

034115

PHOSPHORUS

Lambda User Controlled Infrastructure for European Research

Integrated Project

Strategic objective:
Research Networking Testbeds

Deliverable reference number D1.5

Integration of the NSP and the Meta-Scheduling
System (MSS) of the Service Layer within the

middleware

Due date of deliverable: 2008-03-28
Actual submission date: 2008-03-28

Document code: Phosphorus-WP1-D1.5

Start date of project: Duration:
October 1, 2006 30 Months

Organisation name of lead contractor for this deliverable:
Universiteit van Amsterdam

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

2

Abstract

This deliverable describes the integration of the Network Service Plane with the Service Layer of the middleware (the Meta-Scheduling
System),

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

3

Table of Contents

0 Executive Summary 6

1 Requirements for Network Service Plane and MSS integration 7
1.1 Requirements for the MSS 7
1.2 Requirements for the Network Service Plane 8

2 Network Service Plane Northbound interfaces 10
2.1 Northbound interface 12

2.1.1 Reservation management 12
2.1.2 Reservation setup 13
2.1.3 Connection management 14
2.1.4 Other 14

2.2 Data types 15

3 Implications of Network Service Plane architecture to the MSS 18
3.1 Architecture overview 18

3.1.1 Topology webservice 19
3.1.2 Reservation webservice 19

3.2 Request and exception handling 20
3.2.1 Data binding 20
3.2.2 Exception handling 21
3.2.3 Validation 22

3.3 Authentication and authorization 22
3.4 Path computing 25

4 Network Service Plane functionality 26
4.1 Network resource availability query 26
4.2 Network resource reservation 26
4.3 Reservation status query 27
4.4 Reservation cancellation / connection teardown 27

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

4

5 Conclusions 29

6 References 30

7 Acronyms 31

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

5

Table of Figures

Figure 1.1: The MSS interacts with the NSP through the NSP adapter that maps the WS-Agreement interface
of the MSS to the reservation-WS functions of the NSP 8
Figure 2.1: Overview over NSP interfaces and modules 11
Figure 3.1: NSP architecture (simplified) 18
Figure 3.2: Exception handling 21
Figure 3.3: Request validation 22
Figure 3.4: Authenticated message flow 24

Table of Tables

Table 2.1: Data types used on the northbound interface. Composite data types that are not defined any further
in this table are defined in table 2.1. of the deliverable D1.4 17

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

6

0 Executive Summary

This deliverable defines the integration of the Network Service Plane (NSP) with the Meta-Scheduling System
(MSS). The main task of the NSP is to coordinate multiple network domains controlled by different
administrative authorities such that this multidomain aspect is hidden towards the MSS.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

7

1 Requirements for Network Service Plane
and MSS integration

1.1 Requirements for the MSS

The Meta-Scheduling System (MSS) developed in WP3 is responsible for the co-allocation of Grid and network
resources managed by different administrative entities. It is currently implemented in the UNICORE
middleware, but it is designed as middleware independent as possible. The MSS does not distinguish between
Grid and network resources. It treats the network in the same way as grid resource, whose availability can be
queried and that can be reserved in the same way as processing power on a computing cluster. In a single
domain environment, a Network Resource Provisioning System (NRPS) offers these services to the MSS. A
NRPS is a system that has full knowledge about the underlying network’s topology and the utilization of
resources at different points in time.

For the interface between the MSS and the NSP the same technology as towards the Compute Resources has
been selected at the side of the MSS: WS-Agreement. As the NSP itself has another interface we follow the
same approach as we did in VIOLA with the local Resource Management Systems to keep the respective
impact of the two components minimal: an adapter was implemented that wraps the thin reservation client of
the Reservation-WS of the NSP. This adapter developed for KODAVIS provides WS-Agreement interface, that
maps to the NSP reservation-WS functions. The interaction of the MSS and the NSP through this adapter,
which is developed by WP3, is shown in Figure 1.1. The mapping of TNAs to grid resources was configured for
the KODAVIS application on MSS side (no separate service or dynamic discovery is implemented yet). The
mapping information was provided by WP1.

The current implementation of the MSS uses the createReservation, getStatus and
cancelReservation of the NSP, but it does not yet include a preview functionality, which allows
determination of the earliest start time for a requested service.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

8

Figure 1.1: The MSS interacts with the NSP through the NSP adapter that maps the WS-Agreement interface
of the MSS to the reservation-WS functions of the NSP

1.2 Requirements for the Network Service Plane

In a “multidomain environment” with several coexisting NRPSs, each of them controlling an own domain, one or
more entities aware of the multidomain nature of the underlying network are needed to support a MSS. The
interface such Network Service Plane (NSP) entities should offer is not essentially different to that offered by
classical NRPSs; however, they operate quite differently. While a NRPS keeps track of the allocated resources
and directly accesses the network devices to establish paths, a NSP entity acts as a mediator between one or
more NRPSs and a MSS.

Because the actual resource management is implemented within a domain, it is not wise to duplicate the
resource allocation schedules in the NSP entities. In certain cases, it may be useful to decrease response
times by “caching” information inside the NSP, but care must be taken to avoid inconsistent information states.
This is especially difficult since it cannot be expected that all resource requests pass the NSP: Local users will
continue using their local NRPS interface to make local reservations. Note that the basic idea of NRPSs in
contrast is that these systems solely control the bandwidth usage in the underlying network.

Therefore, in the basic implementation of the (single, central) NSP entity, no resource usage is recorded in the
NSP, but every request is processed by coordinating the management systems of the underlying domains. The
most complex operations are those that require a feasible interdomain path to be found. E.g., to make a

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

9

multidomain reservation, the NSP entity must find a set of intradomain connections that involve the requested
user endpoints and several border endpoints that are interconnected by interdomain links.

Other operations basically are handled by duplicating the incoming request, adapting specific fields, and
forwarding the requests to the involved domains. The replies must then be combined to a single reply in an
appropriate way.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

10

2 Network Service Plane Northbound
interfaces

Integration of the MetaScheduler and the NSP is achieved through the northbound interface’s operations. The
northbound interface defines operations for management and setup of reservations, management of
connections and retrieving of features of the NSP or the underlying domains. This way it facilitates co-allocation
and utilization monitoring of resources at the MetaSchedular’s level or any other client northbound to the NSP
(Figure 2.1).

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

11

Network Service Plane

NRPS Interoperability Layer

Adapter

ARGON driver UCLP driver DRAC driver

Reservation
service

Topology
client

Adapter

Reservation
service

Topology
client

Adapter

Reservation
service

Topology
client

ARGON domain UCLP domain DRAC domain

Topology
Service Reservation service client

Grid
Middleware

NSP Northbound User Interoperability Layer

East/West reservation service interface

East/West topology service interface

Legend: Interfaces
--

 Northbound service interface

Northbound service
client

Northbound service interface implementation

Other
northbound

client for NSP

Northbound service
client

Figure 2.1: Overview over NSP interfaces and modules

Resources can be reserved, activated, bound and optionally cancelled through the CreateReservation,
Activate, Bind and CancelReservation operations respectively. Resource utilization monitoring is
facilitated through GetReservation, GetReservations, GetStatus and IsAvailable operations.
Finally, features supported by the NSP can be requested using the GetFeatures method (see section 2.1).
The northbound interface does contain additional operations but these are of less interest with regard to
MetaSchedular integration.

Using the northbound interface operations requires providing operational constraints as arguments in the form
of certain data types. The data types used on the northbound interface are introduced in Section 2.1.1.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

12

2.1 Northbound interface

The reservation interface is essentially the same, with regard to resource provisioning, as the interface that
allows for NRPS interoperability, i.e. the East/West interface which enable NRPS interoperability and NRPS
integration into the NSP. This is the case because both the NSP and the NRPSs allow resource provisioning,
however, the functionality provided by the reservation interface of the NSP is of a higher level coordinative
nature. Typically, within the reservation interface the individual domain resource reservations are handled and
presented to the higher level entities as one set of reservations.

In the following subsections, data types are defined as data type name : (composite) data type. Underlined
(composite) types are defined in Section 2.1.1. Not underlined data types are XML schema defined data types.
Composite data type which are not defined any further in the section are of less interest in the context of this
document and are defined in detail in table 2.1 of the deliverable D1.4.

2.1.1 Reservation management

WSDL Operation Name GetReservation
Description Retrieves the input by which a reservation request was made

Input parameters (XML type) ReservationIdentifierType : long
ServiceIdentifierType : integer

Output parameters (XML type) GetReservationResponse : GetReservationResponseType

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name GetReservations
Description Retrieves all existing reservations for the specified period of time

Input parameters (XML type) PeriodStartTime : dateTime
PeriodEndTime : dateTime

Output parameters (XML type) Sequence of Reservation : GetReservationsComplexType

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name CancelReservation

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

13

Description Cancels a network resource reservation

Input parameters (XML type) ReservationIdentifierType : long

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name GetStatus
Description Returns the status of a service

Input parameters (XML type) Service : ServiceConstraintType

Output parameters (XML type) ServiceStatus : ServiceStatusType

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

2.1.2 Reservation setup

WSDL Operation Name IsAvailable
Description Checks whether the specified service is available

Input parameters (XML type) Service: ServiceConstraintType
JobIdentifierType : long

Output parameters (XML type) DetailedResult : ConnectionAvailabilityType
optional AlternativeStartTimeOffset : long

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

Fault (XML type) EndpointNotFoundFault : EndpointNotFoundFault

WSDL Operation Name CreateReservation
Description Creates the reservation of a path between 2 endpoints considering the

specified constraints
Input parameters (XML type) Service : ServiceConstraintType

NotificationConsumerURL : string

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

14

Output parameters (XML type) ReservationIdentifierType : long
Detailed result : ConnectionAvailabilityType

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

Fault (XML type) EndpointNotFoundFault : EndpointNotFoundFault

2.1.3 Connection management

WSDL Operation Name Activate
Description Activates a service

Input parameters (XML type) ReservationIdentifierType : long
ServiceIdentifierType : integer

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name Bind
Description Create binding between NRPS endpoint and application endpoint

Input parameters (XML type) ReservationIdentifierType : long
ServiceIdentifierType : integer
ConnectionIdentifierType : integer
EndpointID : EndpointIdentifierType

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

2.1.4 Other

WSDL Operation Name GetFeatures
Description Retrieves information about the supported features of the NSP / NRPS

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

15

Input parameters None

Output parameters (XML type) sequence of FeatureName : string

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

2.2 Data types

Constraints with regard to scheduling of resources are provided with the operations as arguments. Key types
for defining the scheduling constraints are the ServiceConstraintType and the
ConnectionConstraintType in which the type of service and the specifics of the connection can be set
(see Table 2.1). A service can be either fixed, deferrable or malleable which can be defined through the
FixedReservationConstraintType, DeferrableReservationConstraintType and
MalleableReservationConstraintType dat types respectively. The bandwidth, delay and data amount
are set within the ConnectionConstraintType. Specifics regarding the endpoints used in the connection
and its directionality are specified in the ConnectionType which is the ConnectionConstraintType’s
base data type.

The service and connection constraints data types are also used in the operations for monitoring resource
utilization. Additionally there are specific service and connection status information data types defining current
statuses of resources. For services this is the ServiceStatusType and for connections the
ConnectionStatusType both containing status information defined using the StatusType data type.

In the table below (Table 2.1) the above mentioned data types and there composition are described. The data
types are defined as data type name : (composite) data type. Underlined types are composite types and
either defined in the same table or, when less interesting in the context of this document, in table 2.1 of the
deliverable D1.4. Not underlined data types are XML schema defined data types.

Constraint data types for scheduling and monitoring utilization of resources

Data type name Description (composite) Type

ServiceConstraintType Type used to
specify
constraints for
a service

ServiceIdentifierType : integer
TypeOfReservation: ReservationType
one of

FixedReservationConstraints :
FixedReservationConstraintType

DeferrableReservationConstraints :
DeferrableReservationConstraintType

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

16

MalleableReservationConstraints :
MalleableReservationConstraintType

AutomaticActivation : boolean
sequence of Connections :

ConnectionConstraintType
ConnectionConstraintType Type of

constraint on
the connection

extends ConnectionType
MinBW : integer
MaxBW : integer
MaxDelay : integer
DataAmount : long

ConnectionType Type of the
connection

ConnectionIdentifierType : integer
Source : EndpointType
Target : EndpointType
Directionality : integer

* Possible values: 0="unidirectional tree",
1="bidirectional tree", 3="full mesh"

FixedReservationConstraintType

Constraints for
fixed
reservations

StartTime : dateTime
* Indicates the time when the service should
start

Duration : integer
* Indicates the duration of the service in
seconds

DeferrableReservationConstraintType Constraints for
deferrable
reservations

StartTime : dateTime
* The earliest point in time when the
connection would be useful

Duration : integer
* Indicates the duration of the service in
seconds

Deadline : dateTime
* The latest point in time when the service will
be useful

MalleableReservationConstraintType StartTime : dateTime
* The earliest point in time when the
connection would be useful

Deadline : dateTime
* The latest point in time when the service will
be useful

ConnectionAvailabilityType Availability of
the connection

ServiceIdentifierType : string
ConnectionIdentifierType : integer
Availability : string

* Allowed values: (Enumeration)
‘available’
‘endpoint_not_available’
‘path_not_available’
‘availability_not_checked’

optional sequence of BlockedEndpoints :
 EndpointIdentifierType

MaxBW : integer
* Maximum available bandwidth in Mbps (only
set if the corresponding MaxBW was set in
the availability request)

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

17

ServiceStatusType Type for the
service status

ServiceIdentifierType : string
Status : StatusType
DomainStatus : DomainStatusType
Connections : ConnectionStatusType

ConnectionStatusType Type of the
status of the
connection

extends ConnectionType
Status : StatusType
DomainStatus : DomainStatusType
ActualBW : integer

* Actual bandwidth in Mbps
StatusType Type of the

status
one of (Enumeration)

unknown : string
pending : string
active : string
completed : string
cancelled_by_user : string
cancelled_by_system : string
setup_in_progress : string
teardown_in_progress : string

Table 2.1: Data types used on the northbound interface. Composite data types that are not defined any further
in this table are defined in table 2.1. of the deliverable D1.4

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

18

3 Implications of Network Service Plane
architecture to the MSS

3.1 Architecture overview

eu.ist_phosphorus.nsp.reservation

eu.ist_phosphorus.
nsp.webservice

eu.ist_phosphorus.
nsp.database

Reservation

Service

Connection

Endpoint

Domain

Link

TransactionM
anager

…

MySQL

ReservationRequestHandler

Reservation
Operations

Handler

Reservation
Setup

Handler

Path
Computer

NRPSManager

eu.ist_phosphorus.nsp.topology

TopologyRequestHandler

Reservation-WS

Topology-WS

eu.ist_phosphorus.nsp.validator eu.ist_phosphorus.nsp.aai

……

eu.ist_phosphorus.nsp.reservation

eu.ist_phosphorus.
nsp.webservice

eu.ist_phosphorus.
nsp.database

Reservation

Service

Connection

Endpoint

Domain

Link

TransactionM
anager

…

MySQL

ReservationRequestHandler

Reservation
Operations

Handler

Reservation
Setup

Handler

Path
Computer

NRPSManager

eu.ist_phosphorus.nsp.topology

TopologyRequestHandler

Reservation-WS

Topology-WS

eu.ist_phosphorus.nsp.validator eu.ist_phosphorus.nsp.aai

……

MSS

Figure 3.1: NSP architecture (simplified)

Figure 3.1 depicts a simplified overview of the NSP architecture, the dependencies between the different
internal modules and the interoperation with the MSS. Requests from the middleware or from a user application
are received through the webservice classes in the package eu.ist_phosphorus.nsp.webservice. These auto-
generated classes contain very little functionality and mainly hand the received requests to a
CommonRequestHandler class (not depicted in the figure) that validates the requests using the
eu.ist_phosphorus.nsp.validator package (cf. Section 3.2.3), that authorize the requests using the

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

19

eu.ist_phosphorus.nsp.aai package (cf. Section 3.3), and that finally forwards the requests to the appropriate
handlers.

The Java classes that represent the data communicated through the webservice interfaces are auto-generated
from the WSDL specifications using JAXB (Java Architecture for XML Binding, [JAXB], cf. Section 3.2.1). Data
to be stored persistently is represented through own Java classes in the eu.ist_phosphorus.nsp.database
packag. These classes offer all functionality for database access, so it is not necessary that classes outside of
this package are aware of details of the database used.

Requests received through the Topology-WS are processed by the TopologyRequestHandler (cf. Section
3.1.1), whereas requests received through the Reservation-WS are processed by the
ReservationRequestHandler (cf. Section 3.1.2). This possibly results in communication between NSP modules
and different NRPS adapters, which is encapsulated by the NRPSManager.

The MSS interacts with the NSP through the Reservation-WS to manage the required reservations. This
interaction will be further detailed on the coming sections.

3.1.1 Topology webservice

All requests received through the Topology-WS are processed by the TopologyRequestHandler class.
Basically, this class “translates” between the JAXB classes used on the webservice interface and the database
classes used in the NSP core and vice versa. The MSS will not require the operations of this web service
interface; this will only be used by the topology-aware clients like the NRPSs and the graphical topology client.
Though, the MSS could invoke operations to this interface in the same way that it does with the Reservation-
WS if it were necessary.

3.1.2 Reservation webservice

Requests received through the Reservation-WS are processed by the ReservationRequestHandler class. This
class serves as a facade towards the eu.ist_phosphorus.nsp.reservation package; its sole purpose is to
distribute requests to the different handler classes responsible for specific tasks.

The ReservationSetupHandler processes requests that are related to the establishment of new reservations (cf.
Section 2.1.2). This class checks the availability of network resources and sets up reservations. Both
operations interact with the path computation module (cf. Section 3.4) and share some other functionality.

This is not the case for the other operations that are implemented in the ReservationOperationsHandler, which
processes requests that are related to previously established connections. It retrieves reservation data, checks
the status of reservations, cancels reservations and activates previously reserved services (in case the auto
activation feature was not requested).

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

20

The MSS will use this interface to request the required operations related to reservations. The MSS must
implement the Reservation-WS proxy in order to be able to invoke these operations, and thus, it must be also
compliant with its XSD types. Hence, when the MSS needs for an operation of the WS, it has to create the WS
request, fill it with all the required parameters and invoke the operation. The NSP will receive the request
through the WS and if it is correct, will process it and send back the reply to the MSS. This reply will contain an
XML object to be processed by the MSS. So, the MSS only has to know the location of the Reservation-WS
and be compliant with its XSD types and services to be able to manage reservations in the NSP.

3.2 Request and exception handling

The webservice request, response and exception handling is abstracted in WP1 by using a unified request
handling layer that was described in D1.4. This layer is used in the whole service plane. Its task is to create a
transparent communication between the middleware (e.g. the Meta-Scheduling Service) and the service plane
without dealing with webservice related issues. Further details are shown in Figure 3.1. Each webservice
forwards the requests to its corresponding request handler. This handler cares about the data binding,
exceptions and the request validation.

Using the above mentioned architecture simplifies the communication between the middleware and the service
plane substantial and failures within the lower systems can be located in an efficient manner. Hence the
request and exception handling is described again in this deliverable with a focus on the middleware-
serviceplane-communication.

3.2.1 Data binding

The Java language is used in most middleware implementations. In order to abstract any XML related
functionalities from the middleware, the Java Architecture for XML Binding (JAXB) [JAXB] is used. Incoming
XML requests are transparently unmarshalled into annotated Java objects that can easily be used to retrieve or
modify the submitted data in a well-known fashion. The Java response objects then are marshalled back into
the according XML representation. This way, JAXB allows storing and retrieving data in memory in any XML
format, without the need to implement a specific set of XML loading and saving routines for the program's class
structure. The needed JAXB Java objects are generated automatically by using the XML Schema of the
webservice request and response types. By using this construct also exceptions with useful debugging
information can be exchanged transparent through the webservices.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

21

3.2.2 Exception handling

Figure 3.2: Exception handling

Exceptions are a construct of the Java programming language to handle expected or unexpected failures. A
webservice has a similar approach and it uses so called SoapFaults to communicate failures.

As shown in Figure 3.2, if an exception is thrown by the service plane it is caught by the appropriate request
handler and forwarded to the exception handler. The exception handler converts the Java exception including
the message and the stacktrace to an XML stream. This stream, which contains the complete Java stackstrace
in the SoapFault “Detail” field for debugging reasons, is sent out to the middleware (client) via the webservice in
form of a predefined SoapFault (cf. Section 2). On the client side, the SoapFault is converted back to the
original Java exception by the client’s webservice. This way the service plane can handle failures efficiently and
communicate all the information to the middleware. From the client point of view, the called webservice
operation acts as a normal Java method with exceptions.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

22

3.2.3 Validation

Figure 3.3: Request validation

Before sending or forwarding any (XML) data, the requests and responses are validated within the service
plane. As shown in Figure 3.3, the incoming and outgoing messages are validated in two ways. First, the
structure itself is validated by the syntax validator. The message must conform to the XML Schema definition of
the corresponding type. If this is not the case, a syntax validation exception is thrown and the message is
discarded. If the syntax is correct, the semantic validator verifies constraints regarding the content. If e.g. the
requested minimum bandwidth is higher than the requested maximum bandwidth in a message, a semantic
validation exception is thrown and again the message is discarded. This way, the core system can assume to
retrieve only valid data. Also the middleware receives helpful information regarding the validity of the sent
request immediately.

3.3 Authentication and authorization

As shown in Figure 3.4, the NSP contains a central module that is used to authenticate all incoming and to sign
all outgoing traffic. This Message Level Security (MLS) service is based on the OASIS Webservices Security
standard [WSS]. Besides procedures to sign and to encrypt SOAP messages the standard includes options to
attach security credentials like username/password, X.509 certificates or tokens.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

23

The MSS acts as an Attribute Authority (AA) that serves the role of a trusted entity for the service plane that
mediates requests for holders of digital credentials. It must have privileged access to the local authentication
domain database that holds information (identity attributes) about the credential holders. The MSS operates on
rulesets defining what attributes can be attached to the request and under what circumstances.

The service plane itself authorizes the request based on the attached attributes and the signature. It forwards
the request with the user credentials (attributes) that are contained in the incoming message from the
middleware to the involved NRPS adapters and vice versa. The same is done within the adapters but here the
service plane plays the role of the AA.

It is assumed that each domain has its own policy and attribute database. The NRPS adapter may map the
global attributes to local ones or local user accounts. In the case that global and local attributes are identical,
this mapping reduces to the identity function.

Since the communication with the service plane requires valid authentication credentials, the NSP creates a
transitive trust relation between all participating partners. This is achieved by preinstalling the service plane
public key in the MSS and in each NRPS adapter. On the other hand, the service plane must possess the
public keys of each communication party in advance.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

24

Figure 3.4: Authenticated message flow

Figure 3.4 depicts a sequence of interactions needed for the authentication flow mentioned above. The
following sequence description is simplified and reduced to a single MSS-NRPS communication. The initial
clients (or middleware’s) request could also be sent to an NRPS adapter.

(1) An MSS client sends a request to the Meta-Scheduling Service (MSS) with local user credentials. (2) The
MSS authorizes the user and the request locally. In case the request is authorized successfully, the scheduler
maps the user credentials to accordant global attributes, adds these to the request to the NSP and signs the
message with its private key. (3) The message then is sent to the NSP on behalf of the client. Since the public
key of the MSS is trusted within the NSP, the message is accepted in the next step. The signature of the valid
incoming request will be removed and the request may be split into several new requests. (4) The outgoing
messages to the NRPS adapters are signed by the NSP. All authorization related information that may be
added by the MSS is forwarded without any modification. In the expected case that the NRPS adapter trusts
the NSP key all authorization information (e.g. global attributes, tickets) and the request are forwarded to the

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

25

specific NRPS. (5) A complex authorization process has to be implemented in the NRPS adapter or the NRPS
itself.

This way, the service plane acts as a transparent broker between the MSS and each NRPS. It is self-evident
that this message level security flow is also applied for the corresponding response messages. Additionally, this
architecture could be used to encrypt the whole message flow.

3.4 Path computing

The Path Computer module of the NSP is designed to calculate interdomain paths using the Dijkstra algorithm.
It can calculate multiple paths in one single path computation request. When calculating a path, blocking of
resources (i.e. resources that are in use by another service that is at least partly overlapping in time) is taken
into account. Each path is returned as a list of tuples of endpoints. Each tuple consists of two endpoints of the
same domain. The calculation of the intradomain parts of a path is left to the Path Computer of the domains’
NRPSs. This means that the MSS should specify network requests as source and destination endpoints. For
this reason the only the source and destination endpoint need to be known to the MSS, but not the complete
topology.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

26

4 Network Service Plane functionality

4.1 Network resource availability query

The MSS can trigger an availability query by sending an IsAvailable request to the Reservation-WS.

Upon reception of an IsAvailable request, the corresponding routine in the ReservationSetupHandler class is
called. Though a reservation will actually not be made, the task to be solved is very similar to an actual
reservation, the only exception being that the queried resources are not reserved. Also, alternative start time
offsets can be returned, while an actual reservation only either succeeds or fails.

The requested services are used as input for the getAvailableServiceList routine that is also used for
CreateReservation requests. This routine queries the PathComputer for paths for all of the requested
connections and splits the single multidomain request to multiple single domain requests, one for each of the
involved domains. These requests are handed to the NRPSManager that takes care of sending these requests
to the NRPSs and collecting the corresponding replies.

If the requested resources are not available in one or more of the involved domains, they are pruned from the
PathComputer instance and the PathComputer is queried again for an alternative path. This process is
repeated until either a suitable path is found, or until so many resources have been pruned that no path is
available for one or more connections. In the first case, the requestor (MSS) is informed that the resources are
available. In the latter case, the requestor (MSS) is informed that they are not available, and the earliest
alternative start time offset of those recorded as described above is reported as an alternative start time offset.

4.2 Network resource reservation

The MSS can trigger a network resource reservation by sending a CreateReservation request to the
Reservation-WS. The reservation of network resources is internally handled similar to the availability query
described in the previous section. Before sending CreateReservation messages to the NRPSs, the availability
of the requested resources is checked. This is to prevent a series of CreateReservation and CancelReservation

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

27

messages that would be necessary if one or more domains in a multidomain path are not able to fulfill the
reservation.

Alternative start times reported by the NRPS adapters are however discarded. The availability of intradomain
paths along different routes returned by the PathComputer is checked merely with the constraints specified in
the CreateReservation message. In case a path consisting of domains that all gave a positive reply to the
availability query is found, the final reservations for all intradomain paths are established.

4.3 Reservation status query

A GetStatus request is mapped to a set of single-domain GetStatus queries in a straightforward way. From the
reservation ID that is part of this message, the domains and the reservation IDs used for this reservation inside
each of the domains are retrieved from the database, and a set of corresponding GetStatus messages is
constructed and passed to the NRPSManager.

Practical considerations during first testing of the code have lead to a slight modification of the
GetStatusResponse messages. In addition to an overall status code for each connection that is generated from
the set of status codes for this connection received from the participating NRPSs, the GetStatusResponseType
optionally contains DomainStatus elements, each of which contains a domain name and an element of type
ConnectionStatusType, i.e. the connection status received from the specified domain. This is mainly interesting
for debugging purposes in cases where the status values are not consistent. E.g., in case a connection should
be established, all domains should return the status code active. If one domain returns a different status code, it
is immediately visible in which domain the error has occurred.

The MSS can invoke this operation in order to know the status of a previously created reservation. To do this,
the MSS has to know the reservation ID and the Service ID to construct the GetStatus object that will be sent to
Reservation WS of the NSP. The reservation ID and service ID used must be the ones that the MSS received
in the CreateReservationResponse message from the NSP when the reservation was successfully created.
This mechanism allows the MSS to retrieve detailed status information of a subset of services within a
reservation. This way, the software on the MSS can monitor all the connections that it considers most critical for
its purposes, as far as a service is defined as a set of connections.

4.4 Reservation cancellation / connection teardown

An already established reservation is cancelled by a CancelReservation message. For the NSP, it is not of
importance whether the reservation contains services that are already active or whether all services are still
waiting to be started. Once a CancelReservation is received from the MSS, all services on it are cancelled.

To cancel a reservation, the NSP looks up the intradomain reservations that were made for the input
reservation and sends a CancelReservation message with the corresponding ID to each of the domains.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

28

The MSS is able to cancel a reservation when needed by sending to the WS the CancelReservation request
object with the identifier of the reservation to be cancelled. As in other operations, this identifier was stored in
the MSS once the reservation creation process was successfully performed.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

29

5 Conclusions

This deliverable describes integration of the NSP with the MSS. Transparently enabling multidomain advance
reservation features, the NSP allows a network consisting of multiple administrative domains managed by
different NRPSs to be integrated into the MSS.

To achieve this, the NSP offers a reservation webservice that is comparable to a NRPS webservice. An an
adapter is used to mediate between the WS-Agreement protocol and messages and the interface of the NSP.
Requests received across this interface are processed in such a way that the multidomain nature of the
underlying network is hidden towards the MSS.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

30

6 References

[Hibernate] Hibernate (Relational Persistence for Java and .NET),
http://www.hibernate.org/

[JAXB] Java Architecture for XML Binding (JAXB) reference implementation,

https://jaxb.dev.java.net/

[MSS] O.Wäldrich, Ph. Wieder, and W. Ziegler, A Meta-Scheduling Service for Co-allocating Arbitrary

Types of Resources. In Proc. of the Second Grid Resource Management Workshop
(GRMWS'05) in conjunction with Parallel Processing and Applied Mathematics: 6th
International Conference, PPAM 2005, Lecture Notes in Computer Science, Volume 3911, R.
Wyrzykowski, J. Dongarra, N. Meyer, and J. Wasniewski (eds.), pp. 782-791, Springer,
Poznan, PL, September 11-14, 2005. ISBN: 3-540-34141-2.

[WSN] S. Graham, D. Hull, B. Murray (editors), “Webservice Base Notification 1.3 (WS-

BaseNotification),” OASIS Standard, October 2006

[WSS] A. Nadalin, C. Kaler, P. Hallam-Baker, R. Monzill et al., “Webservices Security: SOAP Message

Security 1.0 (WS-Security 2004),” OASIS Standard, vol. 200401, 2004.

Integration of the NSP and the MSS (MetaScheduler) of the Service Layer within the middleware

Project: Phosphorus
Deliverable Number: D1.5
Date of Issue: 03/28/08
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.5

31

7 Acronyms

AAA Authorization, Authentication and Accounting
ARGON Allocation and Reservation in Grid-enabled Optic Networks
BoD Bandwidth on Demand
CP Control Plane
DB Data Base
DRAC Dynamic Resource Allocation Controller
E2E End-to-End
GLIF Global Lambda Integrated Facility
GMPLS Generalized Multi Protocol Label Switching
IDM InterDomain Manager
ID Identifier
IP Internet Protocol
I-NNI Interior NNI
LSP Label Switched Path
MSS Meta-Scheduling System
NNI Network-Network Interface
NRPS Network Resource Provisioning System
NSP NSP
NSAP Network Service Access Point
OSPF Open Shortest Path First
QoS Quality of Service
TNA Transport Network Address
UCLPv2 User Controlled LightPaths version 2
URL Uniform Resource Locator
VLAN Virtual Local Area Network
WP Work Package
WS Webservice

