

034115

PHOSPHORUS

Lambda User Controlled Infrastructure for European Research

Integrated Project

Strategic objective:
Research Networking Testbeds

Deliverable reference number D1.4

Definition and development of the Network Service
Plane and northbound interfaces development

Due date of deliverable: 2007-11-30
Actual submission date: 2007-11-30

Document code: Phosphorus-WP1-D1.4

Start date of project: Duration:
October 1, 2006 30 Months

Organisation name of lead contractor for this deliverable:
Rheinische Friedrich-Wilhems-Universität Bonn

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

2

Abstract

This deliverable describes the Network Service Plane (NSP) and its interfaces, specifically its northbound interfaces towards a Meta-

Scheduling System [MSS] or towards user client software. The NSP is responsible for coordinating the reservation of network resources

that belong to different administrative domains which are managed by different Network Resource Provisioning Systems (NRPSs).

This deliverable specifies the reservation interface used for multidomain reservation management and the administrative topology interface

used to manage the participating domains and the interdomain topology of the network. It describes the different system modules, and

describes the functionality of the system as a whole by explaining the sequence of actions taken for different common workflows.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

3

Table of Contents

0 Executive Summary 6

1 Network Service Plane requirements 7

1.1 Task to be solved within the Network Service Plane 7

1.2 Required functionality 8

2 Northbound interfaces 10

2.1 Reservation interface 11

2.1.1 Reservation management 11

2.1.2 Reservation setup 12

2.1.3 Connection management 13

2.1.4 Job management 14

2.1.5 Other 14

2.2 Topology interface 15

2.2.1 Domain operations 15

2.2.2 Endpoint operations 16

2.2.3 Interdomain link operations 18

2.3 Data types 19

3 Network Service Plane architecture 23

3.1 Architecture overview 23

3.1.1 Topology webservice 24

3.1.2 Reservation webservice 24

3.2 Request and exception handling 24

3.2.1 Data binding 25

3.2.2 Exception handling 25

3.2.3 Validation 26

3.3 Authentication and authorization 26

3.4 Data storage 28

3.4.1 Storage structure 28

3.4.2 Data binding 33

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

4

3.5 Path computing 33

3.6 Request forwarding 36

4 Network Service Plane functionality 40

4.1 Topology modification 40

4.2 Network resource availability query 42

4.3 Network resource reservation 43

4.4 Reservation status query 44

4.5 Reservation cancellation / connection teardown 44

5 Conclusions 45

6 References 46

7 Acronyms 47

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

5

Table of Figures

Figure 1.1: Overview over NSP interfaces and modules 8
Figure 2.1: Overview over NSP interfaces and modules 10
Figure 3.1: NSP architecture (simplified) 23
Figure 3.2: Exception handling 25
Figure 3.3: Request validation 26
Figure 3.4: Authenticated message flow 27
Figure 3.5: Entity Relationship model of the NSP database 29
Figure 3.6: Path Computer Workflow 34
Figure 3.7: Sequential NRPS Manager (1

st
 prototype). 38

Figure 3.8: Threaded NRPS Manager (2
nd
 prototype). 39

Figure 4.1: Topology Client GUI 41
Figure 4.2: Domains registration 42
Figure 4.3: Example scenario for reservation setup 43

Table of Tables

Table 2.1: Data types used on the northbound interface 22

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

6

0 Executive Summary

This deliverable defines the architecture and the functionality of the Network Service Plane (NSP) and its

northbound interfaces towards the user or towards a Meta-Scheduling System (MSS). The main task of the

NSP is to coordinate multiple network domains controlled by different administrative authorities such that this

multidomain aspect is hidden towards the user.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

7

1 Network Service Plane requirements

1.1 Task to be solved within the Network Service Plane

The Meta-Scheduling System (MSS) developed in WP3 is responsible for the co-allocation of Grid and network

resources managed by different administrative entities. It is currently implemented in the UNICORE

middleware, but it is designed as middleware independent as possible. The MSS does not distinguish between

Grid and network resources. It treats the network in the same way as grid resource, whose availability can be

queried and that can be reserved in the same way as processing power on a computing cluster. In a single

domain environment, a Network Resource Provisioning System (NRPS) offers these services to the MSS. A

NRPS is a system that has full knowledge about the underlying network’s topology and the utilization of

resources at different points in time.

The “Network Service Plane” (NSP) is a solution for a “multidomain environment” with several coexisting

NRPSs, each of them controlling an own domain. The domains are assumed to be connected via interdomain

links. In such an environment, routing decisions must also be made on an interdomain level, and several

NRPSs must be queried to check resource availability and to make resource reservations. Therefore, an entity

is required that is aware of network topology aspects and that offers an interface which hides the multidomain

nature of the underlying network towards a MSS or towards a human user.

It is important to keep in mind that the NSP is not simply an NRPS at a higher level. The actual resource

utilization management is done at the NRPS layer. Each NRPS represents an autonomous system that allows

a limited view on the internal structure of the domain. The NSP can rather be seen as a subsystem of the MSS,

since its main task is to coordinate the different NRPSs.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

8

1.2 Required functionality

Network Service Plane

Administrator
Topology client

Middleware
MSS

User
Application

WS-Modules

Topology-WS

R
e
s
e
rv
a
tio
n
-W

S N
o
tific

a
tio
n
-W

S

Java MySQL

R
e
q
h
a
n
d
le
r

D
a
ta
b
a
s
e

NRPS manager

Resv setup Resv operation

Authn Topology

Validation Path comp

ARGON

Domain

ARGON

Domain
UCLP

Domain

UCLP

Domain
DRAC

Domain

DRAC

Domain
GMPLS

Domain

GMPLS

Domain

ARGON

Reservation-WS

UCLP

Reservation-WS

DRAC

Reservation-WS

GMPLS thin

Reservation-WS

ARGON Adapter UCLP Adapter DRAC Adapter

WS-Notification

Figure 1.1: Overview over NSP interfaces and modules

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

9

The NSP and its role in the context of the Phosphorus project are outlined in Figure 1.1.

To achieve the task outlined above (Section 1.1), the NSP provides a user interface that offers services similar

to a NRPS interface. This interface is called the “Reservation Webservice” or “Reservation-WS” (cf. Section

2.1). The Reservation-WS offers operations to query resource availability, to create and to cancel reservations,

and to query a reservation’s status.

Essentially, multidomain requests received by the NSP have to be mapped to appropriate singledomain

requests. However, a multidomain architecture introduces many degrees of freedom and therefore, a single

multidomain request may also trigger a multitude of singledomain requests for each of the underlying domains.

E.g., there can be many different interdomain paths that can be used to fulfill a network resource reservation

request, and the NSP has to check the resource availability along these paths until a path with enough free

resources is available to finally make a reservation (cf. Section 4.3).

Additionally, the NSP requires functionality to add, delete and edit domains and interdomain links. This

functionality is accessed through a separate interface called the “Topology Webservice” or “Topology-WS” (cf.

Sections 2.2, 4.1). Note that in general, the NSP has a rather limited view of the underlying domains, and the

only topological data exchanged are the IDs of available endpoints located within the domains.

To efficiently implement fast responses to error situations, the NSP can also implement a “Notification

Webservice” (“Notification-WS”). Adhering to the WS-notification standard [WSN], this allows a domain to

inform the NSP e.g. that a reservation cannot be sustained because of a hardware failure. If this message is

received from a transit domain, the NSP can try to establish alternative reservations; the user or the

middleware process requesting the service would not need to be involved. In other cases, related reservations

might be cancelled, and the user or middleware process could be informed through their Notification-WS

interfaces.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

10

2 Northbound interfaces

Network Service Plane

NRPS Interoperability Layer

Adapter

ARGON driver UCLP driver DRAC driver

Reservation
service

Topology
client

Adapter

Reservation
service

Topology
client

Adapter

Reservation
service

Topology
client

ARGON domain UCLP domain DRAC domain

Topology
Service Reservation service client

Grid
Middleware

NSP Northbound User Interoperability Layer

East/West reservation service interface

East/West topology service interface

Legend: Interfaces
--

 Northbound service interface

Northbound service
client

Northbound service interface implementation

Other
northbound
client for NSP

Northbound service
client

Figure 2.1: Overview over NSP interfaces and modules

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

11

The northbound interfaces disclose NSP functionality towards the higher level entities. The main northbound

interface, the reservation interface, allows for requesting end-to-end resource provisioning that may span

multiple domains. The reservation interface is described in Section 2.1.

Additionally to reservation management, the northbound interface allows for querying and modifying the domain

topology. The topology interface is described in Section 2.2.

The data types used on the northbound interface are introduced in Section 2.3.

2.1 Reservation interface

The reservation interface is essentially the same as the interface that allows for NRPS interoperability, i.e. the

interface that integrates an individual NRPS into the NSP. This is the case because both the NSP and the

NRPSs allow resource provisioning, however, the functionality provided by the reservation interface of the NSP

is of a higher level coordinative nature. Typically, within the reservation interface the individual domain resource

reservations are handled and presented to the higher level entities as one set of reservations.

In the following subsections, data types are defined as data type name : (composite) data type. Underlined

(composite) types are defined in Section 2.3. Not underlined data types are XML schema defined data types.

2.1.1 Reservation management

WSDL Operation Name getReservation

Description Retrieves the input by which a reservation request was made

Input parameters (XML type) ReservationIdentifierType : long
ServiceIdentifierType : integer

Output parameters (XML type) GetReservationResponse : GetReservationResponseType

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name getReservations

Description Retrieves all existing reservations for the specified period of time

Input parameters (XML type) PeriodStartTime : dateTime
PeriodEndTime : dateTime

Output parameters (XML type) Sequence of Reservation : GetReservationsComplexType

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

12

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name cancelReservation

Description Cancels a network resource reservation

Input parameters (XML type) ReservationIdentifierType : long

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name getStatus

Description Returns the status of a service

Input parameters (XML type) Service : ServiceConstraintType
JobIdentifierType : long

Output parameters (XML type) ServiceStatus : ServiceStatusType

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

2.1.2 Reservation setup

WSDL Operation Name isAvailable

Description Checks whether the specified service is available

Input parameters (XML type) Service: ServiceConstraintType
JobIdentifierType : long

Output parameters (XML type) DetailedResult : ConnectionAvailabilityType
optional AlternativeStartTimeOffset : long

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

13

Fault (XML type) EndpointNotFoundFault : EndpointNotFoundFault

WSDL Operation Name createReservation

Description Creates the reservation of a path between 2 endpoints considering the
specified constraints

Input parameters (XML type) Service : ServiceConstraintType
JobIdentifierType : long
NotificationConsumerURL : string

Output parameters (XML type) JobIdentifierType : long
ReservationIdentifierType : long
Detailed result : ConnectionAvailabilityType

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

Fault (XML type) EndpointNotFoundFault : EndpointNotFoundFault

2.1.3 Connection management

WSDL Operation Name activate

Description Activates a service

Input parameters (XML type) ReservationIdentifierType : long
ServiceIdentifierType : integer

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name bind

Description Create binding between NRPS endpoint and application endpoint

Input parameters (XML type) ReservationIdentifierType : long
ServiceIdentifierType : integer
ConnectionIdentifierType : integer
EndpointID : EndpointIdentifierType

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

14

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

2.1.4 Job management

WSDL Operation Name completeJob

Description Modifies all pre-reservations belonging to the job to permanent
reservations

Input parameters (XML type) JobIdentifierType : long

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name cancelJob

Description Cancels all reservations in the job. Ie. all resources are freed.

Input parameters (XML type) JobIdentifierType : long

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

2.1.5 Other

WSDL Operation Name getFeatures

Description Retrieves information about the supported features of the NSP / NRPS

Input parameters None

Output parameters (XML type) sequence of FeatureName : string

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

15

2.2 Topology interface

This section contains the formal description of the topology interface operations and the types used within its

operations. The topology interface supports adding of domains, domain endpoints and links between domain

endpoints to the NSP thus enabling the NSP to compile a multidomain spanning topology. Also the topology

interface supports editing and removal of domains, endpoints and links once they are added and known within

the NSP in order to keep the topology known to the NSP up to date. Finally the topology known to the NSP can

be retrieved through the getDomain, getEndpoints and getLinks operations.

In the current NSP implementation, interdomain links are assumed to be static links between border endpoints

located in different domains. Further, it is assumed that they cannot be further divided into subchannels, so an

interdomain link is only available for a single connection at a certain point in time. I.e., an interdomain link can

be thought of as a specific wavelength. This reflects the current nature of the testbed. It therefore is not

necessary that the NSP is aware of technological details of the interdomain links. However, in the future, the

information model will be extended to allow for interdomain links with subchannels and to take technological

details into account.

Also, domains are currently not required to be aware of interdomain links. Therefore, the domains themselves

are only responsible for keeping their own information up to date; interdomain links are added manually (cf.

Section 4.1).

2.2.1 Domain operations

WSDL Operation Name addDomain

Description Adds the domain to the NSP

Input parameters (XML type) Domain : DomainInformationType

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

Fault (XML type) DomainAlreadyExistsFault : DomainAlreadyExistsFault

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

16

WSDL Operation Name deleteDomain

Description Deletes the domain from the NSP

Input parameters (XML type) DomainIdentifierType : string

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

Fault (XML type) DomainNotFoundFault : DomainNotFoundFault

WSDL Operation Name editDomain

Description Edits the specified domain link available in the NSP

Input parameters (XML type) Domain : DomainInformationType

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

Fault (XML type) DomainNotFoundFault : DomainNotFoundFault

WSDL Operation Name getDomains

Description Retrieves all domains added to the NSP

Input parameters (XML type) None

Output parameters (XML type) Sequence of Domain : DomainInformationType

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

2.2.2 Endpoint operations

WSDL Operation Name addEndpoint

Description Adds an endpoint to the NSP

Input parameters (XML type) Endpoint : EndpointType

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

17

Output parameters (XML type) Success : Boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

Fault (XML type) DomainNotFoundFault : DomainNotFoundFault

Fault (XML type) EndpointAlreadyExistsFault : EndpointAlreadyExistsFault

WSDL Operation Name deleteEndpoint

Description Deletes an endpoint from the NSP

Input parameters (XML type) EndpointID : EndpointIdentifierType

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name editEndpoint

Description Edits the specified endpoint link available in the NSP

Input parameters (XML type) Endpoint : EndpointType

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name getEndpoints

Description Retrieves all endpoints added to the NSP

Input parameters (XML type) DomainName : string

Output parameters (XML type) Sequence of Endpoint : EndpointType

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

18

2.2.3 Interdomain link operations

WSDL Operation Name addLink

Description Adds the specified link to the NSP

Input parameters (XML type) Link : Link

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name deleteLink

Description Removes the specified link from the NSP

Input parameters (XML type) LinkId : LinkIdentifierType

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name editLink

Description Edits the specified link available in the NSP

Input parameters (XML type) Link : Link

Output parameters (XML type) Success : boolean

Fault (XML type) UnexpectedFault : UnexpectedFault

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

WSDL Operation Name getLinks

Description Retrieves all available links in the NSP

Input parameters (XML type) DomainIdentifierType : string

Output parameters (XML type) sequence of Link : Link

Fault (XML type) UnexpectedFault : UnexpectedFault

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

19

Fault (XML type) InvalidRequestFault : InvalidRequestFault

Fault (XML type) OperationNotAllowedFault : OperationNotAllowedFault

2.3 Data types

The following Table 2.1 describes all data types that are used by the reservation and topology interfaces.

Data type name Description (composite) Type

ServiceConstraintType Type used to
specify
constraints for
a service

ServiceIdentifierType : integer
TypeOfReservation: ReservationType
one of

FixedReservationConstraints :
FixedReservationConstraintType

DeferrableReservationConstraints :
DeferrableReservationConstraintType

MalleableReservationConstraints :
MalleableReservationConstraintType

AutomaticActivation : boolean
sequence of Connections :

ConnectionConstraintType

ReservationType Type of
reservation

one of
fixed : string
deferrable : string
malleable : string

FixedReservationConstraintType

Constraints for
fixed
reservations

StartTime : dateTime
* Indicates the time when the service should
start

Duration : integer
* Indicates the duration of the service in
seconds

DeferrableReservationConstraintType Constraints for
deferrable
reservations

StartTime : dateTime
* The earliest point in time when the
connection would be useful

Duration : integer
* Indicates the duration of the service in
seconds

Deadline : dateTime
* The latest point in time when the service will
be useful

MalleableReservationConstraintType StartTime : dateTime
* The earliest point in time when the
connection would be useful

Deadline : dateTime
* The latest point in time when the service will
be useful

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

20

ConnectionConstraintType Type of
constraint on
the connection

extends ConnectionType
MinBW : integer
MaxBW : integer
MaxDelay : integer
DataAmount : long

ConnectionType Type of the
connection

ConnectionIdentifierType : integer
Source : EndpointType
Target : EndpointType
Directionality : integer

* Possible values: 0="unidirectional tree",
1="bidirectional tree", 3="full mesh"

EndpointType Information
about the
endpoint

EndpointID : EndpointIdentifierType
Name : string
Description : string
Interface : EndpointInterfaceType
DomainIdentifierType : string
Bandwidth : integer

* Bandwidth of the port in Mbps

EndpointIdentifierType Type used to
identify
endpoints

TNAType : string
* Type used for TNA addresses

EndpointInterfaceType Interdomain,
local end point

one of
user : string
border : string

ConnectionAvailabilityType Availability of
the connection

ServiceIdentifierType : string
ConnectionIdentifierType : integer
Availability : string

* Allowed values: (Enumeration)
‘available’
‘endpoint_not_available’
‘path_not_available’
‘availability_not_checked’

optional sequence of BlockedEndpoints :
 EndpointIdentifierType

MaxBW : integer
* Maximum available bandwidth in Mbps (only
set if the corresponding MaxBW was set in
the availability request)

ServiceStatusType Type for the
service status

ServiceIdentifierType : string
Status : StatusType
DomainStatus : DomainStatusType
Connections : ConnectionStatusType

StatusType Type of the
status

one of (Enumeration)
unknown : string
pending : string
active : string
completed : string
cancelled_by_user : string
cancelled_by_system : string
setup_in_progress : string
teardown_in_progress : string

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

21

DomainStatusType Type of the
domain status

DomainIdentifierType : string
Status : StatusType

ConnectionStatusType Type of the
status of the
connection

extends ConnectionType
Status : StatusType
DomainStatus : DomainStatusType
ActualBW : integer

* Actual bandwidth in Mbps

GetReservationResponseType Type for
getReservation
response

Service : ServiceConstraintType
JobIdentifierType : long
NotificationConsumerURL : string

GetReservationsComplexType Type for
getReservation
response

ReservationIdentifierType : long
Reservation : GetReservationResponseType

DomainInformationType Type for
definition of a
domain

DomainIdentifierType : string
Description : string
ReservationEPR : anyURI
TopologyEPR : anyURI
sequence of TNAPrefixType :

string

Link Type for
definition of a
link

extends LinkIdentifierType
Name : string
Description : string
Delay : integer

LinkIdentifierType Identifies a link SourceEndpoint : EndpointIdentifierType
DestinationEndpoint : EndpointIdentifierType

UnexpectedFault Returned in
case an
internal error
occurred and
contains
information
describing the
fault
encountered

extends wsbf:BaseFaultType

* This type is described in OASIS Web Services
Resource Framework (http://www.oasis-
open.org/specs/index.php#wsrfv1.2)

InvalidRequestFault Returned in
case that the
request
doesn't match
the interface
specification

extends wsbf:BaseFaultType

* This type is described in OASIS Web Services
Resource Framework (http://www.oasis-
open.org/specs/index.php#wsrfv1.2)

OperationNotAllowedFault Returned in
case that the
operation is
not allowed
with the given
user
credentials

extends wsbf:BaseFaultType

* This type is described in OASIS Web Services
Resource Framework (http://www.oasis-
open.org/specs/index.php#wsrfv1.2)

EndpointNotFoundFault Returned in
case a given
endpoint

extends ReservationFault

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

22

cannot be
located

ReservationFault Base fault type
for reservation
interface
operation
faults

extends wsbf:BaseFaultType

* This type is described in OASIS Web Services
Resource Framework (http://www.oasis-
open.org/specs/index.php#wsrfv1.2)

DomainAlreadyExistsFault Returned in
case the
domain
already exists

extends TopologyFault

DomainNotFoundFault Returned in
case the
domain can
not be
recovered

extends TopologyFault

EndpointAlreadyExistsFault Returned in
case that the
endpoint
already exists

extends TopologyFault

TopologyFault Base fault type
for topology
interface
operation
faults

extends wsbf:BaseFaultType

* This type is described in OASIS Web Services
Resource Framework (http://www.oasis-
open.org/specs/index.php#wsrfv1.2)

Table 2.1: Data types used on the northbound interface

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

23

3 Network Service Plane architecture

3.1 Architecture overview

eu.ist_phosphorus.nsp.reservation

eu.ist_phosphorus.

nsp.webservice

eu.ist_phosphorus.

nsp.database

Reservation

Service

Connection

Endpoint

Domain

Link

T
ra
n
s
a
c
tio
n
M
a
n
a
g
e
r

…

MySQL

ReservationRequestHandler

Reservation

Operations

Handler

Reservation

Setup

Handler

Path

Computer

NRPSManager

eu.ist_phosphorus.nsp.topology

TopologyRequestHandler

Reservation-WS

Topology-WS

eu.ist_phosphorus.nsp.validator eu.ist_phosphorus.nsp.aai

……

eu.ist_phosphorus.nsp.reservation

eu.ist_phosphorus.

nsp.webservice

eu.ist_phosphorus.

nsp.database

Reservation

Service

Connection

Endpoint

Domain

Link

T
ra
n
s
a
c
tio
n
M
a
n
a
g
e
r

…

MySQL

ReservationRequestHandler

Reservation

Operations

Handler

Reservation

Setup

Handler

Path

Computer

NRPSManager

eu.ist_phosphorus.nsp.topology

TopologyRequestHandler

Reservation-WS

Topology-WS

eu.ist_phosphorus.nsp.validator eu.ist_phosphorus.nsp.aai

……

Figure 3.1: NSP architecture (simplified)

Figure 3.1 depicts a simplified overview of the NSP architecture and the dependencies between the different

modules. Requests from the middleware or from a user application are received through the webservice

classes in the package eu.ist_phosphorus.nsp.webservice. These auto-generated classes contain very little

functionality and mainly hand the received requests to a CommonRequestHandler class (not depicted in the

figure) that validates the requests using the eu.ist_phosphorus.nsp.validator package (cf. Section 3.2.3), that

authorize the requests using the eu.ist_phosphorus.nsp.aai package (cf. Section 3.3), and that finally forwards

the requests to the appropriate handlers.

The Java classes that represent the data communicated through the webservice interfaces are auto-generated

from the WSDL specifications using JAXB (Java Architecture for XML Binding, [JAXB], cf. Section 3.2.1). Data

to be stored persistently is represented through own Java classes in the eu.ist_phosphorus.nsp.database

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

24

package (cf. Section 3.4). These classes offer all functionality for database access, so it is not necessary that

classes outside of this package are aware of details of the database used.

Requests received through the Topology-WS are processed by the TopologyRequestHandler (cf. Section

3.1.1), whereas requests received through the Reservation-WS are processed by the

ReservationRequestHandler (cf. Section 3.1.2). This possibly results in communication between NSP modules

and different NRPS adapters, which is encapsulated by the NRPSManager class (cf. 3.6).

3.1.1 Topology webservice

All requests received through the Topology-WS are processed by the TopologyRequestHandler class.

Basically, this class “translates” between the JAXB classes used on the webservice interface and the database

classes used in the NSP core and vice versa.

3.1.2 Reservation webservice

Requests received through the Reservation-WS are processed by the ReservationRequestHandler class. This

class serves as a facade towards the eu.ist_phosphorus.nsp.reservation package; its sole purpose is to

distribute requests to the different handler classes responsible for specific tasks.

The ReservationSetupHandler processes requests that are related to the establishment of new reservations (cf.

Section 2.1.2). This class checks the availability of network resources and sets up reservations. Both

operations interact with the path computation module (cf. Section 3.5) and share some other functionality.

This is not the case for the other operations that are implemented in the ReservationOperationsHandler, which

processes requests that are related to previously established connections. It retrieves reservation data, checks

the status of reservations, cancels reservations and activates previously reserved services (in case the auto

activation feature was not requested).

3.2 Request and exception handling

The webservice/SOAP request, response and exception handling is abstracted in WP1 by using a unified

request handling layer. This layer is used in the NSP and each NRPS adapter. Its task is to create a

transparent communication between Java based clients (e.g. Meta-Scheduling Service, NSP, NRPS adapter)

without dealing with webservice related issues. As shown in Figure 3.1 each webservice forwards the requests

to its corresponding request handler. This handler cares about the data binding, exceptions and the request

validation.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

25

3.2.1 Data binding

In order to abstract the Java based system from any XML related functions, the Java Architecture for XML

Binding (JAXB) [JAXB] is used. Incoming XML requests are transparently unmarshalled into annotated Java

objects that can easily be used to retrieve or modify the submitted data. The Java response objects then are

marshalled back into the according XML representation. This way, JAXB allows storing and retrieving data in

memory in any XML format, without the need to implement a specific set of XML loading and saving routines for

the program's class structure. The needed JAXB Java objects are generated automatically by using the XML

Schema of the webservice request and response types. By using this construct also exceptions can be

exchanged through the webservice.

3.2.2 Exception handling

Figure 3.2: Exception handling

Exceptions are a contruct of the Java programming language to handle expected or unexpected failures. A

webservice has a similar approach and it uses so called SoapFaults to communicate failures.

As shown in Figure 3.2, if an exception is thrown by the NSP or an NRPS adapter, it is caught by the

appropriate request handler and forwarded to the exception handler. The exception handler converts the Java

exception including the message and the stacktrace to an XML stream. This stream, which contains the

complete Java stackstrace in the SoapFault “Detail” field, is sent out to the client via the webservice as a

predefined SoapFault (cf. Section 2). On the client side, the SoapFault is converted back to the original Java

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

26

exception by the client’s webservice. This way the NSP and the NRPS adapters can handle failures efficiently

and communicate all the information to the client. From the client point of view, the called webservice operation

acts as a normal Java method.

3.2.3 Validation

Figure 3.3: Request validation

Before sending or forwarding any (XML) data, the requests and responses are validated in the NSP and the

NRPS adapters. As shown in Figure 3.3, the incoming and outgoing messages are validated in two ways. First,

the structure itself is validated by the syntax validator. The message must conform to the XML Schema

definition of the corresponding type. If this is not the case, a syntax validation exception is thrown and the

message is discarded. If the syntax is correct, the semantic validator verifies constraints regarding the content.

If e.g. the requested minimum bandwidth is higher than the requested maximum bandwidth in a message, a

semantic validation exception is thrown and again the message is discarded. This way, the core system can

assume to retrieve only valid data.

3.3 Authentication and authorization

As shown in Figure 3.4, the NSP contains a central module that is used to authenticate all incoming and to sign

all outgoing traffic. This Message Level Security (MLS) service is based on the OASIS Webservices Security

standard [WSS]. Besides procedures to sign and to encrypt SOAP messages the standard includes options to

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

27

attach security credentials like username/password, X.509 certificates or tokens. The NSP itself currently does

not provide complex authorization or accounting mechanisms. Rather it forwards user credentials (attributes)

that are contained in the incoming message from the middleware to the involved NRPS adapters and vice

versa. The authorization process is in the scope of each NRPS and the middleware – authorization tickets are

transparently communicated through the NSP. It is assumed that each domain has its own policy and attribute

database. The NRPS adapter may map the global attributes to local ones or local user accounts. In the case

that global and local attributes are identical, this mapping reduces to the identity function.

Domain1Domain1

3.

Client

NRPS1NRPS1

AdapterAdapter

NSP (Service Provider)NSP (Service Provider)

Reservation-WSReservation-WS

Domain2Domain2

4.

1.

NRPS2NRPS2

AdapterAdapter
5.

6.

7.

MSS/NRPSMSS/NRPS

Adapter
2.

Domain1Domain1

3.3.

Client

NRPS1NRPS1

AdapterAdapter

NRPS1NRPS1

AdapterAdapter

NSP (Service Provider)NSP (Service Provider)

Reservation-WSReservation-WS

NSP (Service Provider)NSP (Service Provider)

Reservation-WSReservation-WS

Domain2Domain2

4.4.

1.1.

NRPS2NRPS2

AdapterAdapter

NRPS2NRPS2

AdapterAdapter
5.5.

6.6.

7.7.

MSS/NRPSMSS/NRPS

Adapter
MSS/NRPSMSS/NRPS

Adapter
2.2.

Figure 3.4: Authenticated message flow

Since the communication with the NSP requires valid authentication credentials, the NSP creates a transitive

trust relation between all participating partners. This is achieved by preinstalling the NSP public key in the

middleware and in each NRPS adapter. On the other hand, the NSP must possess the public keys of each

communication party in advance.

Figure 3.4 depicts a sequence of interactions needed for the authentication flow mentioned above. The

following sequence description is simplified and reduced to a single MSS-NRPS communication. The initial

client request could also be sent to an NRPS.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

28

(1) A client sends a request to the Meta-Scheduling Service (MSS) with local user credentials. (2) The MSS

authorizes the user and the request locally. In case the request is authorized successfully, the scheduler maps

the user credentials to accordant global attributes, adds these to the request to the NSP and signs the

message with its private key. (3) The message then is sent to the NSP on behalf of the client. Since the public

key of the MSS is trusted within the NSP, the message is accepted in the next step. The signature of the valid

incoming request will be removed and the request may be split into several new requests. (4)(6) The outgoing

messages to the NRPS adapters are signed by the NSP. All authorization related information that may be

added by the MSS is forwarded without any modification. In the expected case that the NRPS adapter trusts

the NSP key all authorization information (e.g. global attributes, tickets) and the request are forwarded to the

specific NRPS. (5)(7) A complex authorization process has to be implemented in the NRPS adapter or the

NRPS itself.

This way, the NSP acts as a transparent broker between the middleware and each NRPS. It is self-evident that

this message level security flow is also applied for the corresponding response messages. Additionally, this

architecture could be used to encrypt the whole message flow.

3.4 Data storage

3.4.1 Storage structure

This section describes the Entity Relationship (ER) model used in the database of a NSP instance. See

Figure 3.5 for an overview. There are entities related to reservation management and entities related to

topology management. The entities are described in detail in the following two subsections.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

29

Figure 3.5: Entity Relationship model of the NSP database

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

30

3.4.1.1 Reservation management

The data types used in the Reservation-WS have been introduced in D1.1. Recall that a reservation is

composed of one or more services, and that a service in turn is composed of one or more connections. A

service actually specifies the type of the requested service and introduces constraints in the time domain,

whereas a connection introduces topological constraints. The following tables are used to store this data.

Table: Reservation

Column Name Column Type Description

reservationID bigint(20) Primary key. Auto-generated reservation ID, unique within the
NSP.

consumerURL varchar(255) Optional URL of Notification-WS.

timeout datetime Timeout for pre-reservations. For a permanent reservation, this
value is not set.

jobID bigint(20) ID of the job this reservation is related to.

Table: Service

Column Name Column Type Description

PK_service bigint(20) Primary key. Auto-generated unique ID, only used in the
database context.

serviceID int(11) Service ID specified by the user, makes service unique within a
single reservation.

FK_ReservationID bigint(20) Foreign key. Identifies the reservation this service is associated
with.

startTime datetime Starting time of this service (earliest start time in case of
deferrable or malleable reservations).

deadline datetime Deadline for malleable reservations. Not set for fixed or
deferrable reservations.

duration int(11) Duration of a fixed or deferrable service. Not set for malleable
reservations.

automaticActivation tinyInt(1) Boolean value indicating whether the service is to be activated
automatically or by an activate operation.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

31

Table: Connection

Column Name Column Type Description

PK_Connection bigint(20) Primary key. Auto-generated unique ID, only used in the
database context.

connectionID int(11) Connection ID specified by the user, makes connection unique
within its enclosing service.

FK_Service bigint(20) Foreign key. Identifies the service this connection is associated
with.

minBandwidth int(11) Minimum bandwidth of the connection (in Mbps).

maxBandwidth int(11) Optional maximum bandwidth of the connection (in Mbps).

maxLatency int(11) Optional maximum latency of the connection (in milliseconds).

directionality int(11) Directionality of the connection: There are numerical values for
“unidirectional”, “bidirectional tree”, and “full mesh”.

dataAmount int(11) Optional data amount to be transferred (only used with malleable
reservations).

FK_StartPointTNA varchar(15) Foreign key. Source endpoint of this connection.

Note that the NSP is designed to support point-to-multipoint connections, therefore a separate table called

MAP_ConnEndpoint is required to store the target(s) of a connection.

Table: MAP_ConnEndpoint

Column Name Column Type Description

mConnEndpointID bigint(20) Primary key. Auto-generated unique ID, only used in the database
context.

FK_Connection bigint(20) Foreign key. Identifies the connection this entry is associated with.

FK_DestEndpointTNA varchar(15) Foreign key. Identifies the endpoint that is a target of the
connection.

The mapping between Reservation IDs allocated by the NSP and Reservation IDs allocated by the NRPSs is

stored in the MAP_NRPSResvID table.

Table: MAP_NRPSResvID

Column Name Column Type Description

PK_NRPSResvID bigint(20) Primary key. Auto-generated unique ID, only used in the database

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

32

context.

FK_reservationID bigint(20) Foreign key. Identifies the reservation this entry is associated with.

NrpsReservationID bigint(20) ID allocated to this reservation by the NRPS of an underlying
domain.

FK_domainName varchar(15) Foreign key. Identifies the domain whose NRPS allocated the
reservation ID.

3.4.1.2 Topology management

Table: Domain

Column Name Column Type Description

name varchar(40) Primary key. Domain name.

description varchar(100) Optional descriptive text for a domain.

reservationEPR varchar(255) Reservation-WS for accessing the domain’s NRPS.

topologyEPR varchar(255) Optional Topology-WS for administrative access to the domain’s
topology.

Table: Endpoint

Column Name Column Type Description

TNA varchar(15) Primary key. Endpoint’s TNA in IPv4 syntax, stored as string.

name varchar(40) Optional endpoint name.

description varchar(100) Optional endpoint description.

FK_DomainName varchar(40) Foreign key. Identifies the domain this endpoint is located in.

type int(11) Numerical value that discriminates between user and border
endpoint.

bandwidth int(11) Bandwidth of the endpoint (in Mbps).

Table: TNAPrefix

Column Name Column Type Description

prefix varchar(18) Primary key. Prefix in IPv4 notation, e.g. “10.1.3.0/24”.

FK_domainName varchar(40) Foreign key. Identifies the domain this prefix is associated with.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

33

Table: Link

Column Name Column Type Description

PK_Link bigint(20) Primary key. Auto-generated unique ID, only used in the
database context.

FK_DestEndpointTNA varchar(15) Foreign key. Identifies the link’s destination endpoint.

FK_SourceEndpointTNA varchar(15) Foreign key. Identifies the link’s source endpoint.

name varchar(40) Optional endpoint name.

description varchar(100) Optional endpoint description.

delay int(11) Optional delay of the link.

3.4.2 Data binding

From the Java code of the NSP, the database is accessed using the Hibernate software [Hibernate]. Each of

the entities introduced in the previous section is represented by a Java class that encapsulates all functionality

necessary for database access. This means that outside of these classes, there is no need to be aware of

details specific to the database.

These Java classes are different from the classes used to represent objects transported across the webservice

interfaces; e.g., the Domain class used internally to represent a domain differs from the DomainType used on

the Topology-WS. Therefore, the NSP can easily be extended by other interfaces without having to change the

code at the system core.

3.5 Path computing

The Path Computer module is designed to calculate interdomain paths using the Dijkstra algorithm. The

interfaces of the Path Computer are shown in the following tables. When a new instance of the Path Computer

is created, it reads all border endpoints of all domains and all interdomain links from the NSP database. After

that, one ore more services together with their beginning and ending times are added. Path computation

requests are grouped per service. When calculating a path, blocking of resources (i.e. resources that are in use

by another service that is at least partly overlapping in time) is taken into account.

This workflow is shown in Figure 3.6. All paths belonging to a specific service are calculated at the same time

but can be selectively read from the Path Computer one by one. Each path is returned as a list of tuples of

endpoints. Each tuple consists of two endpoints of the same domain. The calculation of the intradomain parts of

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

34

a path is left to the Path Computer of the domains’ NRPSs. If an NRPS returns that one or both endpoints are

not available, or no connection between the endpoints is possible for this request, the unavailable resources

can be pruned for this path computation and a new set of paths can be computed. As the Path Computer is

able to calculate shortest paths after pruning of previously selected endpoints and/or intradomain paths, it is not

required to know in advance if endpoints or connections are available.

 Initialize PathComputer

Add connection

All connections

Compute paths

N

y

Success?

Return calculated paths

Throw Exception

All resources

Path computation finished

y

y

Prune unavailable resources

N

N

Figure 3.6: Path Computer Workflow

Interface addService

Parameters startTime : long

endTime : long

serviceId : int

Result type void

Exceptions InvalidServiceIdException

Description Add a service to the path computer's state. The start and end times can be given in arbitrary

time units since they are only used to calculate which services overlap in time and which do

not.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

35

Interface addConnection

Parameters source : Endpoint

destination : Endpoint

serviceId : int

connectionId : int

Result type void

Exceptions EndpointNotFoundFaultException
DatabaseException
InvalidServiceIdException
InvalidConnectionIdException

Description For a specific service, add a connection from a source to a destination to the path computer's

state.

Interface computePaths

Parameters serviceId : int

Result type void

Exceptions PathNotFoundFaultException
InvalidServiceIdException

Description Compute paths for all connections that belong to a specific service.

Interface getPath

Parameters serviceId : int

connectionId : int

Result type List<Tuple<Endpoint, Endpoint>>

Exceptions PathNotFoundFaultException
InvalidServiceIdException

Description Retrieve shortest path for a certain connection. Requires that the path was already computed

using computePaths.

Interface pruneEdge

Parameters serviceId : int

connectionId : int

src : Endpoint

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

36

dst : Endpoint

Result type void

Exceptions EndpointNotFoundFaultException
InvalidServiceIdException
InvalidConnectionIdException

Description Prune an intradomain edge from the internal topology graph of this path computer instance.

Interface pruneEndpoint

Parameters serviceId : int

connectionId : int

endpoint : Endpoint

Result type void

Exceptions EndpointNotFoundFaultException
InvalidServiceIdException
InvalidConnectionIdException

Description Prune an endpoint from the internal topology graph of this path computer instance.

3.6 Request forwarding

When coordinating multidomain reservations, the NSP typically has to forward multiple requests related to a

single multidomain reservation to different NRPSs.

The module of the NSP in charge of the communication with the NRPSs is the NRPS Manager. This module is

invoked internally by other blocks of the NSP when one or more messages have to be sent to one or more

NRPSs. When the manager is invoked, it creates a proxy for each NRPS webservice, sends the message and

waits for the responses. After, it returns the responses to the invoker.

The responses received in reply to these requests have to be analysed to take further action or to construct a

response in reply to a request received on the reservation interface of the NSP. However, some types of replies

require immediate action. If a single request in a series of CreateReservation requests fails, then a rollback is

required. Hence, the reservations that have already been established in other domains must be cancelled.

The requests to the NRPS manager are composed by tuples <Domain, MessageToSend>, and the responses

consist of pairs <Domain, ResponseReceivedFromNRPSAdapter>. All these responses coming from each

NRPS adapter are returned to the invoking request handler. In the case that the overall reservation process has

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

37

not been successful (i.e. error returned by one or more NRPSs), the NRPS manager will create the necessary

CancelReservation requests to domains that have reported a successful reservation creation.

The NSP and an NRPS communicate through the Reservation-WS offered by each NRPS. This interface

implements the same operations as the northbound reservation interface of the NSP. The NSP must be aware

of the endpoint reference of each Reservation-WS in order to be able to invoke its operations. This information

is stored in the database together with the other required information about the domain controlled by the NRPS.

For the project, two versions of the NRPS manager have been implemented. The first one is based on a

sequential version (chain model) whereas the second one is a concurrent version (threaded model). The

sequential manager is the first implementation step for a prototype; but lacks of scalability (even in a single

level hierarchy) and may cause high delays in the reservation process, as it will be explained in the coming

paragraphs. Therefore, this sequential manager will be replaced by the threaded model, which means a second

implementation step for an improved, scalable prototype. Moreover, the threaded manager will facilitate

deploying multi-level hierarchies of NSP entities in the future.

The sequential NRPS manager sends a request to an NRPS, waits for the response and then continues with

the next NRPS, until the last NRPS has responded. This model can cause large delays in the NSP, especially

with a larger amount of NRPSs involved, since there is only one NRPS working at a time and the NSP has to

wait for the response of each one separately. The overall response time in the request forwarding process will

be the addition of the response times of all the NRPSs, so this first prototype does not scale well for a large

number of NRPSs, due to the linear growth in average of the overall response time caused by the number of

NRPSs. The following equation represents the total response time of the system, T, whereN is the number of

NRPSs involved in the provisioning request and ti the response time of an NRPS:

It must be taken into account that ti is strongly dependant on the size of the transport network to be configured

by the NRPS and the response time of the network hardware.Figure 3.7 depicts the operation workflow for the

sequential NRPS Manager. The numbered arrows show the order in which the requests are sent to each NRPS

Adapter.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

38

Figure 3.7: Sequential NRPS Manager (1
st
 prototype).

The second version is threaded, developed with the idea to avoid large waiting times by sending the requests

to all the NRPSs in parallel. This way, all the NRPSs receive the request nearly at the same time and they can

work concurrently, shortening the overall response time in the request forwarding process. This model will have

as an overall response time the longest response time of all the NRPSs, so there is no dependency on the

number of NRPSs, N, but on the maximum response time of all involved NRPSs. This allows the system being

scalable enough by making T a convergent function of the local time response of an NRPS. This is shown in

the following equation:

Moreover, this threaded model of the second NRPS manager will facilitate and shorten in time the rollback

periods in case of reservation process failures. As commented before, each NRPS controller thread

communicates with a single NRPS. If a single reservation query to an NRPS fails, the corresponding NRPS

controller will report the problem (failure message / fault) to the NRPS manager and it will cancel all

reservations or pre-reservations done for this E2E connection (or job). Hence, the threaded manager will send

a CancelReservation message to each controller, in parallel, so the cancel process will be done concurrently,

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

39

as the creation process was. Moreover, the overall response time for the cancel reservation process follows the

equation above, since the NRPS manager has the same behaviour for both requests.

Figure 3.8 depicts the operation workflow for the threaded NRPS Manager. Again, the numbered arrows show

the order in which the requests are sent to each NRPS Adapter.

Figure 3.8: Threaded NRPS Manager (2
nd
 prototype).

Finally, it must be taken into account the possibility of using multi-level hierarchical architectures of different

NSPs, i.e. placing one or more NSPs under another NSP at various levels, coexisting with NRPSs at the

different levels. The study of these hybrid centralized/distributed architectures is out of the scope of this

document, but must be considered because it could enhance the scalability of the overall system and even

improve the communication/information exchange with other systems considered in the second phase of the

Phosphorus project.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

40

4 Network Service Plane functionality

4.1 Topology modification

The topological information about the network that is stored in the database is managed through the Topology-

WS interface of the NSP. This interface can be accessed by any client. For a human user, the Topology Client,

a graphical user interface (GUI), has been developed.

The Topology Client allows the user to create, query, modify and delete any topological information of the

network (add, modify, query and delete domains, endpoints and interdomain links). The GUI is implemented in

Java Swing and contains a proxy to communicate with the Topology-WS of the NSP.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

41

Figure 4.1: Topology Client GUI

The natural way to add the domains and endpoints is not through the GUI (although the user can do it this way

as well), but by means of an automatic registration process located at the NRPS Adapter. When the adapter is

initialized, a servlet is executed that contacts the NSP in order to send to it the information about the domain

(identifier, description, WS endpoint references, ...). Once the adapter has registered, the NSP has the

information required to send requests to the NRPS. After the registration, the adapter starts a process that

updates the NSP with the endpoints of the domain controlled by the adapter. This way, the NSP is updated

periodically with the information of the local topology of each one of the NRPSs.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

42

Figure 4.2: Domains registration

The way to indicate the interdomain links is not automatic and must currently be done manually through the

Topology Client, since the NRPSs do not have this interconnectivity information internally. In this case, the user

has to select the endpoints of the link manually and insert some related information to add the link to the

topological database.

4.2 Network resource availability query

An availability query is triggered by the reception of an IsAvailable request by the Reservation-WS.

Upon reception of an IsAvailable request, the corresponding routine in the ReservationSetupHandler class is

called. Though a reservation will actually not be made, the task to be solved is very similar to an actual

reservation, the only exception being that the queried resources are not reserved. Also, alternative start time

offsets can be returned, while an actual reservation only either succeeds or fails.

The requested services are used as input for the getAvailableServiceList routine that is also used for

CreateReservation requests. This routine queries the PathComputer for paths for all of the requested

connections and splits the single multidomain request to multiple single domain requests, one for each of the

involved domains. These requests are handed to the NRPSManager that takes care of sending these requests

to the NRPSs and collecting the corresponding replies.

If the requested resources are not available in one or more of the involved domains, they are pruned from the

PathComputer instance (cf. Section 3.5). In this case, the domains should reply with alternative start time

offsets, the latest of which is recorded for later use if no suitable path can be found. Now, the PathComputer is

queried again for an alternative path.

This process is repeated until either a suitable path is found, or until so many resources have been pruned that

no path is available for one or more connections. In the first case, the requestor is informed that the resources

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

43

are available. In the latter case, the requestor is informed that they are not available, and the earliest alternative

start time offset of those recorded as described above is reported as an alternative start time offset.

Domain A
Domain A

Domain Y
Domain Y

Domain B
Domain B

User endpoint

Border endpoint

A.B1

Y.B1
Y.B2

B.U

B.B2

B.B1

Available path

Unavailable path

A.B2

A.U

Domain A
Domain A

Domain Y
Domain Y

Domain B
Domain B

User endpoint

Border endpoint

A.B1

Y.B1
Y.B2

B.U

B.B2

B.B1

Available path

Unavailable path

A.B2

A.U

Figure 4.3: Example scenario for reservation setup

To illustrate this, consider the scenario sketched in Figure 4.3. The NSP is processing an IsAvailable message

for a connection between A.U and B.U. The path computation first returns the two intradomain connections

A.U-A.B2 and B.B1-B.U. IsAvailable messages for these partial paths are then forwarded to domains A and B.

A replies that A.U-A.B2 is not available, while B replies that B.B1-B.U is available. Therefore, the intradomain

connection A.U-A.B2 is pruned from the PathComputer instance handling this request. If the path computer

would not find an alternative path between A.U and B.U, then the NSP would reply with a negative

IsAvailableResponse; an alternative start time offset returned by A would be included in the NSP’s reply.

In this example however, there is an alternative path, so the path computation would yield three intradomain

connections A.U-A.B1, Y.B1-Y.B2, and B.B2-B.U in the next iteration. All three corresponding IsAvailable

requests to the domains A, B, and Y are answered positively. Thus, also the NSP’s reply to the IsAvailable

request for the interdomain path A.U-B.U is positive.

4.3 Network resource reservation

The reservation of network resources is internally handled similar to the availability query described in the

previous section. Before sending CreateReservation messages to the NRPSs, the availability of the requested

resources is checked. This is to prevent a series of CreateReservation and CancelReservation messages that

would be necessary if one or more domains in a multidomain path are not able to fulfill the reservation.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

44

Alternative start times reported by the NRPS adapters are however discarded. The availability of intradomain

paths along different routes returned by the PathComputer is checked merely with the constraints specified in

the CreateReservation message. In case a path consisting of domains that all gave a positive reply to the

availability query is found, the final reservations for all intradomain paths are established.

Considering the exampled sketched in Figure 4.3 again, upon a CreateReservation request for the connection

A.U-B.U, the NSP would first check for an available path just as described in the previous section. Only then

will the three CreateReservation requests for the intradomain paths A.U-A.B1, Y.B1-Y.B2, and B.B2-B.U be

sent to the corresponding domains.

4.4 Reservation status query

A GetStatus is mapped to a set of single-domain GetStatus queries in a straightforward way. From the

reservation ID that is part of this message, the domains and the reservation IDs used for this reservation inside

each of the domains are retrieved from the database, and a set of corresponding GetStatus messages is

constructed and passed to the NRPSManager.

Practical considerations during first testing of the code have lead to a slight modification of the

GetStatusResponse messages. In addition to an overall status code for each connection that is generated from

the set of status codes for this connection received from the participating NRPSs, the GetStatusResponseType

optionally contains DomainStatus elements, each of which contains a domain name and an element of type

ConnectionStatusType, i.e. the connection status received from the specified domain. This is mainly interesting

for debugging purposes in cases where the status values are not consistent. E.g., in case a connection should

be established, all domains should return the status code active. If one domain returns a different status code, it

is immediately visible in which domain the error has occurred.

4.5 Reservation cancellation / connection teardown

An already established reservation is cancelled by a CancelReservation message. For the NSP, it is not of

importance whether the reservation contains services that are already active or whether all services are still

waiting to be started.

To cancel a reservation, the NSP looks up the intradomain reservations that were made for the input

reservation and sends a CancelReservation message with the corresponding ID to each of the domains.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

45

5 Conclusions

This deliverable describes the Network Service Plane (NSP) and its northbound interfaces. Transparently

enabling multidomain advance reservation features, the NSP allows a network consisting of multiple

administrative domains managed by different NRPSs to be integrated into a (Grid-)Meta-Scheduling System.

To achieve this, the NSP offers a reservation webservice that is comparable to a NRPS webservice. Requests

received across this interface are processed in such a way that the multidomain nature of the underlying

network is hidden as well as possible. Furthermore, the NSP offers a topology webservice that allows

administration of the interdomain topology.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

46

6 References

[Hibernate] Hibernate (Relational Persistence for Java and .NET),

http://www.hibernate.org/

[JAXB] Java Architecture for XML Binding (JAXB) reference implementation,

https://jaxb.dev.java.net/

[MSS] O.Wäldrich, Ph. Wieder, and W. Ziegler, A Meta-Scheduling Service for Co-allocating Arbitrary

Types of Resources. In Proc. of the Second Grid Resource Management Workshop

(GRMWS'05) in conjunction with Parallel Processing and Applied Mathematics: 6th

International Conference, PPAM 2005, Lecture Notes in Computer Science, Volume 3911, R.

Wyrzykowski, J. Dongarra, N. Meyer, and J. Wasniewski (eds.), pp. 782-791, Springer,

Poznan, PL, September 11-14, 2005. ISBN: 3-540-34141-2.

[WSN] S. Graham, D. Hull, B. Murray (editors), “Webservice Base Notification 1.3 (WS-

BaseNotification),” OASIS Standard, October 2006

[WSS] A. Nadalin, C. Kaler, P. Hallam-Baker, R. Monzill et al., “Webservices Security: SOAP Message

Security 1.0 (WS-Security 2004),” OASIS Standard, vol. 200401, 2004.

Definition and development of the Network Service Plane and northbound interfaces development

Project: Phosphorus
Deliverable Number: D1.4
Date of Issue: 30/11/07
EC Contract No.: 034115
Document Code: Phosphorus-WP1-D1.4

47

7 Acronyms

AAA Authorization, Authentication and Accounting

ARGON Allocation and Reservation in Grid-enabled Optic Networks

BoD Bandwidth on Demand

CP Control Plane

DB Data Base

DRAC Dynamic Resource Allocation Controller

E2E End-to-End

GLIF Global Lambda Integrated Facility

GMPLS Generalized Multi Protocol Label Switching

IDM InterDomain Manager

ID Identifier

IP Internet Protocol

I-NNI Interior NNI

LSP Label Switched Path

MSS Meta-Scheduling System

NNI Network-Network Interface

NRPS Network Resource Provisioning System

NSP NSP

NSAP Network Service Access Point

OSPF Open Shortest Path First

QoS Quality of Service

TNA Transport Network Address

UCLPv2 User Controlled LightPaths version 2

URL Uniform Resource Locator

VLAN Virtual Local Area Network

WP Work Package

WS Webservice

