter rowlt) const;
collter next(rowlter rowlt, collter collt);
const_collter next(const_rowlter rowlt, const_coll

/I Return the number of deleted cells within the r
size_t removeRow(const ROW& row);

/I Return the number of deleted cells within the ¢
size_t removeCol(const COLUMN& column);

// Return the number (1 or 0) of deleted data for

size_t remove(const ROW& row, const COLUMN& column

/I Return the number of deleted data
size_t remove(const DATA& data);

bool remove(datalter dlt);

void insert(const ROW& row, const COLUMN& column,

datalter find(const ROW& row, const COLUMN& column

/I Return the number of data
size_t size(void) const;

bool empty(void) const;

/I Assignment operator

Matrix<xROW, COLUMN, DATA>& operator=(const Matrix<

std::map<COLUMN, DATA>& operator[](const ROW s);

friend std::ostreamé& operator<<(std::ostream& s, ¢

private:

3

std::map< ROW, std::map<COLUMN, DATA> > matrix_;

Code 16-1: Matrix class

ter collt) const;

ow

olumn

this pair row/column

);

const DATA& data);

);

ROW,COLUMN,DATA>& 0);

onst Matrix& m);

A table-driven approach to design finite state machines is a good choice to specify state transitions but, in this
case, it is more difficult to add actions that come with the state transitions.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

254

Grid-GMPLS high-level system design

B.3 Generated code

There are two kind of generated files:

= the core ones, shown in Code 16-2, and

the skeleton to be filled in, shown in #ifndef TEST
#define TEST_H

#include <iostream>
#include <stdio.h>
#include "test_gen.h"

class statel _i: public fsm::base_TEST_FSM::statel

{

public:
fsm::base_TEST_FSM::nextEvFor_root_event123_t root
void after_eventl from_virt_statel(void * context)
void after_eventl_from_virt_statel(void * context)

k
class statel_i : public fsm::base_ TEST_FSM::statel

public:
fsm::base_TEST_FSM::nextEvFor_root_event123_t root
b5

class state3_i : public fsm::base_TEST_FSM::state3

public:
void after_event3_from_virt_statel(void * context)
fsm::base_ TEST_FSM::nextEvFor_root_event123_t root
void after_event3_from_virt_state3(void * context)

kh

class state2_i: public fsm::base_TEST_FSM::state2

{

public:
void after_event2_from_virt_statel(void * context)
fsm::base_TEST_FSM::nextEvFor_root_event123_t root
void after_event2_from_virt_state2(void * context)

h

class virt_statel_i: public fsm::base_TEST_FSM:.vi

{

public:
void after_root_event123 from_statel(void * contex
bool eventl(void* context);

kh

class virt_statel_i : public fsm::base_ TEST_FSM::vi

{

public:
void after_root_event123_from_statel(void * contex
bool eventl(void* context);

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

_event123(void* context);

_event123(void* context);

_event123(void* context);

'_event123(void* context);

rt_statel

t);

rt_statel

t);

255

Grid-GMPLS high-level system design

bool event3(void* context);
bool event2(void* context);

I
class virt_state3 i : public fsm::base_ TEST_FSM:.vi rt_state3
public:
void after_root_event123 from_state3(void * contex t);
bool event3(void* context);
Ji
class virt_state2_i: public fsm::base_TEST_FSM::vi rt_state2
{
public:
void after_root_event123 from_state2(void * contex t);
bool event2(void* context);
Ji
#endif // TEST_GEN

= Code 16-3.

namespace fsm {

#ifndef NAMESPACE_BASE_TEST_FSM
#define NAMESPACE_BASE_TEST_FSM

#include <iostream>
#include <stdio.h>
#include <string>
#include <map>
#include <list>
#include <stdlib.h>

[P Finite State Machine */

/ * * * * * * * /

/* Finite State Machine - Core */

/ * * * * * * * /

namespace base_ TEST_FSM {

enum nextEvFor_root_event123_t{
TEST_FSM_from_root_eventl23 to_InvalidEvent = 0,
TEST_FSM_from_root_event123 to_eventl,
TEST_FSM_from_root_eventl23_to_event2,
TEST_FSM_from_root_event123 to_event3,

I
class State {
public:
State(std::string name = "Base state");
virtual ~State(void);
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

256

Grid-GMPLS high-level system design

std::string name(void);

/I On event

virtual bool eventl(void * context);

virtual bool event2(void * context);

virtual bool event3(void * context);

virtual nextEvFor_root_event123_t root_event123(void * context) {

/I After event from state

virtual void after_root_event123 from_statel(voi d * context);
virtual void after_eventl_from_virt_statel(void * context);
virtual void after_root_event123 from_statel(voi d * context);
virtual void after_eventl_from_virt_statel(void * context);
virtual void after_event3_from_virt_statel(void * context);
virtual void after_event2_from_virt_statel(void * context);
virtual void after_root_event123_from_state3(voi d * context);
virtual void after_event3_from_virt_state3(void * context);
virtual void after_root_event123_from_state2(voi d * context);
virtual void after_event2_from_virt_state2(void * context);

private:
std::string name_;

Ji

/*

* Classes that MUST be derived!!! - START

*/

class statel i;

class statel_i;

class state3 _i;
class state2_i;

class virt_statel i;
class virt_statel_i;
class virt_state3 i;
class virt_state2_i;

class statel : public State {
public:
statel() :
State(std::string("state1"));
virtual ~statel();

virtual fsm::base_ TEST_FSM::nextEvFor_root_event 123 t
r oot_event123(void* context) = 0;
virtual void after_eventl_from_virt_statel(void * context) = 0;
virtual void after_eventl_from_virt_statel(void * context) = 0;
Ji
class statel : public State {
public:
statel() :
State(std::string("statel"));
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

257

Grid-GMPLS high-level system design

virtual ~statel();

virtual fsm::base_ TEST_FSM::nextEvFor_root_event 123 t
r oot_event123(void* context) = 0;
I
class state3 : public State {
public:
state3() :
State(std::string("state3"));
virtual ~state3();
virtual void after_event3_from_virt_statel(void * context) = 0;
virtual fsm::base_ TEST_FSM::nextEvFor_root_event 123 t
r oot_event123(void* context) = 0;
virtual void after_event3_from_virt_state3(void * context) = 0;
I
class state2 : public State {
public:
state2() :
State(std::string("state2"));
virtual ~state2();
virtual void after_event2_from_virt_statel(void * context) = 0;
virtual fsm::base_ TEST_FSM::nextEvFor_root_event 123 t
r oot_event123(void* context) = 0;
virtual void after_event2_from_virt_state2(void * context) = 0;
I
class virt_statel : public State {
public:
virt_statel() :
State(std::string("virt_state1"));
virtual ~virt_state1();
virtual void after_root_event123_from_statel(voi d * context) = 0;
virtual bool eventl1(void* context) = O;
I
class virt_statel : public State {
public:
virt_statel() :
State(std::string("virt_statel"));
virtual ~virt_statel();
virtual void after_root_event123_from_statel(voi d * context) = 0;
virtual bool eventl(void* context) = O;
virtual bool event3(void* context) = O;
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

258

Grid-GMPLS high-level system design

Project:

virtual bool event2(void* context) = O;

kh

class virt_state3 : public State {
public:
virt_state3() :
State(std::string("virt_state3"));
virtual ~virt_state3();

virtual void after_root_event123 from_state3(voi

virtual bool event3(void* context) = O;

h

class virt_state2 : public State {
public:
virt_state2() :
State(std::string("virt_state2"));
virtual ~virt_state2();

virtual void after_root_event123 from_state2(voi

virtual bool event2(void* context) = O;

h

/*
* Classes that MUST be derived!!! - END
*/

class BaseFSM {
public:
enum traceLevel_t{

TRACE_DBG =0,
TRACE_LOG,
TRACE_INF,
TRACE_WRN,
TRACE_ERR

k

BaseFSM(traceLevel_t level = TRACE_DBG);
virtual ~BaseFSM(void);

std::string name(void);
traceLevel_t traceLevel(void);

void traceLevel(traceLevel_t level) { level_ =1

void dbg(std::string text);
void log(std::string text);
void inf(std::string text);
void wrn(std::string text)
void err(std::string text);

private:

traceLevel_t level_;
protected:

std::string name_;
i

Phosphorus

Deliverable Number: D.2.3

Date of Issue:
EC Contract No.:
Document Code:

31/03/08
034115
Phosphorus-WP2-D2.3

d * context) = 0;

d * context) = 0;

evel; }

259

Grid-GMPLS high-level system design

/*

* Class for checking FSM integrity

*/

class GenericFSM : public BaseFSM {

public:
GenericFSM(traceLevel_t level = TRACE_DBG);
virtual ~GenericFSM(void) { }

bool startModify(void);
bool endModify(void);

typedef void (* callback_t) (std::string from_st ate,
std::string to_state,
std::string on_event,
void * context);

/] States
bool addState(std::string state);
bool remState(std::string state);

/l Events
bool addEvent(std::string event);
bool remEvent(std::string event);

/l Transitions

bool addTransition(std::string from,
std::string to,
std::string event);

bool remTransition(std::string from,
std::string to,
std::string event);

/I General
bool setStartState(std::string state);

private:
bool check(void);

struct state_data_t {
callback_t pre;
callback_t post;
callback_t in;

k

Matrix<std::string,

std::string,

std::string> transitions_ ;
std::map<callback_t, void *> contexts_;
std::map<std::string, state_data_t> states_;
std::list<std::string> events_;
bool changelnProg ress_;
std::string startState_;

k

class Fsm : public GenericFSM {
public:

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

260

Grid-GMPLS high-level system design

private:

kh

* add/rem of states/events/callback for

* checking FSM consistency

*/

Fsm(traceLevel_t level = TRACE_DBG)
throw(std::string);

virtual ~Fsm(void);

friend std::ostream& operator<<(std::ostreamé& s
const Fsmé& f);

bool event1(void * context);
bool event2(void * context);
bool event3(void * context);

nextEvFor_root_event123 t root_event123(void * ¢

State * currentState(void);
bool go2prevState(void);

enum states_t {
TEST_FSM_statel,
TEST_FSM_statel,
TEST_FSM_state3,
TEST_FSM_state2,
TEST_FSM_virt_statel,
TEST_FSM_virt_statel,
TEST_FSM_virt_state3,
TEST_FSM_virt_state2,

k

enum events_t {
TEST_FSM_eventl,
TEST_FSM_event2,
TEST_FSM_event3,
TEST_FSM_root_event123,

k

friend std::ostream& operator<<(std::ostreamé&
const states_t& st);

friend std::ostreamé& operator<<(std::ostreamé&
const events_t& ev);

States_t currentStat
states_t prevState_;
std::map<states_t, State *> states_;

Matrix<states_t, events_t, states_t> nextState_;

}
#endif // NAMESPACE_TEST_FSM

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

ontext);

261

Grid-GMPLS high-level system design

/ /
[* Finite State Machine - Wrapper */
/ /

#ifndef NAMESPACE_TEST_FSM
#define NAMESPACE_TEST_FSM

#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <string>
#include <map>
#include <list>
#include <iostream>

namespace TEST_FSM {

class virtFsm {
public:
virtFsm(base_TEST_FSM::BaseFSM::tracelLevel_t
level = base_TEST_FSM::BaseFSM
throw(std::string);
virtual ~virtFsm(void);

friend std::ostreamé& operator<<(std::ostreamé& s
const virtFsm& f);

enum root_events_t {
TEST_FSM_root_event123,

h

void post(root_events_t ev, void * context, bool

std::string currentState(void);

private:
void runPendingWork(void);

void root_event123(void * context);
typedef struct {

root_events_t ev;

void * context;
} data_event_t;

base_ TEST_FSM::Fsm * fsm_;
std::list<data_event_t *> events_;

}
#endif // NAMESPACE_TEST_FSM

}
#endif // FSMGEN_H

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

“TRACE_DBG)

enqueue = false);

262

Grid-GMPLS high-level system design
Code 16-2: Core generated file.

#ifndef TEST_H
#define TEST_H

#include <iostream>
#include <stdio.h>
#include "test_gen.h"

class statel _i: public fsm::base_TEST_FSM::statel

public:
fsm::base_TEST_FSM::nextEvFor_root_event123_t root
void after_eventl_from_virt_statel(void * context)
void after_eventl_from_virt_statel(void * context)

k

class statel_i : public fsm::base_ TEST_FSM::statel
{
public:
fsm::base_TEST_FSM::nextEvFor_root_event123_t root
Ji

class state3_i: public fsm::base_TEST_FSM::state3

{

public:
void after_event3_from_virt_statel(void * context)
fsm::base_TEST_FSM::nextEvFor_root_event123_t root
void after_event3_from_virt_state3(void * context)

kh

class state2_i: public fsm::base_TEST_FSM::state2

{

public:
void after_event2_from_virt_statel(void * context)
fsm::base_TEST_FSM::nextEvFor_root_event123_t root
void after_event2_from_virt_state2(void * context)

Iz
class virt_statel i: public fsm::base_TEST_FSM:.vi

public:
void after_root_event123 from_statel(void * contex
bool eventl(void* context);

k
class virt_statel_i : public fsm::base_ TEST_FSM::vi

public:
void after_root_event123_from_statel(void * contex
bool eventl(void* context);
bool event3(void* context);
bool event2(void* context);

h

class virt_state3 i : public fsm::base_ TEST_FSM:.vi
{

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

_event123(void* context);

_event123(void* context);

_event123(void* context);

'_event123(void* context);

rt_statel

t);

rt_statel

t);

rt_state3

263

Grid-GMPLS high-level system design

public:
void after_root_event123_from_state3(void * contex t);
bool event3(void* context);

h

class virt_state2_i : public fsm::base_TEST_FSM::vi rt_state2

{

public:
void after_root_event123 from_state2(void * contex t);
bool event2(void* context);

13

#endif // TEST_GEN

Code 16-3: Skeleton generated file.

The .dot file is shown in Code 16-4 and can be used to have a canonical graphical representation of the FSM,
as shown in Figure 16-1.

digraph finite_state_machine {
ordering=in;
concentrate=true;
rankdir=TB;
ranksep=1.25;
nodefheight = 1.3];
node [fontsize=12 fixedsize=true shape=circle c olor=lightsteelblue3 style=filled];
edge [fontsize=9];

statel -> statel [label = "eventl" ;
statel -> statel [label = "eventl"];
statel -> state3 [label = "event3"];
statel -> state2 [label = "event2"];
state3 -> state3 [label = "event3" |;
state2 -> state2 [label = "event2" ;

}

Code 16-4: test.dot graphviz file.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

264

Grid-GMPLS high-level system design

puent s

Figure 16-1: Test FSM.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

265

l

Grid-GMPLS high-level system design

sppendixc TNRC Specific Part for ADVA FSP
3000RE-II

c.1 API Data structures

This section specifies the TNRC_SP API for operation on LSC ADVA FSP 3000RE-II device.

typedef unsigned int tnrcsp_lsc_evmask_t; /* values TBD */
typedef unsigned short tnrcsp_Isc_egplane_t;

typedef enum {
TNRCSP_LISTTYPE_UNSPECIFIED,
TNRCSP_LISTTYPE_RESOURCES

} tnresp_list_type_t;

typedef enum {
TNRC_SP_LSC_OLD,
TNRC_SP_LSC_XCVR
} tnresp_Isc_eqtype_t;

typedef enum {
TNRCSP_LSC_XCSTATE_RESERVED,
TNRCSP_LSC_XCSTATE_ACTIVE,
TNRCSP_LSC_XCSTATE_FAILED

} tnresp_Isc_xc_state_t;

typedef struct {
tnrc_portid_t portid;
label_t labelid;
tnrc_operstate_t oper_state;
tnrc_adminstate_t admin_state;

tnrcsp_Isc_evmask_tevents;
} tnresp_Isc_event t;

typedef struct {
tnrc_portid_t portid;
} tnresp_Isc_resource_id_t;

typedef struct {
tnrc_operstate_t oper_state;

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

266

Grid-GMPLS high-level system design

tnrc_adminstate_t admin_state;
tnrcsp_Isc_evmask_t last_event;
tnrcsp_Isc_eqtype_t equip_type;
tnrcsp_Isc_eqplane_t equip_plane;

} tnresp_Isc_resource_detail_t;

Note: SLIST_HDR is an header implementing a simple list, and contains the pointers to the next element in the
list. TBD immediately in a separate document about global design specifications.

c.2 Summary of TNRC_SP LSC ADVA API functions

e tnrcsp_Isc_advafsp_make xc

e tnrcsp_lIsc_advafsp_destroy xc

e tnrcsp_Isc_advafsp_reserve_xc

e tnrcsp_Isc_advafsp_unreserve_xc

e tnrcsp_lIsc_advafsp_register_async_cb

e tnrcsp_Isc_advafsp_get resource_list

e tnrcsp_Isc_advafsp_get resource_details
e tnrcsp_Isp_advafsp_get_labels

c.3 Detailed specification of TNRC_SP LSC ADVA API
functions

The following functions should be included in the API:

tnrcsp_result_t
tnrcsp_| sc_advaf sp_nake_xc(tnrcsp_handle_t *handlep, tnrc_portid_t
portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction, tnrc_boolean_t
virtual, tnrc_boolean_t activate, tnrcsp_response_cb_t response_cb, void
*response_cxt, tnresp_notification _cb_t async cb, void *async_cxt)
Parameters
handlep Out generic handler, generated by the TNRC SP and kept by the
TNRC AP
portid_in In ingress port id
portid_out In egress port id
direction In directionality of the XC (unidir and bidir)
virtual In non-physical XC; for future usage (e.g. adoption of existing
XCs)
activate In turn a couple of reserved ports into a XC
response_cb In pseudo-synchronous callback function provided by the TNRC
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

267

Grid-GMPLS high-level system design

AP, to be called when the operation has been completed

response_cxt In response context provided by the TNRC AP, to be returned in

the response callback

async_cb In asynchronous notification function provided by the TNRC AP,

to be called whenever something asyn occurs on the XC or
some of its elements

async_cxt In asynchronous context provided by the TNRC AP, to be

returned in the async notification callback

Description

This function will create the XC, with the following behaviour:

It returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device

Later, when the XC has been completed or failed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

XC creation is composed from few TL1 commands sequence,

If XC creation failed, all resources are released, and device should be in the same state as
before XC creation,

Correctness of XC creation is checked at the end of action,
XC activation (activate=True) will success only if there was XC reservation called before,

Any future event related to the XC or one of its components (e.g. ports) will be reported to the
TNRC AP with the asynchronous callback. ADVA uses TL1 autonomous messages to inform
about events and alarms.

Used TL1 commands

ASC-CHANNEL Assign channel Normal situation

RST-CHANNEL Restore channel Normal situation if XC activation

RTRV-CHANNEL Retrieve channel Normal situation

RMV-CHANNEL Remove channel Exceptional situation if XC

activation

DLT-CHANNEL Delete channel Exceptional situation

Synchronous function results

TNRCSP_RESULT NOERROR Connected, logged in and arguments are valid

TNRCSP_RESULT EQPTLINKDOWN No TCP session to device or not logged in

TNRCSP_RESULT PARMERROR Not valid arguments

Pseudo-synchronous function results

TNRCSP_RESULT NOERROR Action processed successfully

TNRCSP_RESULT EQPTLINKDOWN TCP session to device lost

TNRCSP_RESULT _PARMERROR Wrong argument value

TNRCSP_RESULT BUSYRESOURCES | Resources not available

TNRCSP_RESULT INTERNALERROR | Unrecognized action failure

TNRCSP RESULT GENERICERROR Deyice denies to process an action (but arguments are
- - valid and resources are available)

tnrcsp_result_t
tnrcsp_| sc_advaf sp_dest r oy_xc(tnrcsp_handle_t *handlep,

Project:

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

Phosphorus

268

Grid-GMPLS high-level system design

tnrc_portid_t portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction,
tnrc_boolean_t virtual, tnrc_boolean_t deactivate, tnrcsp_response_cb_t
response_cb, void *response_cxt)

Parameters

handlep Out generic handler, generated by the TNRC SP and kept by the
TNRC AP

portid_in In ingress port id

portid_out In egress port id

direction In directionality of the XC (unidir and bidir)

virtual In non-physical XC removal; for future usage (e.g. release of
existing XCs)

deactivate In turn an XC into a couple of reserved ports

response_cb In pseudo-synchronous callback function provided by the TNRC
AP, to be called when the operation has been completed

response_cxt In response context provided by the TNRC AP, to be returned in
the response callback

Description

This function will destroy the XC, with the following behaviour:

= |t returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

= Later, when the XC removal has been completed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

= XC deletion is composed from few TL1 commands sequence,
= In case of any unsuccessful processing of command the release of resources is continued,
= XC deactivation (deactivate=True) will success only if there was active XC,

= Correctness of XC deletion is checked at the end of action.

Used TL1 commands

RMV-CHANNEL

Remove channel

Normal situation

DLT-CHANNEL

Delete channel

Normal situation

RTRV-CHANNEL

Retrieve channel

Normal situation

Synchronous function results

TNRCSP_RESULT _NOERROR Connected, logged in and arguments are valid
TNRCSP_RESULT _EQPTLINKDOWN | No TCP session to device or not logged in
TNRCSP_RESULT PARMERROR Not valid arguments

Pseudo-synchronous function results
TNRCSP_RESULT _NOERROR Action processed successfully
TNRCSP_RESULT EQPTLINKDOWN | TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value
TNRCSP_RESULT INTERNALERROR | Unrecognized action failure

TNRCSP_RESULT GENERICERROR \I?;;g():e denies to process an action (but arguments are

tnrcsp_result_t
tnrcsp_| sc_advaf sp_reserve_xc(tnrcsp_handle_t *handlep,
tnrc_portid_t portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction,

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

269

Grid-GMPLS high-level system design

tnrc_boolean_t virtual, tnrcsp_response_cb_t response_cb, void
*response_cxt)

Parameters

handlep Out generic handler, generated by the TNRC SP and kept by the
TNRC AP

portid_in In ingress port id

portid_out In egress port id

direction In directionality of the XC (unidir and bidir)

virtual In non-physical XC; for future usage (e.g. adoption of existing
XCs)

response_cb In pseudo-synchronous callback function provided by the TNRC
AP, to be called when the operation has been completed

response_cxt In response context provided by the TNRC AP, to be returned in
the response callback

Description

This function will reserve the XC, with the following behaviour:

= |t returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

= Later, when the XC reservation has been completed or failed, the TNRC SP will come back to
the TNRC AP using the response callback (if any) and context, and delivering the result of the
operation,

= XC reservation is composed from few TL1 commands sequence,

= |f XC reservation failed, all resources are released, and device should be in the same state as
before XC creation,

= Correctness of XC reservation is checked at the end of action.

Used TL1 commands
ASC-CHANNEL
RTRV-CHANNEL
DLT-CHANNEL

Synchronous function results
TNRCSP_RESULT NOERROR
TNRCSP_RESULT EQPTLINKDOWN
TNRCSP_RESULT PARMERROR
Pseudo-synchronous function results
TNRCSP_RESULT NOERROR
TNRCSP_RESULT EQPTLINKDOWN
TNRCSP_RESULT PARMERROR
TNRCSP_RESULT BUSYRESOURCES
TNRCSP_RESULT INTERNALERROR

TNRCSP_RESULT_GENERICERROR

Normal situation
Normal situation
Exceptional situation

Assign channel
Retrieve channel
Delete channel

Connected, logged in and arguments are valid
No TCP session to device or not logged in
Not valid arguments

Action processed successfully

TCP session to device lost

Wrong argument value

Resources not available

Unrecognized action failure

Device denies to process an action (but arguments are
valid and resources are available)

tnresp_result_t

tnrcsp_| sc_advaf sp_unreserve_xc(tnrcsp_handle_t *handlep,
tnrc_portid_t portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction,
tnrc_boolean _t virtual, tnrcsp_response_cb _t response_cb, void

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

270

Grid-GMPLS high-level system design

T

Parameters

handlep Out generic handler, generated by the TNRC SP and kept by the
TNRC AP

portid_in In ingress port id

portid_out In egress port id

direction In directionality of the XC (unidir and bidir)

virtual In non-physical XC removal; for future usage (e.g. release of
existing XCs)

response_cb In pseudo-synchronous callback function provided by the TNRC
AP, to be called when the operation has been completed

response_cxt In response context provided by the TNRC AP, to be returned in
the response callback

Description

This function will unreserve the XC, with the following behaviour:

= |t returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

= Later, when the XC removal has been completed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

= XC unreservation is composed from few TL1 commands sequence,
= In case of any unsuccessful processing of command the release of resources is continued,
= XC unreservation will success only if XC is not active,

= Correctness of XC unreservation is checked at the end of action.

Used TL1 commands
DLT-CHANNEL
RTRV-CHANNEL

Synchronous function results
TNRCSP_RESULT_NOERROR
TNRCSP_RESULT_EQPTLINKDOWN
TNRCSP_RESULT_PARMERROR
Pseudo-synchronous function results
TNRCSP_RESULT_NOERROR
TNRCSP_RESULT_EQPTLINKDOWN
TNRCSP_RESULT_PARMERROR
TNRCSP_RESULT_INTERNALERROR

TNRCSP_RESULT_GENERICERROR

Normal situation
Normal situation

Delete channel
Retrieve channel

Connected, logged in and arguments are valid
No TCP session to device or not logged in
Not valid arguments

Action processed successfully

TCP session to device lost

Wrong argument value

Unrecognized action failure

Device denies to process an action (but arguments are
valid)

tnrcsp_result_t
tnrcsp_l sc_advaf sp_regi ster_async_cb(tnrcsp_lsc_event_t *events,
unsigned int num)

Parameters
events In List of events to be notified to the TNRC AP; each event item
focuses on a port and reports about states (operational,
administrative) and occurred events (using a bitmask)
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

271

Grid-GMPLS high-level system design

Num ' In ' number of events
Description
This function will register events to be notified to TNRC AP; Notification mechanism is invoked

asynchronously by the TNRC SP when:

e TL1 autonomous alarm notification appear,
* operation state occur,
» administration state occur.

The administrative and operational status are periodically polled and states are compared with
registered values.

This function doesn’t use any TL1 command.

Synchronous function results

TNRCSP_RESULT _NOERROR Action processed successfully
TNRCSP_RESULT_PARMERROR Wrong argument value

TNRCSP_RESULT INTERNALERROR | Unrecognized action failure

tnrcsp_result_t
tnrcsp_| sc_advaf sp_get resource_|i st (tnrcsp_Isc_resource_id_t
**resource_listp, unsigned int* num)

Parameters

resource_listp Out to be returned as pointer to the list of resource ids
num Out number of returned resource ids

Description

This function allows to fetch the list of underlying resources. Each resource will be assigned an id by
the TNRC_SP. The resource identifier is composed from Access Identifier code (AID) of card.

For example: AID = 1-1-13 (“bay-shelve-slot*) then port id = 010113 (each value is represented by
2 digits). This transformation generates unique ids and it is easily reversible.

Example of available resources in the one of PSNC's devices named ‘Cracow’:

Card description AID of card Port ID
OLD in Plane 0 1-1-8 10108
XCVR/XPDR in Plane 1-1-9 10109
0

OLD in Plane 1 1-1-13 10113
XCVR/XPDR in Plane 1-1-14 10114
1

XCVR/XPDR in Plane 1-1-16 10116
1

This function doesn’t send any TL1 command. It used gathered information by periodically send
RTRV-EQPT-ALL command.

Synchronous function results

TNRCSP_RESULT_NOERROR

Action processed successfully

TNRCSP_RESULT_EQPTLINKDOWN

TCP session to device lost

tnrcsp_result_t

tnrcsp_| sc_adval sp_get _resource_det ail (tnrcsp_Isc_resource_id_t
resource_id, tnrcsp_Isc_resource detail t *resource_detailp)

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

272

Grid-GMPLS high-level system design

l

Parameters

resource_id In identifier of the resource whose details are fetched
resource_detailp Out to be returned as pointer to the structure of resource details
Description

about:

0 equipment plane (plane 0, plane 1),
0 equipment type (OLD, XCVR/XPDR),

0 current administrative state (disabled, enabled),

This function allows to fetch the details of a specific resource. The details contains information

0 current operational state (disabled, enabled),

o last event.

ADVA Add/Drop Multiplexer architecture information (wavelength, equipment plane and type) are
needed because not all couple of resources can be crossconnected. A crossconnection is possible
only for scenarios presented in the table bellow:

Connection type Ingress resource Egress resource
Equipment type | Equipment Equipment type Equipment
plane plane

Pass-through OLD 0 OLD 1
Drop OLD 0 XCVR/XPDR 0
Pass-through OLD 1 OLD 0
Drop OLD 1 XCVR/XPDR 1
Add XCVR/XPDR 0 OLD 0
Add XCVR/XPDR 1 OoLD 1

There is also second condition for crossconnection possibility — labels (wavelengths) for both

resources must be the same.
Administrative state depends on PrimaryState returned by device:

Administrative State PrimaryState | Description
TNRC_ADMINSTATE_ENABLED | IS In-service

IS-ANR In-service, abnormal

IS-ANRST In-service, abnormal and restricted

IS-NR In-service, normal

IS-RST In-service, restricted

MA Management
TNRC_ADMINSTATE_DISABLED | OSS Out-of-service

OSS-AU Out-of-service, autonomous

OO0S-AUMA Out-of-service, autonomous and

management

OOS-AURST | Out-of-service, autonomous and restricted

O0S-MA Out-of-service, management

OOS-MAANR | Out-of-service, management and abnormal

Operational state depends on SecondaryState returned by device:

Administrative State SecondaryState | Description
TNRC_OPERSTATE _ENABLED | ACT Active
TNRC_OPERSTATE_DISABLED | ASWDL Automatic Software Download
DGN Diagnostic
DSBLD Data Sync

Project:

Deliverable Number:

Date of Issue:
EC Contract No.:
Document Code:

Phosphorus
D.2.3
31/03/08
034115

Phosphorus-WP2-D2.3

273

Grid-GMPLS high-level system design

FLT Fault

LPBK-FAC Loopback Facility

LPBK-TERM Loopback Terminal

MISM Mismatched

NALM No Alarm

PRBS PRBS test

SGEO Supporting entity outage

STBY Supporting entity outage

SWDL Software download

TCAI TCA Inhibited

TUNE Indicates laser is in the process of turning
on

UAS Unassigned

UEQ Unequipped

Last event present last non-alarm or alarm condition. Alarm values are presented in the error table
section of annex. Non-alarm events are not listed yet (lack in documentation).

This function doesn’t send any TL1 command. It used gathered information by periodically send
RTRV-EQPT-ALL command.

Synchronous function results

TNRCSP_RESULT NOERROR Action processed successfully
TNRCSP_RESULT EQPTLINKDOWN | TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value

tnrcsp_result_t
tnrcsp_l sc_adval sp_get _| abel _|i st (tnrcsp_resource_id_t
resource_id, label t** label _listp, unsigned int* num)

Parameters

resource_id In identifier of the resource whose labels are fetched
label_listp Out to be returned as pointer to the list of labels

num Out number of returned resource ids

Description

ADVA TL1 commands use Channel ID for any operation. Channel ID and corresponding
wavelength is presented in the table:

Channel ID Wavelength Channel ID Wavelength Channel ID Wavelength
20 1561.42 nm 34 1550.12 nm 48 1538.98 nm
21 1560.61 nm 35 1549.32 nm 49 1538.19 nm
22 1559.79 nm 36 1548.52 nm 50 1537.40 nm
23 1558.98 nm 37 1547.72 nm 51 1536.61 nm
24 1558.17 nm 38 1546.92 nm 52 1535.82 nm
25 1557.36 nm 39 1546.12 nm 53 1535.04 nm
26 1556.56 nm 40 1545.32 nm 54 1534.25 nm
27 1555.75 nm 41 1544.53 nm 55 1533.47 nm
28 1554.94 nm 42 1543.73 nm 56 1532.68 nm
29 1554.13 nm 43 1542.94 nm 57 1531.90 nm
30 1553.33 nm 44 1542.14 nm 58 1531.12 nm

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

274

Grid-GMPLS high-level system design

31 1552.52 nm 45 1541.35 nm 59 1530.33 nm
32 1551.72 nm 46 1540.56 nm
33 1550.92 nm 47 1539.77 nm

However, Channel ID is specific identifier for ADVA device only. To be equipment independent
ADVA TNRC SP API uses generic label format introduced by [draft-otani-labels]. Label value
corresponding to channel ids is presented in the table:

Channel ID Label value Channel ID Label value Channel ID Label value
20 687865867 34 671088643 48 671088657
21 687865866 35 671088644 49 671088658
22 687865865 36 671088645 50 671088659
23 687865864 37 671088646 51 671088660
24 687865863 38 671088647 52 671088661
25 687865862 39 671088648 53 671088662
26 687865861 40 671088649 54 671088663
27 687865860 41 671088650 55 671088664
28 687865859 42 671088651 56 671088665
29 687865858 43 671088652 57 671088666
30 687865857 44 671088653 58 671088667
31 671088640 45 671088654 59 671088668
32 671088641 46 671088655

33 671088642 47 671088656

This function doesn’t send any TL1 command. It used gathered information by periodically send
RTRV-EQPT-ALL command.

Synchronous function results

TNRCSP_RESULT_NOERROR

Action processed successfully

TNRCSP_RESULT_EQPTLINKDOWN

TCP session to device lost

TNRCSP_RESULT_PARMERROR

Wrong argument value

C4

C.4.1 Overview

ADVA FSP 3000RE-II device

The FSP 3000RE-Il is Reconfigurable Optical Add/Drop Multiplexer (ROADM). The FSP 3000RE-Il offers
scalable means to support a broad range of services. On the line-side, they can receive and transmit up to 40
protected wavelengths. On the tributary-side, they can drop up to four line-protected wavelengths, eight line-
unprotected wavelengths, or a combination of both. The interfaces of these tributaries range from SONET/
SDH, to Gigabit Ethernet, to reshaping, regenerating, and retiming (3R) transparent Service Interface Module
(SIM). The FSP 3000RE-I/FSP 3000RE-II shelf consists of a combination of optical line drivers (OLDSs),
transponders (XPDRs), transceivers (XCVRs), SIMs, optical protection switches (OPS), Transponder
Protection Modules (XPMs), shelf processors (SPs), and other circuit packs on a chassis/ backplane. The
ADVA FSP 3000RE-Il is shown on Figure 16-2.

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WP2-D2.3

275

Grid-GMPLS high-level system design

| B st A

TR weaees o i SEEE-
——

Figure 16-2: ADVA FSP 3000RE-II device.

From perspective of Phosphorus project, the more interesting is optical device architecture presented on Figure
16-3 . It is composed of two planes containing one OLD, one or few XCVRs and one ROADM filter. The DWDM
fiber is connected always to OLD. Currently all PSNC ADVA have 40 channels in DWDM link (100GHz spacing
between channels, wavelength from 192.00 to 195.90 THz). There are 2 planes so device can work with 2
DWDM links. There can be configured crossconnection for each lambda that enables light passing between
OLDs. The other possibility is Add/Drop configuration at each eROADM separately that enables lambda
dropping or adding to XCVRs. Each plane can have different number of transceivers (from one to four XCVRS).

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

276

Grid-GMPLS high-level system design

Pass
through
OLD OLD
> » eROADM » eROADM > >
DWE)M b < < < DWDM
to/from 4 4+ 4 4 4 to/from
network network
vV V VY vV V
X| X| X X[X
Plane 0 cic|c C|C Plane 1
V| V|V V|V
R| R R R| R
A A A A A

vV VY v Vv
Add/Drop Add/Drop

Figure 16-3: ADVA FSP 3000RE-II architecture.

The ADVA TNRC SP takes care of configuring filters in eROADMs by PASS-THRU, ADD or DROP operations.
Example of configured connections is shown of Figure 16-4, where Plane 0 has 3 transceivers (channels:
34,41,59), Plane 1 has 2 transceivers (channels: 50, 59). There are configured in the way:

e 3 pass-through connections for channel 1 (Plane 0<->1) and channel 2 (Plane 0->1),
e 3drop connections for channel 34 and 59 in Plane 0 and channel 59 in Plane 1,
e 3 add connections for channels 34 and 41 in Plane 0 and channel 59 in Plane 1.

Each connection is unidirectional. To configure bidirectional connection there is a need to configure two

connection for both direction in independently. From configuration point of view, OLD equipments have 2 port:
RX and TX. XCVR has always one bidirectional port;: RX/TX.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

277

Grid-GMPLS high-level system design

AlD=1-1-8-1 AlD=1-1-13-2
— eROADM PLANE O PASS-THRU (Chanel 1) eROADM PLANE 1 |
Channel 20 _A_> » _A_y Channel 20
; DROP PASS-THRU (Chanel 2) . ;
; DROP ADD ;
Channel 59 » » Channel 59
8 — PASS-THRU (Chanel 1) _— 8
Channel 20 > < < Channel 20
; ADD ;
; ADD DROP ;
Channel 59 4_U_ < < <_U_ Channel 59
AlD=1-1-8-2 AlID=1-1-13-1
I I | I [| I I I I [| I I
AID=1-1-9-1 AlID=1-1-11-1 AID=1-1-15-1
channel 34 Channel 41 Channel 59
AID=1-1-16-1
AID=1-1-10-1 Channel 50
channel 59

Figure 16-4: ADVA FSP 3000RE-Il eROADM connections configuration (AID are “bay-shelve-slot-port”).

C.4.2 Implementation details

For device configuration it is used TL1-RAW (port 3082) or TL1-TELNET (port 3083). The ADVA SP opens one
permanent TCP session and sends TL1 login command.

Crossconnect operations are not fast. They need from one to few seconds to complete, because of channel
equalization process. One operation takes much more time to be completed. It is bidirectional xc activation
which is also part of make_xc operation. Because of long XC operation time, all XC operation are processed in
non-blocking way. The rest of functions are blocking functions.

The list of operation times is listed in the table:

Operation Type Operation time
login - 1-5 sec
make_Xxc unidirectional 1-5 sec
bidirectional 15-21 sec

destroy xc unidirectional 2-10 sec

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

278

l

Grid-GMPLS high-level system design

bidirectional 4-11 sec
reserve_Xxc unidirectional 1-2 sec
bidirectional 1-2 sec
unreserve_xc unidirectional 1-2 sec
bidirectional 1-3 sec
activate_xc unidirectional 1-4 sec
bidirectional 16-21 sec
deativate xc unidirectional 1-2 sec
bidirectional 2-3 sec
register_async_vb - << 1sec
get_resource_list - << 1lsec
get_resource_detail - << lsec
get_xc_list - << 1sec
flush_list - << 1 sec

The TNRC ADVA SP is composed of several cooperative threads:

Thread name Duration Count Description
TNRCSP_ADVA permanent | 1 create TL1 listing thread and check connection to
device status
if there is no TCP session then open the TCP
session and login

» the thread is able to periodical sending of
retrieving TL1 commands, information are
written to the internal data structures by
TNRCSP_adva_listen thread

TNRCSP_adva_listen almost 1 listen the incoming TL1 messages:
permanent acknowledgments, responses and autonomous
messages

match responses which commands and activates
finite state machine related to the command

write information about device equipment to
internal data structures

calls asynchronous callbacks for fault notifications

external AP thread unblocking | 0..* validate arguments
calling ADVA SP (very
operation short) check device connectivity

in case of xc operation, activate finite state
machine corresponding the operation and return
initial operation result

in case of information retrieving, look internal SP
data structure and return needed information

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

279

Grid-GMPLS high-level system design

return operation result

The common data structures available inside different threads are protected by lock object.

The threads cooperation sequences in case of XC creation, fault notification are presented on Figure 16-5.

% ‘ . TNRCSP_adva Iisten| %
|

: TNRC_AP : ADVA_device

!XC operation request: make_xc . TL1 command: ASG-CHANNEL
[

X

tnresp_adva_make_xc : xc oceration‘

TL1 response: CMPLD

TL1 command: RST-CHANMNEL

TL1 response: CMPLD

TL1 response: CHMPLD

TL1 autonomous: DATALOL

asynchronous notification: Lost of Ligth

| |
| |
| |
| |
| |
| |
| |
| |
| |
! TL1 command: RTRV-CHAMNMNEL |
; |
| I
| |
| |
| |
| |
| |
! |
|

|
|
|
|
|
|
l pseudo-synchronous notification: xc_make_noerror
|
|
|
|
|
|
I
|

Figure 16-5: TNRC SP ADVA sequence diagram for XC creation and fault notification.

The threads cooperation sequences in case of retrieving of resource details are presented on Figure 16-6.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

280

Grid-GMPLS high-level system design

X

: TNRC_AP

—
—

—

periodically send
device equipment
retrieving commands

: TNRCSP_ADWA

: TNRCSP_adva_listen

— gather_equipment
——| details in local

structure

TL1 command: RTRV-EQUIP-ALL

X

 ADVA_device

tnresp_adva_get_resource_details : retrieving_operation

retrieving request: get_resource_details

[~
e

e

e

TL1 response: equipment and details list

T

look at local
structure with
equipment details

Figure 16-6: TNRC SP ADVA sequence diagram for information retrieve (get_resource_list,

get_resource_detail, get_label_list).

All crossconnect operations are presented in form of finite state machines. Diagrams of these state machines
are presented on Figure 16-7, Figure 16-8, Figure 16-9, and Figure 16-10.

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WP2-D2.3

281

l

Grid-GMPLS high-level system design

unsuccessful

NIT activate=true/send restorel
unproper state, counter==20
activate=false/send assignl
unproper state/send retrievel
y y R [counter=20]
(| bidr=false/send restorel _ | bidir=trus/send retrievel
ASSIGN_L f >1k RESTORE_1) >L CHECK_L bi dir=false.proprer state/return NOERROR
> e o
bidir=true/sendfrestore2 bidr=true/sendfretrieve2
bidir=true/send assign2
[| proper state/return NOERROR
ASSIGN_2 li RESTORE_2
C *send restorel ___)#send retrievel CHIEEKSZ
[counter<20]

unproper state/send retrievez

unsuccessful unsuccessful

-~

- unproper state, counter == 20

Figure 16-7: TNRC SP ADVA make xc finite state machine (‘Destroy xc' is entry point to destroy xc finite state
machine).

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

282

l

Grid-GMPLS high-level system design

INIT

#{gend removel

bidir=false, already 005 <)] bidir=true, already 00S/send remove2 'f_\
—y@VE_l y =) REMOVE 2 already 005
) 2\ J

L
\
Unreserve xc 005 received i
005 received Unreserve xc

I
3 L
005 1 e |
*fsend retrievel ~

Figure 16-8: TNRC SP ADVA destroy xc finite state machine (‘Unreserve xc’ is entry point to unreserve xc finite
state machine).

F

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

283

Grid-GMPLS high-level system design

INIT

activate=false/send assignl

Y

\%
l ASSIGMN bidir=falsefsend retrievel

(CHECK_I]

y

bidir=truefsend assign2

k

(ASSIGN_E]7
*fsend retrievel

unsuccessful

2l Linreserve xc

N

y

bidir=true/send fetrieve2

CHECK_2

improper state

im proper state

=
T

Figure 16-9: TNRC SP ADVA reserve xc finite state machine (‘Unreserve xc’ is entry point to unreserve xc finite

state machine).

Project:

Deliverable Number: D.2.3

Date of Issue:
EC Contract No.:
Document Code:

Phosphorus

31/03/08
034115
Phosphorus-WP2-D2.3

284

Grid-GMPLS high-level system design

IMIT

*/send deletel

L
1 bidir=false/fsend retrievel (] bidir=false/return result
DELETE 1 }L CHECK_1)
— -

bidir=truefsend retrieve2
bidir=true/send delete2

oD s (=)
DELETE 2 %
*fsend retrievel HRlE *freturn result

Figure 16-10: TNRC SP ADVA unreserve xc finite state.

C.4.3 TL1 commands

This command is used to set up a session (i.e. login) to the specified Network
Element.

ACT-USER:[TID]:<uid>:CTAG::<pid>;

example : ACT-USER::user:6334:;x***;

Description

Input format

uid The User Identifier, or login ID.
Input parameters pid The Private Identifier, or password.
respCode CMPLD — Completed successfully,

DENY — Action denied,
DELAY — Successful delayed action activation,
PRTL — Partially successful response,

RTRV — multiple parts successful response (last part with
CMPLD).

Output parameters

o This command creates a connection between an egress port (to a OLD or
Description
XCVR, etc.).
Input format ASG-
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

285

Grid-GMPLS high-level system design

CHANNEL:[<tid>]::<ctag>::<ingressPortAlD>,<egressPortAlD>,<channellD>,<

connectionType>;

example : ASG-CHANNEL:::353431::1-1-8-1,1-1-13-2,20,PASSTHRU;

Input parameters

ingressPortAID

AID of the ingress OLD, XCVR, or XPDR port (Bay-Shelf-
Slot-Port format). For ADD connections, the ingress AlD
should be a XCVR or XPDR port, and for DROP or
PASSTHRU connections, the ingress AID should be an
OLD input (Rx) port.

egressPortAID

AID of the egress OLD, XCVR, or XPDR port (Bay-Shelf-
Slot-Port format). For ADD or PASSTHRU connections,
the egress AID should be an OLD output (Tx) port, and for
DROP connections, the egress AID should be a XCVR or
XPDR port.

channellD

Channel number (20-59) or corresponding wavelength
(Xxxx.xx), in nanometers.

connectionType

Identifies the type of connection. Valid values are:
+ ADD,
 DROP,
* PASSTHRU.

Output parameters

respCode

CMPLD — Completed successfully,

DENY — Action denied,

DELAY — Successful delayed action activation,

PRTL — Partially successful response,

RTRYV — multiple parts successful response (last part with
CMPLD).

Description

port in-service

This command places a channel associated with an OLD or XCVR/XPDR

Input format

RST-CHANNEL:[<tid>]:<aid>:<ctag>::<channellD>;
example :RST-CHANNEL:WEST01:1-1-8-2:CT01::20;

Output parameters

aid AID of the egress OLD or XCVR/XPDR port (Bay-Shelf-
Input parameters Slot-Port format). _
channellD Channel number (20-59) or corresponding wavelength
(xxxx.xx), in nanometers.
respCode CMPLD — Completed successfully,

DENY — Action denied,

DELAY — Successful delayed action activation,
PRTL — Partially successful response,

RTRYV — multiple parts successful response (last part

with CMPLD).

Description

This command places a channel associated with an OLD or XCVR/XPDR
port out-of-service

Input format

RMV-CHANNEL:[<tid>]:<aid>:<ctag>::<channellD>;

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WP2-D2.3

286

Grid-GMPLS high-level system design

example :RMV-CHANNEL:WEST01:1-1-8-2:CT01::20;

aid AID of the egress OLD or XCVR/XPDR port (Bay-Shelf-
Slot-Port format).
Input parameters channellD Channel number (20-59) or corresponding wavelength
(Xxxx.Xx), in nanometers.
respCode CMPLD — Completed successfully,

DENY — Action denied,

DELAY — Successful delayed action activation,
PRTL — Partially successful response,

RTRV — multiple parts successful response (last part
with CMPLD).

Output parameters

This command deletes a connection between an ingress port (from an OLD or
D _ XCVR,etc.) and an egress port (to an OLD or XCVR, etc.). The command only requires
escription e
the egress port be specified.
If the FORCE option is specified, the connection is deleted regardless of state.
DLT-
;gfrﬁfat CHANNEL:[<tid>]::<ctag>::<ingressPortAlD>,<egressPortAlD>,<channellD>,,[<force>];
example :DLT-CHANNEL:NODE-1::CT01::,1-1-13-2,20;
ingressPortAID Not Supported - AID of the ingress OLD, XCVR, or XPDR port
(Bay- Shelf-Slot-Port format). For ADD connections, the
ingress AID should be a XCVR or XPDR port, and for DROP or
PASSTHRU connections, the ingress AID should be an OLD
input (Rx) port.
egressPortAID AID of the egress OLD, XCVR, or XDPR port (Bay-Shelf-Slot-
Input Port format). For ADD or PASSTHRU connections, the egress
parameters AID should be an OLD output (Tx) port, and for DROP
connections, the egress AID should be a XCVR or XPDR port.
channellD Channel number (20-59) or corresponding wavelength
(xxxx.xx), in nanometers.
force Indicates whether deletion may over-ride channel ownership
and state. Valid values are:
TRUE or FALSE. Default is FALSE.
respCode CMPLD — Completed successfully,
DENY — Action denied,
Output DELAY — Successful delayed action activation,
parameters PRTL — Patrtially successful response,
RTRV — multiple parts successful response (last part with
CMPLD).

This command retrieves attributes of a channel associated with an egress
- OLD,
DSl Fiel] XCVR, or XPDR port. If the channel ID is omitted, then attributes for all
assigned channels are retrieved.
Input format RTRV-CHANNEL:[<tid>]:[<aid>]:<ctag>::[<channelID>];
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

287

Grid-GMPLS high-level system design

example : RTRV-CHANNEL:WESTO01:1-1-13-2:CTO01:;;

aid Identifies the AID of the egress OLD port (for ADD or
PASSTHRU connections), or egress XCVR/XPDR port
Input parameters (for DROP connections_). The AID field can be omitted or
specified as ALL to retrieve all assigned channels.
channellD Channel number (20-59) or corresponding wavelength
(XxXxx.xx), in nanometers.
respCode CMPLD — Completed successfully,
DENY — Action denied,
DELAY — Successful delayed action activation,
PRTL — Partially successful response,
RTRV — multiple parts successful response (last part
with CMPLD).
ingressAid AID of the ingress port
egressAid AID of the egress port
channellD Channel number: 20-59
wavelength Wavelength of the channel (xxxx.xx nm)
connectionType Identifies the type of connection. Valid values:
ADD
DROP
PASSTHRU.
connectionStatus . .
Status of the connection. Values are:
Connected-O0S
Output parameters EQ-in-progress
Equalized-1S
EQ-High
EQ-Low
EQ-LOL
EQ-Failure
EQ-Failure-APR
owner Owner (creator) of the connection. Values are:
NONE
CLI
MPLS
SNMP
TL1
WEB
ROOT
UNKNOWN
status

Channel status. Valid values: IS or OOS

Description

The RTRV-EQPT-ALL command is used to retrieve basic information
about all provisioned circuit-packs on the NE.

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus
D.2.3
31/03/08
034115

Phosphorus-WP2-D2.3

288

Grid-GMPLS high-level system design

Input format

RTRV-EQPT-ALL:[TID]::CTAG;
example :RTRV-EQPT-ALL:FUTURE1::12345;

Input param

eters

None

respCode

CMPLD — Completed successfully,

DENY — Action denied,

DELAY — Successful delayed action activation,
PRTL — Partially successful response,

RTRV — multiple parts successful response (last part
with CMPLD).

aid

Identifies the entity in the NE to which the command
pertains. For the EQPT commands, the AID should
specify the location identifier (in bay-shelf-slot format) for
a particular circuit-pack on the NE. aid is the AID
Inventory.

as ALL to retrieve all assigned channels.

typeid

The circuit-pack type or name. This is an alphanumeric
string of up to 16
characters. typeid is a string.

alarmadminstate

The alarm reporting state for this circuit pack. Alarm
admin state is of type EnabledDisabled. [DISABLED,
ENABLED]

primarystate

The primary circuit-pack state. Primary state is of type
PrimaryState.

secondarystate

The secondary circuit-pack state. Secondary state is of
type SecondaryState.

regenmode

The regeneration mode for the circuit-pack. This is
provisionable for XPDR cards. Valid values are:

g DISABLED
g ENABLED
g ENABLED-OPS
g ENABLED-OTN

portcontrol

The port-control mode for the circuit-pack. This is
provisionable for XDPR cards. Port control mode is of
type PortControl. [NORMAL, OVERRIDE]

channellD

The channel associated with the XCVR, XPDR, or EWM
circuit-pack. This is provisionable only for EWM circuit-
packs.

wavelength

The wavelength of the channel associated with the
XCVR, XPDR, or EWM circuit-pack. This is
provisionable only for EWM circuit-packs. wavelength is
a character string with format: xxxx.xx nm.

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus
D.2.3
31/03/08
034115

Phosphorus-WP2-D2.3

289

Grid-GMPLS high-level system design

C.4.4 TL1 autonomous messages

This is an autonomously generated alarm. It reports the onset or clearing of a
condition that requires immediate attention. Trouble events occurring in the
Network Element (NE) are classified as alarmed or non-alarmed events. In
general, an alarmed event causes a standing condition and has immediate or
Description potential impact on the operation or performance of the entity. Some form of
maintenance effort is required to restore normal operation or performance of
the entity after the event has occurred.

The string "rr" is used to designate a number of possible options, outlined

below.
Input format None
Output format REPT ALM <rr>: Report Alarm <rr>
aid [COMPONENT] aid is the AID Component.
ntfcncde The notification code for the message. ntfcncde is of
type NotificationCode.
conditiontype CONDITIONTYPE conditiontype is of type
ConditionType.
srveff The effect on service caused by the standing or alarm
condition. It can be either SA or
Output parameters NSA. srveff is of type ServiceEffect.
ocrdat The location associated with a particular command. locn
is of type Location. locn is optional.
dirn DIRN dirn is a string. dirn is optional.
conddescr \"CONDDESCR\" conddescr is a string. The condition
description is of format description of ConditionType for
a raise of alarm and description of ConditionType
Cleared for a alarm clear.

This is an autonomously generated message. It reports a non-alarmed event.
Trouble events occuring in the Network Element (NE) are classified as
alarmed or non-alarmed events. The event being reported may change the
status or occurrence of an irregularity, which by itself is not severe enough to
warrant an alarm notification. One example of this is a performance threshold
Description crossing. This message may also be used to report the recovery from off-
normal or trouble conditions that were reported initially via REPT*"EVT. This
is done using the <condtype> sent by the original event report and using the
value CL for <condeff>. Condeff is not supported in 5.0 release.

The string "rr" is used to designate a humber of possible options, outlined

below.
Input format None
Output format REPT EVT rr: Report Event rr
Output parameters | aid [COMPONENT] aid is the AID Component.
eventtype EVENTTYPE eventtype is a string.
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

290

Grid-GMPLS high-level system design

srveff SRVEFF srveff is a string.

ocrdat Date when the specific event or violation occurred.
ocrdat is a string.

ocrtm Time when the specific event or violation occurred.
ocrtm is a string.

locn LOCN locn is a string. locn is optional.

dirn DIRN dirn is a string. dirn is optional.

conddescr \"CONDDESCR\" conddescr is a string.

C.4.5 Error codes

Description
ADMIN Alarm Administration Status
AGENT-FAIL Agent Failure
AIS Alarm Indication Signal
AIS-L Alarm Indication Signal - Line
AIS-P Alarm Indication Signal Present on Path Layer
AIS-S Alarm Indication Signal Present on Section Layer
AISSYNCPRI Primary Sync AIS
AISSYNCSEC Secondary Sync AIS
APR-ADJ-FAIL APR Adjust Fail
APR-ACT APR Is Active
APS Automatic Protection Switch In Effect
ASE-TBL-FAIL Build ASE Calibration Table Failure
AUTOPROV Shelf Lost Database and In Auto Provisioning Mode
BACKREFLECTION Back Reflection Error
BATT Battery Failure
BAYBATT_A Bay Battery A Failed
BAYBATT B Bay Battery B Failed
BAYBRKER Bay Breaker Triggered
BAYBRKER_A Bay Breaker A Tripped
BAYBRKER_B Bay Breaker B Tripped
BDI-P Backward Defect Indication on Path
BDI-S Backward Defect Indication on Section
BEI-P Backward Error Indication on Path
BEI-S Backward Error Indication on Section
BRKER-A Breaker A Tripped
BRKER-B Breaker B Tripped
CLKFAILO Clock Failure from Plane 0
CLKFAIL1 Clock Failure from Plane 1
CLKPROTFAIL Clock Protection Failure
COMMLINK-0 Communications Link on Plane 0 down to SP
COMMLINK-1 Communications Link on Plane 1 down to SP
COMM-LOA COMM/Loss of Association
COMMLINK Communications Link Failure to SP
CP-FLT Circuit Pack Fault
CP-INT-MISM Circuit Pack Int. Mismatch
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code:

Phosphorus-WP2-D2.3

291

Grid-GMPLS high-level system design

CP-MISM Circuit Pack Mismatch
CP-UNEQ Circuit Pack Unequipped
CVS Coding Violations-Section
DATALOL Data Loss Of Light
DSK-LOW Disk Low
DUAL-SECURITY Dual Security
DUP-ID Duplicate NE ID
DUP-NAME Duplicate NE Name
EDFA-GAIN-HI EDFA Gain High
EDFA-GAIN-LOW EDFA Gain Low
EDFA-INP-B-HI Second Stage Input High
EDFA-INP-B-LO Second Stage Input Low
EDFA-INP-HI EDFA Input Power High
EDFA-INP-LO EDFA Input Power Low
EDFA-LP-HI EDFA Laser Power High
EDFA-LP-LO EDFA Laser Power Low
EDFA-LP-A-HI A/EDFA Laser Power High
EDFA-LP-A-LO A/EDFA Laser Power Low
EDFA-LP-B-HI B/EDFA Laser Power High
EDFA-LP-B-LO B/EDFA Laser Power Low
EDFA-MIDST-HI EDFA Mid-Stage High
EDFA-MIDST-LO EDFA Mid-Stage Low
EDFA-OP-A-HI A/EDFA Optical Power High
EDFA-OP-A-LO A/EDFA Optical Power Low
EDFA-OUT-HI EDFA Output Power High
EDFA-OUT-LO EDFA Output Power Low
EDFAPOWERLO EDFA Power Low
ESS Error Seconds-Section
EVS Encoding Violations-Section
EXOSCSW Excessive OSC Switching
FANFAIL1 Fan Unit 1 not Operating
FANFAIL2 Fan Unit 2 not Operating
FANFAIL3 Fan Unit 3 not Operating
FANFAIL4 Fan Unit 4 not Operating
FANFAILS Fan Unit 5 not Operating
FANFAIL6 Fan Unit 6 not Operating
FANCOMMFAIL Fan Communication Failure
FLASHFAIL Write To Flash Failed
FPGAMISM FPGA Mismatch
FRCD-0 Forced Switch to Plane 0
FRCD-1 Forced Switch to Plane 1
FRCDSWTOPRI Forced Sync Reference Switch To Primary
FRCDSWTOSEC Forced Sync Reference Switch To Secondary
FRNGSYNCCG In Freerun Timining Mode
GAIN-TILT-FAIL EDFA Gain Tilt Fail
GAINHI Gain High
GAINLO Gain Low
HITEMP Shelf High Temperature
HIVOLT-A Rectifier A High Voltage
HIVOLT-B Rectifier B High Voltage

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

292

Grid-GMPLS high-level system design

HKIN Housekeeping Input
HKIN1 Housekeeping Input 1
HKIN2 Housekeeping Input 2
HKIN3 Housekeeping Input 3
HKIN4 Housekeeping Input 4
HKOUT Housekeeping Output
HLDOVRSYNC In Holdover Timing Mode
IAE-S Incoming Alignment Error on Section
IDPFAIL IDProm Cannot be Read
IPVIOL IP Violation
LBCHI High Laser Bias Current
LBC-A-HI AlLaser Bias Current High
LBC-A-LO Al/Laser Bias Current Low
LBC-B-HI B/Laser Bias Current High
LBC-B-LO B/Laser Bias Current Low
LBC-DATA-HI Data/Laser Bias Current High
LBC-DATA-LO Data/Laser Bias Current Low
LBC-OSC-HI OSC/Laser Bias Current High
LBC-OSC-LO OSCl/Laser Bias Current Low
LBCLO Laser Bias Current Low
LCK-P Lock Signal Received on Path
LINEUP-UNKNOWN SWDL Lineup Unknown
LINKFAIL Link Synchronization Failure
LKOUT Protection Switch Lockout
LKOUT-0 Protection Switch Lockout on Plane 0
LKOUT-1 Protection Switch Lockout on Plane 1
LMC-HI Laser Modulation Current High
LMC-LO Laser Modulation Current Low
LOA Loss Of Association
LOCKOUTOFREF Lockout Of Reference
LOF Loss Of Frame
LOF-0 Loss Of Frame on Plane 0
LOF-1 Loss Of Frame on Plane 1
LOFREQ Loss Of Frequency
LOFSYNCPRI LOF Sync Primary
LOFSYNCSEC LOF Sync Secondary
LOI Loss Of Input
LOI-0 Loss Of Input Failure — 0
LOI-1 Loss Of Input Failure - 1
LOL Loss of Light
LOM Loss of Multiframe
LOP Loss of Pointer
LOS Loss Of Signal
LOS-0 Loss Of Signal on Plane 0
LOS-1 Loss Of Signal on Plane 1
LOSCHARSYNC Loss of Character Sync
LOSSYNCPRI Primary Sync Loss of Signal
LOSSYNCSEC Secondary Sync Loss of Signal
LOTEMP Shelf Low Temperature
LOWVOLT-A Rectifier A Low Voltage

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

293

Grid-GMPLS high-level system design

LOWVOLT-B Rectifier B Low Voltage
LPAHI AlLaser Power High
LPALO AlLaser Power Low
LPBHI B/Laser Power High
LPBLO B/Laser Power Low
LPBK-F Facility Loopback Initiated (Far-End)
LPBK-T Terminal Loopback Initiated (Near-End)
LPHI Laser Power High
LPLO Laser Power Low
LSROVR Laser Safety Override
LTAHI AlLaser Temperature High
LTALO AlLaser Temperature Low
LTBHI B/Laser Temperature High
LTBLO B/Laser Temperature Low
LTHI Laser Temperature High
LTLO Laser Temperature Low
MANSWTOPRI Manual Sync Reference Switch To Primary
MANSWTOSEC Manual Sync Reference Switch To Secondary
MANUAL-0 Manual Switch to Plane 0
MANUAL-1 Manual Switch to Plane 1
MEM-LOW Memory Low
MISCON Equipment Misconfiguration
MSA-OPR-HI A/EDFA Mid-Stage RX Optical Power High
MSA-OPR-LO A/EDFA Mid-Stage RX Optical Power Low
NO-ASE-TBL No ASE Calibration Table
NO-GAIN-CALIB No Calibration Gain
OCI-P Open Connection Indication on Path
OIF Optical Input Failure
OLP-HI Optical Line Power High
OLP-LO Optical Line Power Low
OPR-DATA-HI Data/Optical RX Power High
OPR-DATA-LO Data/Optical RX Power Low
OPR-OSC-HI OSC/Optical RX Power High
OPR-OSC-LO OSC/Optical RX Power Low
OPRLO Low Optical Power Received
OPRHI High Optical Power Received
OPT-DATA-HI Data/Optical TX Power High
OPT-DATA-LO Data/Optical TX Power Low
OPT-OADM-HI TX Optical Power To OADM High
OPT-OADM-LO TX Optical Power To OADM Low
OPT-OSC-HI OSC/Optical TX Power High
OPT-OSC-LO OSC/Optical TX Power Low
OPT-SFLMT EDFA Output Power Exceeds Safety Limit
OPTLO Low Optical Power Transmitted
OPTHI High Optical Power Transmitted
OSCCGF OSC Configuration Unsupported
OSCFLT Communication Failure on OSC Channel
OSCLFR OSC Loss of Frame
OSCLOA OSC Loss Of Association
OSCLOL OSC Loss Of Light

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

294

Grid-GMPLS high-level system design

OSCTXDISABLED OCS TX Power Disabled
OSCWS OSC Wiring Suspect
OVERBW Overbandwidth
PEFAIL-0 Power Equalization Failure At Plane O
PEFAIL-1 Power Equalization Failure At Plane 1
PLM-P Payload Mismatch on Path
PRBS-LINE PRBS Line Initiated
PRILOCKOUTREF Primary Lockout Reference
PT-FLT SFP/XFP Port is in a Fault State
PT-MISM SFP/XFP Port Does Not Match
PT-UNEQ SFP/XFP Port is Removed/Missing
PT-UNKNOWN SFP/XFP Port is Unknown
PUMP-SHUTDOWN Pump Shutdown
RFI-L Remote Failure Indication - Line
RINV Rate is Invalid
RLOS Remote Loss Of Signal
RMPROTCMD Remote Command Falil
ROOR Rate Out of Range
RX-ERR Receive Error
SD Signal Degrade
SD-0 Signal Degrade Plane 0
SD-1 Signal Degrade Plane 1
SD-ODU ODU Signal Degrade
SEC-VOIL Invalid IP or ICMP Packets Received
SECLOCKOUTREF Secondary Lockout Reference
SEFS Severely Errored Frame-Section
SEFSS Severely Errored Frame Seconds - Section
SER-UNKN Shelf Serial Number Invalid
SESS Severely Errored Seconds-Section
SETPRIREFFAIL Set Primary Clock Fail
SETSECREFFAIL Set Secondary Clock Falil
SF-0 Signal Failure on Plane 0
SF-1 Signal Failure on Plane 1
SH-UNEQ Shelf Unequipped
SHBATT-A Shelf Battery A Failed
SHBATT-B Shelf Battery B Failed
SPPROTFAIL SP Protection Is Not Available
SSF Severe Signal Failure
SW-ACTV Unsuccessful Activation of Software
SW-MISM Incorrect Software Load
SW-TRNF Unsuccessful Transfer of Software
SWCOMPL Automatic Protection Switching Complete
SWDL-FAIL Unsuccessful Download of Software
SWEFAIL-0 Protection Switch Unsuccessful to Plane 0
SWFAIL-1 Protection Switch Unsuccessful to Plane 1
TIM-P Trail Trace Identifier Mismatch on the Path Layer
TIM-S Trail Trace Identifier Mismatch on Section
TLTLO Low Transmit Laser Temperature
TLTHI High Transmit Laser Temperature
VOA-ATT-HI VOA Attenuation High

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

295

Grid-GMPLS high-level system design

VOA-ATT-LO VOA Attenuation Low
WTR Wait To Restore
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

296

l

Grid-GMPLS high-level system design

sppendix o TNRC Specific Part for Calient
DiamondWave FiberConnect

In this section we provide the specifications for the TNRC_SP software design for the Calient which was
developed and implemented by developers at PSNC and UEssex. The software provides various functionalities
and capabilities that allows the Calient Optical Cross connect (TN equipment) located at UEssex to be
dynamically and remotely controlled. We also provide an analysis the software design and architecture of the
software looking at the uses case and state diagrams used during the development. This document also
provides the supported TNRC_SP APIs in accordance the earlier released specification document, providing
the supported data structures and variables. Finally we then provide an appendix decribing all possible error
codes.

D.1 Calient TNRC_SP Software Design

This section describes the data structures and API available for communication between the TNRC_AP and
TNRC_SP.

D.1.1 Data structures

typedef unsigned int tnrcsp_handle_t;

typedef enum {
TNRCSP_RESULT_NOERROR =0,
TNRCSP_RESULT_EQPTLINKDOWN,
TNRCSP_RESULT_PARMERROR,
TNRCSP_RESULT_NOTCAPABLE,
TNRCSP_RESULT_BUSYRESOURCES,
TNRCSP_RESULT_INTERNALERROR,
TNRCSP_RESULT_GENERICERROR

} tnresp_result_t;

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

297

Grid-GMPLS high-level system design

typedef void (*tnrcsp_response_cbh_t)(tnrcsp_handle_
void *cxt);

typedef void (*tnrcsp_notification_cb_t)(tnrcsp_han
tnrcsp_fsc_resource_id_t **failed_resource_listp, v

typedef unsigned int tnrcsp_fsc_evmask_t;

t *handle, tnrcsp_result_t result,

dle_t *handle,
oid *cxt);

[* values TBD, depending on the hw */

typedef struct {
SLIST_HDR event_list;
tnrc_portid_t portid;
tnrc_operstate_t oper_state;
tnrc_adminstate_t admin_state;

tnrcsp_fsc_evmask _t events;
} tnrcsp_fsc_event_t;

typedef struct {
SLIST_HDR resource_list;
tnrc_portid_t portid;

} tnresp_fsc_resource_id_t;

typedef struct {
tnrc_portid_t portid;
tnrc_operstate_t oper_state;
tnrc_adminstate_t admin_state;
tnrcsp_fsc_evmask _t last_event;

/* other values TBD */
} tnresp_fsc_resource_detail_t;

typedef enum {
TNRCSP_LISTTYPE_UNSPECIFIED,
TNRCSP_LISTTYPE_RESOURCES

} tnresp_list_type_t;

D.1.2 Detailed specification of TNRC_SP FSC API functions

The following functions should be included in the API:

tnrcsp_result_t

tnrcsp_fsc_calient_make_xc (tnrcsp_handle_t *handlep, tnrc_portid_t
portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction, tnrc_boolean_t
activate, tnrcsp_response_cb_t response_cb, void *response_cxt,
tnrcsp_notification_cb_t async_cb, void *async_cxt)

XC creation

Parameters
handlep Out generic handler, generated by the TNRC SP and kept by the
TNRC AP
portid_in In ingress port id
portid_out In egress port id
direction In directionality of the XC (unidir and bidir)
activate In turn a couple of reserved ports into a XC
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

298

Grid-GMPLS high-level system design

response_cb In pseudo-synchronous callback function provided by the TNRC

AP, to be called when the operation has been completed

response_cxt In response context provided by the TNRC AP, to be returned in

the response callback

async_cb In asynchronous notification function provided by the TNRC AP,

to be called whenever something asyn occurs on the XC or
some of its elements

async_cxt In asynchronous context provided by the TNRC AP, to be

returned in the async notification callback

Description

This function will create the XC, with the following behaviour:

It returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device

Later, when the XC has been completed or failed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

XC creation is composed from few TL1 commands sequence,

If XC creation failed, all resources are released, and device should be in the same state as
before XC creation,

Correctness of XC creation is checked at the end of action,
XC activation (activate=True) will success only if there was XC reservation called before,

Any future event related to the XC or one of its components (e.g. ports) will be reported to the
TNRC AP with the asynchronous callback. Calient uses TL1 autonomous messages to inform
about events and alarms.

Used TL1 commands

ACT-CRS Reserve XC Normal situation

ENT-CRS Activate XC Normal situation if XC activation

RTRV-CRS Retrieve XC Normal situation

CANC-CRS Unreserve XC Exgept_ional situation if XC

activation

DLT-CRS Delete XC Exceptional situation

Synchronous function results

TNRCSP_RESULT NOERROR Connected, logged in and arguments are valid

TNRCSP_RESULT EQPTLINKDOWN No TCP session to device or not logged in

TNRCSP_RESULT PARMERROR Not valid arguments

Pseudo-synchronous function results

TNRCSP_RESULT NOERROR Action processed successfully

TNRCSP_RESULT EQPTLINKDOWN TCP session to device lost

TNRCSP_RESULT_PARMERROR Wrong argument value

TNRCSP_RESULT BUSYRESOURCES | Resources not available

TNRCSP_RESULT INTERNALERROR | Unrecognized action failure

TNRCSP RESULT GENERICERROR Deyice denies to process an action (but arguments are
- - valid and resources are available)

Project:

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

Phosphorus

299

Grid-GMPLS high-level system design

tnrcsp_fsc_calient_destroy_xc (tnrcsp_handle_t handlep, tnrc_portid_t
portid_in, tnrc_portid_t portid_out, tnrc_boolean_t virtual, tnrc_boolean_t
deactivate, tnrcsp_response_cb _t response_cb, void *response_cxt)

Parameters

handlep Out generic handler, generated by the TNRC SP and kept by the
TNRC AP

portid_in In ingress port id

portid_out In egress port id

direction In directionality of the XC (unidir and bidir)

deactivate In turn an XC into a couple of reserved ports

response_cb In pseudo-synchronous callback function provided by the TNRC
AP, to be called when the operation has been completed

response_cxt In response context provided by the TNRC AP, to be returned in
the response callback

Description

This function will destroy the XC, with the following behaviour:

= |t returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

= Later, when the XC removal has been completed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

= XC deletion is composed from few TL1 commands sequence,
= In case of any unsuccessful processing of command the release of resources is continued,
= XC deactivation (deactivate=True) will success only if there was active XC,

= Correctness of XC deletion is checked at the end of action.

Used TL1 commands

CANC-CRS Unreserve XC Normal situation
DLT-CRS Delete XC Normal situation
RTRV-CRS Retrieve XC Normal situation

Synchronous function results
TNRCSP_RESULT_NOERROR
TNRCSP_RESULT_EQPTLINKDOWN
TNRCSP_RESULT_PARMERROR
Pseudo-synchronous function results
TNRCSP_RESULT_NOERROR
TNRCSP_RESULT_EQPTLINKDOWN
TNRCSP_RESULT_PARMERROR
TNRCSP_RESULT INTERNALERROR

TNRCSP_RESULT_GENERICERROR

Connected, logged in and arguments are valid
No TCP session to device or not logged in
Not valid arguments

Action processed successfully

TCP session to device lost

Wrong argument value

Unrecognized action failure

Device denies to process an action (but arguments are
valid)

tnrcsp_result_t

tnrcsp_fsc_calient_reserve_xc (tnrcsp_handle_t *handlep, tnrc_portid_t
portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction, tnrc_boolean_t
virtual, tnrcsp_response_cb_t response_cb, void *response_cxt)

XC reservation

| Parameters

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

300

Grid-GMPLS high-level system design

handlep Out generic handler, generated by the TNRC SP and kept by the
TNRC AP

portid_in In ingress port id

portid_out In egress port id

direction In directionality of the XC (unidir and bidir)

response_cb In pseudo-synchronous callback function provided by the TNRC
AP, to be called when the operation has been completed

response_cxt In response context provided by the TNRC AP, to be returned in
the response callback

Description
This function will reserve the XC, with the following behaviour:

= |t returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

= Later, when the XC reservation has been completed or failed, the TNRC SP will come back to
the TNRC AP using the response callback (if any) and context, and delivering the result of the
operation,

= XC reservation is composed from few TL1 commands sequence,

= |f XC reservation failed, all resources are released, and device should be in the same state as
before XC creation,

= Correctness of XC reservation is checked at the end of action.

Used TL1 commands

ACT-CRS Reserve XC Normal situation

RTRV-CRS Retrieve XC Normal situation

DLT-CRS Delete XC Exceptional situation

Synchronous function results

TNRCSP_RESULT _NOERROR Connected, logged in and arguments are valid

TNRCSP_RESULT EQPTLINKDOWN No TCP session to device or not logged in

TNRCSP_RESULT PARMERROR Not valid arguments

Pseudo-synchronous function results

TNRCSP_RESULT _NOERROR Action processed successfully

TNRCSP_RESULT EQPTLINKDOWN TCP session to device lost

TNRCSP_RESULT_PARMERROR Wrong argument value

TNRCSP_RESULT BUSYRESOURCES | Resources not available

TNRCSP_RESULT INTERNALERROR | Unrecognized action failure

TNRCSP RESULT GENERICERROR Deyice denies to process an action (but arguments are
- - valid and resources are available)

tnrcsp_result_t

tnrcsp_fsc_calient_unreserve_xc (tnrcsp_handle_t *handlep,

XC unreservation tnrc_portid_t portid_in, tnrc_portid_t portid_out, tnrc_xcdirection_t direction,
tnrc_boolean_t virtual, tnrcsp_response_cb_t response_cb, void
*response_cxt)

Parameters
handlep Out generic handler, generated by the TNRC SP and kept by the
TNRC AP
portid_in In ingress port id
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

301

Grid-GMPLS high-level system design

portid_out In egress port id

direction In directionality of the XC (unidir and bidir)

response_cb In pseudo-synchronous callback function provided by the TNRC
AP, to be called when the operation has been completed

response_cxt In response context provided by the TNRC AP, to be returned in
the response callback

Description

This function will unreserve the XC, with the following behaviour:

= |t returns soon after the preliminary checks have been carried out (parameters are in valid
range and there is connection to device) and send first TL1 command to device,

= Later, when the XC removal has been completed, the TNRC SP will come back to the TNRC
AP using the response callback (if any) and context, and delivering the result of the operation,

= XC unreservation is composed from few TL1 commands sequence,
= In case of any unsuccessful processing of command the release of resources is continued,
= XC unreservation will success only if XC is not active,

= Correctness of XC unreservation is checked at the end of action.

Used TL1 commands

DLT-CRS

Delete XC Normal situation

RTRV-CRS

Retrieve XC Normal situation

Synchronous function results

TNRCSP_RESULT_NOERROR

Connected, logged in and arguments are valid

TNRCSP_RESULT EQPTLINKDOWN | No TCP session to device or not logged in

TNRCSP_RESULT PARMERROR Not valid arguments

Pseudo-synchronous function results

TNRCSP_RESULT_NOERROR

Action processed successfully

TNRCSP_RESULT EQPTLINKDOWN | TCP session to device lost

TNRCSP_RESULT PARMERROR Wrong argument value

TNRCSP_RESULT INTERNALERROR | Unrecognized action failure

TNRCSP_RESULT_GENERICERROR

Device denies to process an action (but arguments are
valid)

Register events tnrcsp_result_t
notification tnrcsp_fsc_calient_register_async_cb (tnrcsp_fsc_event t *events)

Parameters

events In List of events to be notified to the TNRC AP; each event item
focuses on a port and reports about states (operational,
administrative) and occurred events (using a bitmask)

Num In number of events

Description

. operation state occur,

This function will register events to be notified to TNRC AP; Notification mechanism is invoked
asynchronously by the TNRC SP when:

e TL1 autonomous alarm notification appear,

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

302

Grid-GMPLS high-level system design

* administration state occur.

The administrative and operational status are periodically polled and states are compared with
registered values.

This function doesn’t use any TL1 command.

Synchronous function results

TNRCSP_RESULT NOERROR Action processed successfully
TNRCSP_RESULT_PARMERROR Wrong argument value

TNRCSP_RESULT _INTERNALERROR | Unrecognized action failure

tnrcsp_result_t

Fetching Of. tnrcsp_fsc_calient_get_resource_list (tnrcsp_fsc_resource id_t
resources list o !

resource_listp)
Parameters
resource_listp Out to be returned as pointer to the list of resource ids
num Out number of returned resource ids
Description

This function allows to fetch the list of underlying resources. Each resource will be assigned an id by
the TNRC_SP. The resource identifier is composed from Access Identifier code (AID) of card.

For example: AID = 1.1.8 (“bay-shelve-slot*) then port id = 118. This transformation generates
unigue ids and its is easily reversible.

This function doesn’t send any TL1 command. It used gathered information by periodically sending
a loop of RTRV-PORT for each port continually.

Synchronous function results

TNRCSP_RESULT _NOERROR Action processed successfully

TNRCSP_RESULT EQPTLINKDOWN | TCP session to device lost

Fetching of

. tnrcsp_result_t
details about a X . .

o tnrcsp_fsc_calient_get resource_detail (tnrcsp_fsc_resource_id t
specific : S)

resource_id, tnrcsp_fsc_resource_detail_t *resource_detailp)

resource
Parameters
resource_id In identifier of the resource whose details are fetched
resource_detailp Out to be returned as pointer to the structure of resource details
Description
This function allows to fetch the details of a specific resource. The details contains information
about:

0 current administrative state (disabled, enabled),
0 current operational state (disabled, enabled),
o last event.

There is also second condition for crossconnection possibility — labels (wavelengths) for both
resources must be the same.
Administrative state depends on PrimaryState returned by device:

Administrative State PrimaryState Description
TNRC_ADMINSTATE_ENABLED | IS In-service
IS-ANR In-service, abnormal
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

303

Grid-GMPLS high-level system design

IS-ANRST In-service, abnormal and restricted

IS-NR In-service, normal

IS-RST In-service, restricted

UMA Under Management
TNRC_ADMINSTATE_DISABLED | OSS Out-of-service

OSS-AU Out-of-service, autonomous

OO0S-AUMA Out-of-service, autonomous and

management

OOS-AURST Out-of-service, autonomous and restricted

0O0S-MA Out-of-service, management

OO0S-MAANR Out-of-service, management and abnormal

Operational state depends on SecondaryState returned by device:

Administrative State SecondaryState | Description
TNRC_OPERSTATE_ENABLED | ACT Active
TNRC_OPERSTATE_DISABLED | ASWDL Automatic Software Download

DGN Diagnostic

DSBLD Data Sync

FLT Fault

LPBK-FAC Loopback Facility

LPBK-TERM Loopback Terminal

MISM Mismatched

NALM No Alarm

PRBS PRBS test

SGEO Supporting entity outage

STBY Supporting entity outage

SWDL Software download

TCAI TCA Inhibited

TUNE Indicates laser is in the process of turning on

UAS Unassigned

UEQ Unequipped

Last event present last non-alarm or alarm condition. Alarm values are presented in the error table
section of annex. Non-alarm events are not listed yet (lack in documentation).

This function doesn’t send any TL1 command. It used gathered information by periodically sending
a loop of RTRV-PORT for each port continually

Synchronous function results

TNRCSP_RESULT NOERROR Action processed successfully
TNRCSP_RESULT EQPTLINKDOWN | TCP session to device lost
TNRCSP_RESULT_PARMERROR Wrong argument value

Fetching of tnrcsp_result_t
crossconnections tnrcsp_fsc_calient_save_xc_list (tnrcsp_resource_id_t resource_id,
list unsigned int* num)
Parameters
resource_id In identifier of the resource whose labels are fetched
label_listp Out to be returned as pointer to the list of labels
num Out number of returned resource ids
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

304

Grid-GMPLS high-level system design

D.2

Description

This function doesn’t send any TL1 command. It used gathered information by periodically send
RTRV-CRS command.

Synchronous function results

TNRCSP_RESULT _NOERROR Action processed successfully
TNRCSP_RESULT EQPTLINKDOWN | TCP session to device lost

TNRCSP_RESULT_PARMERROR Wrong argument value

Flushingof lists [NNSAKEARN
9 tnrcesp_fsc calient_flush_list(tnresp_list_type t list_type, void *list)

Parameters

list_type In Type of the list to be flushed (might be lefspacified)

list In Pointer

Description

This function allows to free a generic simple lidtelements previously returned by the TNRC_SRhdf
freeing is simple (i.e. no nested pointers), thenlist type could be unspecified.

Calient TNRC_SP Software Implementation

D.2.1 TNRC_SP use-case scenarios

In order to fully develop the TNRC_SP, various considerations and assumptions were made based on the
specification documents TNRC specification documents. These assumptions describe the functionality and
characteristics as follows:

a) implementing the specific actions on the hardware, by means of any available and suitable management
interface (e.g. TL1, SNMP, CLI).
b) decoupling the mechanisms of the lower management from the upper layers (i.e. TNRC_AP):
i. decoupling of blocking/unblocking sync/async communication,
ii. decoupling of objects or sessions identifiers,
C) perform any final translation from the semantics and object identifiers passed by the TNRC_AP into those
needed to communicate with the hardware.
d) hide away from TNRC_AP some unneeded peculiarities of the underlying transport network equipment;
e.g. the port in an FSC switch might be organized in rack, shelf, and port, and the port unique ids on the
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

305

Grid-GMPLS high-level system design

device could be made of these 3 identifiers. The G’MPLS, and the TNRC_AP on behalf of it, are not
interested in these details, and just need to use a unique port id (built as the TNRC_SP likes). Of course,
some exceptions to this rule might exist and they need to be taken into account, and this will be discussed
and addressed case by case.

Based on these requirements a use case diagram has been developed to explain the various
commands that are supported on the Calient OXC. This diagram is shown in

TNRC_AP \fﬂ_’f Calient OXC

The TNRC Abstract Part

(THRC_AF) offers a generic AP for

the configuration & monitoring of Get Resolrce List
the TH resources. Itwill abstract

the TH resource description, and

provide a serialization of

operations that might be
composed by a setof local A
management sub-actions on the Get Resource Details
equipment
Flush Resources

Figure 16-11 and it explains in human readable terms what is expected from both the TNRC_AP and the
Calient OXC. The TNRC_SP will basically offer the upper part (TNRC_AP) an API specific to the equipment
considered, in this case the Calient OXC. It will name resources based on the underlying TN technology and
SwCap (Switching Capability) which in the Calient is Fibre switching. The core part of the TNRC_SP is highly
dependent on the Calient OXC'’s controlling agent in which TL1, TL1-RAW and SNMP are supported to
configure, manage and monitor the OXC. The Calient OXC can also receive the required function (commands)
using TL1 commands language via Telnet and Serial interfaces.

The Calient OXC supports
hath TL1 and TL1-RAW
commands. It alsa
supports both
synchronous and
asynchronous events
notifications

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

306

l

Grid-GMPLS high-level system design

Destroy XC

TNRC_AP

The TNRC Abstract Part

operations that might be
composed by a setof local
management sub-actions on the

notifications

Event Notification / Calient OXC
(THMRC_AP) offers a generic AP for The Calient OXC supports
the configuration & maonitoring of Get Re List bath TL1 and TL1-RAW
the TH resources. Itwill abstract SEMIEE commands. It alsa
the TH resource description, and supports hoth
provide a serialization of synchranous and

asynchronous events

equipment

)

Flush Resources

Figure 16-11: Uses Case Diagram for the TNRC_SP.

We have chosen to use the TL1 command language in conjunction with Telnet interface because of speed,
respective modularity, flexibility and ease of integration. Further details on the integration of the TLI agent,
Telnet interface and the TNRC_SP will be provided later in the document. The main functions to be

implemented are:

« Make XC

¢ Destroy XC

¢ Reserve XC

¢ Unreserve XC

« Register Asynchronous Call Back
e Get Resource list

¢ Get Resource Details

e Flush Resources.

To further explain the functions described in the use case, individual functions are described based on the
command that will be sent, the response expected and the actions to be executed between the TNRC_AP,

TNRC_SP and Calient OXC.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

307

Grid-GMPLS high-level system design

D.2.1.1 Make XC

This command allows cross-connections to be performed. Although the Calient OXC supports the reservation
of XC in order to activate it at a later time, our implementation of the TNRC_SP doesn not support this

function. This can be easily integrated to the TNRC_SP if needed in the future.

ENT-CRS Entering Connection
Description This command creates a new connection between two ports.
ENT-CRS:[TID]:<srcPort>,<dstPort>:[CTAG]::
[<groupName>],[<connType>],[<connName>],[<waveband>],
[<force>];
example :
Input format agent> ent-crs::0.12bh.8,0.12b.5:::calient,1way,sf _la;
calient 02-11-01 13:36:29
M 0 COMPLD
[* ENT-CRS OK. 0.12b.8>0.12b.5 */
Input parameters srcPort This parameter specifi(_es the port used for the connection.
srcPort must be specified.
dstPort This parameter specifies the port used for the destination.
dstPort must be specified.
groupName This parameter specifies the name of the group who is
serviced by a
connection. The group name consists between 1 to 35
alphanumeric
characters, including special characters such as periods
(.) and underscores
Q.
groupName is optional.
connType This parameter specifies the direction of a connection.
Options are:
- lway for unidirectional
- 2way for bidirectional
connType is optional.
connName This parameter specifies the connection name, consists of
up to 35
alphanumeric characters. The conn_name must be
unigue within a customer
group, and you cannot use duplicate connection names
for the same
customer.
connName is optional.
wavebandwaveb | This parameter specifies the waveband constraint when
and making a connection.
Options are:
- WBand (default) for wavelengths between 1260 and
1625 nm
- CBand for wavelength between 1530-1565 nm
- LBand for wavelength between 1565-1610 nm
Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

308

Grid-GMPLS high-level system design

- XLBand for wavelength between 1610-1625 nm
- OBand for wavelength between 1260-1360 nm
waveband is optional.

force

This parameter specifies if all specified parameters can
be forced onto

member ports. Options are:

- N (default) indicates only the applicable parameters
(those which have

not been previously overridden) are provisioned onto
member ports.

- Y indicates all parameters are forced onto the member
ports of a port

group.

force is optional.

Output parameters

respCode

CMPLD — Completed successfully,

DENY — Action denied,

DELAY — Successful delayed action activation,

PRTL — Partially successful response,

RTRV — multiple parts successful response (last part with
CMPLD).

Error Codes

ENEQ

No hardware present for that connection

IDNV

1. Invalid Data. Invalid (hardware not present) or
unsupported equipment.

2. Invalid Port descriptor. Card might have been
deleted.

SRCN

Port already in connection. Connection already exists.

Details:

The cross-connections are completed in less than one second and the responses are displayed back to the TLI
agent prompt immediately.

D.2.1.2 Destroy XC

This command permanently deletes cross-connections on the Calient OXC. Once the XC has been deleted the
resources involved are no longer reserved and they become available immediately. Although the Calient
supports a functionality to only deactivate the XC but not delete it, we do not currently support this function in

the TNRC_SP implementation.

Project: Phosphorus

Deliverable Number: D.2.3

Date of Issue: 31/03/08

EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

309

Grid-GMPLS high-level system design

DLT-CRS Deleting Connection
o This command deletes an existing connection, removing it from the
Description : .
DiamondWave equipment database.
DLT-CRS:[TID]:[<srcPort>,<dstPort>]:[CTAG]::<circuitld>;
example :
agent> dlt-crs:::::0.3a.4-0.4a.3;
Input format calient 01-07-25 17:39:08
M 0 COMPLD
srcPort This parameter specifies the port used for the connection.
srcPort must be specified.
Input parameters dstPort This parameter specnjges the port used for the destination.
dstPort must be specified.
circuitld This parameter specifies the connection ID to delete.
circuitld must be specified.
respCode CMPLD — Completed successfully,
DENY — Action denied,
DELAY — Successful delayed action activation,
OB FEEITEE PRTL — Partially successful response,
RTRV — multiple parts successful response (last part with
CMPLD).
IDNV Customer Name or Circuit does not exist
IIFM 1. Invalid format of customer_name or circuitld
Error Codes string
2. Invalid format of eqptld
RCIN o .
Requested CircuitID does not exist

Details:

The deletion of a cross-connection is also completed in less than one second and the responses are displayed
back to the TLI agent prompt immediately. It is also important to know that at least a pair of the circuit id,
groupName or connName must be used in the TL1 command

D.2.1.3 Reserve XC

This command is used to reserve ports for cross connections which could be activated sometime in the future

ACT-CRS Activating Connections

Description

(AS_IS).

This command reactivates a cross connection that had previously been
deactivated by the CANC-CRS command. This command moves the
connection from an under management state (AS_UMA) to an in-service state

Input format

ACT-CRS:[TID]:[<srcPort>,<dstPort>]:[CTAG]::<circuitld>;

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WP2-D2.3

310

Grid-GMPLS high-level system design

example :
agent>act-crs:::::0.3a.1>0.4a.1;
calient 01-08-01 10:00:44
M 0 COMPLD
srcPort This parameter specifies the port used for the connection.
srcPort must be specified.
Input parameters dstPort This parameter specnflges the port used for the destination.
dstPort must be specified.
circuitld This parameter specifies the connection ID to delete.
circuitld must be specified.
respCode CMPLD — Completed successfully,
DENY — Action denied,
DELAY — Successful delayed action activation,
U EIEIE S PRTL — Partially successful response,
RTRV — multiple parts successful response (last part with
CMPLD).
IDNV
Customer Name or Circuit does not exist
Error Codes IEM
Invalid format of customer_name or circuitld string
RCIN Requested Circuit ID does not exist

Details:
The reservation of a cross-connection is also completed in less than one second and the responses are

displayed back to the TLI agent prompt immediately. It is also important to know that at least a pair of the circuit
id, groupName or connName must be used in the TL1 command

D.2.1.4 Unreserve XC

This command is used to unreserve ports that has been previous reserved or to deactivate and existing cross
connection. Although the existing cross connection is deactivated, it is not deleted from the system.

Cancelling Connections

This command cancels (deactivates) a previously active connection, moving
the connection state from in-service (AS_IS) to under management
(AS_UMA). While in an AS_UMA state, the connection still functions

Description S .
P normally; however, alarms are not logged. When a connection is deactivated,
all outstanding alarms associated with the connection are cleared.
Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

311

Grid-GMPLS high-level system design

CANC-CRS;[TID]:[<srcPort>,<dstPort>]:[CTAG]::<circuitld>;
example :
Input format agent>canc-crs:::::0.3a.4>0.4a.3,;
calient 01-08-23 13:02:56
M 0 COMPLD
srcPort This parameter specifies the port used for the connection.
srcPort must be specified.
Input parameters dstPort This parameter specnjgs the port used for the destination.
dstPort must be specified.
circuitld This parameter specifies the connection ID to delete.
circuitld must be specified.
respCode CMPLD — Completed successfully,
DENY — Action denied,
Output parameters DELAY — Successful delayed action activation,
PRTL — Partially successful response,
RTRV — multiple parts successful response (last part with
CMPLD).
IDNV
Customer Name or Circuit does not exist
[IFM
Invalid format of customer_name or circuitld string
RCIN
Requested CircuitID does not exist

Details:

The deactivation of a cross-connection is also completed in less than one second and the responses are
displayed back to the TLI agent prompt immediately. It is also important to know that at least a pair of the circuit
id, groupName or connName must be used in the TL1 command

D.2.1.5 Event Notification

The event notification is handled by parsing the autonomous messages that are received from the switch .
These Autonomous messages are used to report alarms, configuration changes, or condition changes. Many of
these messages, such as those relating to alarm conditions, are spontaneously triggered by the NE itself
without intervention.

REPT - Report Alarm

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

312

Grid-GMPLS high-level system design

ALM:

Description

This message cannot be issued from the console. It is displayed on the
console
after receipt from the TL1 agent.

Output format

Example:

agent 02-12-04 13:01:35

** 15 REPT ALM ENV
"0.11b:MJ,T-ADC,NSA,02-12-04,13-01-35,,:\"Alarmld=42:
Description=ADC Bus Errors detected\""

Report Database Change

Description

This message cannot be issued from the console. It is displayed on the
console

after receipt from the TL1 Agent. This autonomous message reports
immediately to the operational service DiamondWave database changes that
have occurred as a result of commands to change

- equipment provisioning or configuration

- the value of the TID or SID

- the value of the keywords defined in the common block or specific block

Output format

Example:

agent> set-sid:::::calient;

calient 02-12-04 13:01:14

A 11 REPT DBCHG
"DATE=02-12-04,TIME=13-01-14,SOURCE=0,
USERID=admin,DBCHGSEQ=7:SET-SID:calient"

'Report Event Messages

Description

There are two types of event messages:

- REPT EVT SECU: Report Event Security

- REPT EVT COM: Report Event Commons

These messages cannot be issued from the console. They are displayed on
the

console after receipt from the TL1 agent. These autonomous messages result
in a display of a DiamondWave event on the console. For example,

Output format

Examples:

calient 02-11-25 11:18:25

A 350 REPT EVT SECU
"admin:SEC-LOGON,TC,02-11-25,11-18-25,,,,:\"User login\""

calient 02-12-04 13:01:35

Project: Phosphorus

Deliverable Number: D.2.3
Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

313

Grid-GMPLS high-level system design

A 14 REPT EVT COM
"0.11b:MON-MJ, TC,02-12-04,13-01-35,,,,:\"Monitor major
threshold crossed\

D.2.1.6 Get Resource List

This command probes for the available resources on the Calient OXC. Although the Calient uses single
commands for the probing of lists such as XCs and alarms, there is no single command that probes for the
amount of available resources and their current states. To support this functionality we use a loop to retrieve

individual ports and the cumulative result of the loop is presented to the TNRC_AP.

RTRV-PORT Retrieving Port Information

Description

This command retrieves port information.

format

Input and Output

Input: RTRV-PORT:[TID]:<eqptld>:[CTAG]::[<owner>],[<portcategory>];
Output:

SID DATE TIME

M CTAG COMPLD

"<AID>:<portType>,<inOwner>,<outOwner>:
[INOPTDEGR=<inoptdegr>], [INOPTCRIT=<inoptcrit>],
[OUTOPTDEGR=<outoptdegr>], [OUTOPTCRIT=<outoptcrit>],
[INOPTHI=<inopthi>], [ATTNMODE=<attnmode>],
[OUTPOWER=<outpower>],[VARIANT=<variant>],[ALIAS=<alias>],
[IN_AS=<inAS>],[IN_OS=<inOS>],[IN_OC=<inOC>],
[OUT_AS=<0utAS>], [OUT_OS=<0utOS>], [OUT_OC=<outOC>]"
example :

agent> rtrv-port::0.18.1,;

TL1AGENT 04-12-08 00:31:05

M 0 COMPLD

"0.18.1:0AONR, TRANSIT, NONE:INOPTDEGR=-15.00, INOPTCRIT=-
18.00,OUTOPTDEGR=-23.00, OUTOPTCRIT=-26.00,INOPTHI=13.00,,
ALIAS=TEST,POWERMODE=CONSTOUTPUT,OUTPOWER=0.00,VARI
ANT=0.50,INAS=IS,INOS=RDY,INOC=0K,0UTAS=00S-NP,
OUTOS=00S, OUTOC=0K, PORTID=1205761"

Input parameters

egptld This parameter specifies the port ID to modify. For
example, 0.13a.

owner This parameter specifies the ownership of connection.
Options are:
- trib (tributary) indicates the port is used in an optical
network
connection
- none indicates the port is used in a local node cross
connection

portcategory This parameter specifies the port category. Options are:
- all displays all ports
- free displays the ports that are not used in any

Project:

Deliverable Number:
Date of Issue:

EC Contract No.:
Document Code:

Phosphorus
D.2.3
31/03/08
034115

Phosphorus-WP2-D2.3

314

Grid-GMPLS high-level system design

connection

PORTTYPE This parameter specifies the type of the port (card type).
INOPTDEGR This parameter specifies the input optical power
threshold.

INOPTCRIT This parameter specifies the input optical power monitor
critical threshold.

The range is —35 dBm to 15 dBm. Default is —18.0 dBM.
OUTOPTDEG | This parameter specifies the output optical power monitor
R degraded

threshold for the light through the active switch matrix.
The range is —35

dBm to 20 dBm. Default is —23.0 dBM.

OUTOPTCRIT | This parameter specifies the output optical power monitor
critical threshold for

the light through the active switch matrix. The range is —
40 dBm to 15 dBm.

Default is —26.0 dBM.

INOPTHI This parameter specifies the input optical power monitor
high threshold for the

light through the active switch matrix. The range is —10
dBm to 20 dBm.

Default is 20.0 dBM.

ATTNMODE This parameter specifies the attenuation mode for the
VOA application.

OUTPOWER For IO cards with a power gain feature, this parameter
specifies the target

output power for the port. This parameter is applicable
only to a port

configured as constant output.

Setting is in increments of +dBm based on the granularity
setting of the

variant. The range is -30dBm to 15dBm. For example, the
setting 1.5

increases optical power gain 1.5dBm.

outpower is optional.

VARIANT This parameter specifies the attenuation threshold
ranging between 0-15 dB.

The default is 0.5 dB. The range is 0.5dB to 10dB.
variant is optional.

Output parameters

ALIAS This parameter specifies an assumed name created for
the port.
INAS This parameter specifies the input administrative state.
INOS This parameter specifies the input operational state.
INOC This parameter specifies the input operational capability.
OUTAS This parameter specifies the output administrative state.
OUTOS This parameter specifies the output operational state.
OuUTOC This parameter specifies the output operational capability.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

315

l

Grid-GMPLS high-level system design

D.2.1.7 Get Resource Details

The command retrieves the properties of a particular resource. The same command for the get resource detail
as explained earlier is used but without the loop.

D.2.1.8 Flush Resources

At the moment, this command is not quite clear. We are not sure, if it is to clear all alarms in the system or it is
to stop the notifications of events. This is been flagged to be discussed within the group.

D.2.2 TNRC_SP_Calient Generic Descriptions

The diagram below provides an overview of the processes and threads that were implemented in the Calient
TNRC_SP software. The software is made up two major threads in which one is used for listening and the other
for interacting with the switch.

The diagram in Figure 16-12. also shows the structure and the integration of the functions recommended in the
TNRC_SP specification document. As explained earlier on we are using the TL1 command language integrated
with the Telnet communication interface. The TNRC_SP architecture is divided into four broad categories
described below.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

316

Grid-GMPLS high-level system design

Register_async_ch

TNRC_SP_Calient

1
1
L] .
B — : ________ >
TNRC_AP_CaII\ !
¢ L TNRC_AP_Parser e
r TL1_Com. - >
Pseudo_Sync_Ch Make XC Thread
£ =t <—.—————§{-——
L | TL1_Resp.
— -
breudo Suac Co TL1_Com. :} .
seudo_Sync_t! >
< Destroy_XC_Thread =l - =
c
| —— TLL Com. E TL1_Resp.
Pseudo_Sync_Ch : = 2 >
<€ Get_List_Thread &« F---4 :I €« ~ —
1 71U com g TL1_Resp.
Pseudo_Sy1c_Ch ; = = >
<€ Get_Deatils_Thread = - -
q) I TLl_Com, TLl_Res&
Pseudo_Sync_C >
< Flush_Thread &« — — — — - & - —
TL1_Resp.
€« - -
Async_Ch — TL1_Ala"m

Calient Server Agent

Figure 16-12: Process and threads sequential diagram.

e Onstart: TNRC_AP creates an instance of TNRC_SP_Calient
o Each instance :
Establishes a Telnet client session for life time of the instance.

O Up to 8 concurrent instances can be created. This is because the Calient Telnet server is limited to

Implements a Telnet client listener thread (TNRC_Listening_Thread) for life time of the

instance.

Implements TNRC_AP_Parser method.
To parse TNRC_AP commands.

only 8 parallel sessions.

*« On process : each TNRC_AP_Call (i.e. Make_XC,Destroy _XC, Reserve XC, Unreserve XC) calls

TNRC_Parser method:

o Sends Ack to TRNC_AP.
o Creates an independent thread for each call.
o Each thread :
Sends associated Telnet command with a unique tag.
Starts a “no response” timer.

Project:

Deliverable Number:

Date of Issue:
EC Contract No.:
Document Code:

Phosphorus

D.2.3

31/03/08

034115
Phosphorus-WP2-D2.3

317

l

Grid-GMPLS high-level system design

— Waits for Ack from TNRC_Listening_Thread.

— Implements pseudo-synchronous notification method:

(1) On “no response” timer expiry notify TNRC_AP.

(2) On Ack from TNRC_Listening_Thread notify TNRC_AP.
(3) On Nack from TNRC_Listening_Thread notify TNRC_AP.
— Thread dies after notification or timeout.

The state diagrams for the commands are shown in Figure 16-13, Figure 16-14, Figure 16-15 and Figure
16-16.

activaEntry

|provision(a(tivate]=true|fsend atti\rat?j

unproper state less than
20 times

pravisioniactivate) =
false/send provision

N

z By successfulfsend retrieve

success/send activate /
Provision Act

ivate Check

[
unsuccessful

Error

unproper state for 20 times j

®

Propear State

Figure 16-13: State Diagram for Make XC.

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

318

Grid-GMPLS high-level system design

activeEntry

N
already in 0S5

:
]

init

_

send deactivate

Deac

N
tivate @ XC deactivated

Il g
r

0SS recieved 4

1

0SS

Figure 16-14: State Diagram for Destroy XC.

activeEntry

provision (activate)=
falsefsend
provision

B

send retrieve

N
B Improper state
unsuccessful

Figure 16-15: State Diagram for Reserve Resources.

Project: Phosphorus
Deliverable Number: D.2.3
Date of Issue: 31/03/08

EC Contract No.: 034115
Document Code: Phosphorus-WP2-D2.3

319

l

Grid-GMPLS high-level system design

activeEntry

init

N
send delete

‘ send retrieve ‘
delete check

Figure 16-16: State Diagram for Un-reserve Resources.

e On process : register_async_ch initiates the event notification registration:
o Registers the associated events.
o Sends Ack to TRNC_AP.

« On Process : Telnet client listener thread (TNRC_Listening_Thread) monitors (listens) Telnet client
socket:
o TNRC_Listening_Thread:
— Listens to message broadcasted by Telnet server agent in Calient.
— Implements a message parsing method:
(1) Lookup for registered events/alarms.
(2) Notify TNRC_AP with the registered events (register_async_cbh).
(3) Send call each response to its associated (tag) source thread.

<END-OF-DOCUMENT>

Project: Phosphorus
Deliverable Number: D.2.3

Date of Issue: 31/03/08
EC Contract No.: 034115

Document Code: Phosphorus-WP2-D2.3

320

