

Scuola Superiore Sant'Anna

Virtualization and service abstraction for network and non-network resources

P. Castoldi, F. Baroncelli, B. Martini, V. Martini, L. Valcarenghi

ECOC Workshop n.7 Networks for IT: A new Opportunity for Optical Network Technologies Berlin, September 16th 2007

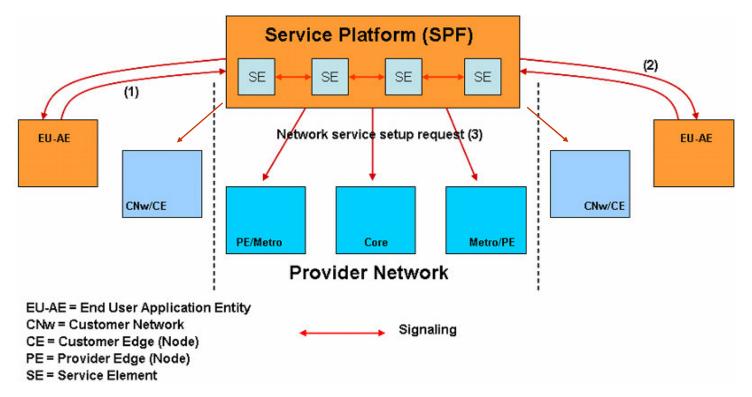
- Concepts and definitions
- Network resources
 - Service Platforms and service interface
 - Use cases
- IT resources
 - The Grid case
- Joint handling of network and IT resources
 Single domain and multi-domain view
- Conclusion and open issues

- Network resource
 - a network capability of supporting (set-up, configure, monitor, tear-down) forwarding of data, possibly across multiple nodes, according to a certain encapsulation (e.g. a MPLS L2 LSP)
- Non-network (or IT) resource
 - a data processing capability over the payload of a data flow, realized in software or in hardware in a network node (e.g. a random access memory)
- Network service
 - a service, described in a technology-independent way, implemented in the provider's network that, leveraging on network resources, offers connectivity capabilities, directly or indirectly, to the customers' applications (e.g. a L2 VPN)
- Non-network service
 - a service, described in a technology-independent way, implemented in the provider's network or in another network attached to it, that leveraging on an IT resources offers a data manipulation capability (e.g. a storage service).

Introduction and definitions (2)

- Virtualization of resources
 - capability to hide the network resource technology details to an application
- Service abstraction
 - capability to map the set of high-level parameters specified by an application, into a set of specific parameters used by the network for the provisioning of that service.
- The process of service abstraction requires virtualization of resources, defining a Service-Oriented Architecture (SOA)
 - In a SOA, resources on a network are made available as independent services that can be accessed without knowledge of their underlying platform implementation.
 - In a SOA services are defined by an ontology language to facilitate their composition.
 - In a SOA semantic rules can be defined to compose or orchestrate services
- Virtualization of resources and service abstraction are typically realized by Service Platforms (SPF)
- Service Platforms already exist for access networks (e.g. IP Multimedia Subsystem, IMS)
- Why and how extend this concept for metro/core networks?

Why virtualization of resources and service abstraction?



- For network resources, the driver is given by bandwidth-greedy applications
- For joint network and IT resources the driver is given by complex applications such as grid, or virtual terminals
- Environment: Control Plane enabled transport networks
- Facts:
 - No mechanism is foreseen in the transport or application domains for the direct optimization and aggregation of connectivity requested by applications,
 - A change in the network technology or in the network topology requires the need to change the customer service request primitives
 - Network Providers do not want to reveal their technology and topology details to their customers,
 - For complex services, an application should be able to interact with several (edge) transport nodes involved in the provisioning of that service,
- Approach:
 - Decouple network technologies from future evolution of the network services offerings
 - Unburden the control plane of service oriented functionalities and let it focus on the provisioning of connectivity services.

Network services The service signaling level

- A Service Platform (SPF) is an entity that allows network service set-up and control by an Application Entity (AE):
 - Arrow (1) denotes service control messages (service request/indication/response) primitives issued to the SPF by the source EU-AE
 - arrow (2) denotes the primitives exchanged with the destination EU-AE(s).
 - Service control messages labelled by (3), are a set of messages that give a set of rules (i.e., policies enforcement) to trigger the actual network service (i.e. CP protocol)

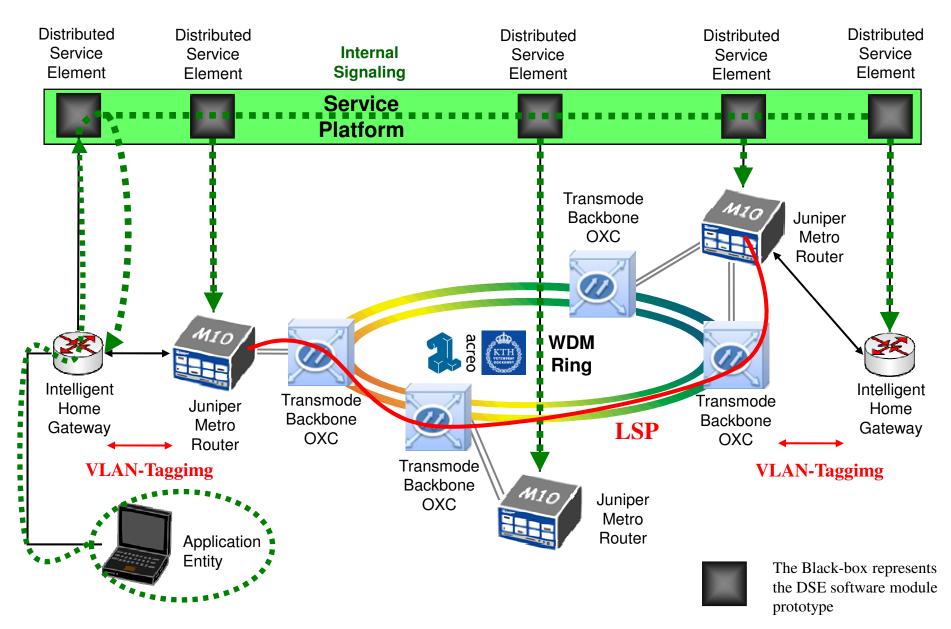
- Service Platforms are composed by centralized and distributed entities
- The centralized entities of a SPF generally support
 - the client authentication
 - the (network) service authorization
 - the (network) service accounting
- The distributed entities generally deal with SPF functionalities regarding the SPF interactions with AEs and edge network nodes:
 - the abstraction of the (network) services provided via User-to-Service Interface
 - the virtualization of the (network) resources
 - the capability to request (network) services to the CP via a technologydependent interface
 - the support of the dynamic aspect of the service provisioning such as the discovery, arrangement, and composition of specific (network) services.
- How can we implement a Service Platform for a metro/core network based on GMPLS Control Plane?

- The User-to-Service Interface (USI) is an evolved interface that must enable the application entity to require services:
 - provided by different administrative network domains
 - without dealing with the network technology details
 - without dealing with the network topology details
- The USI must support:
 - both executive on multiple administrative domains or informative services on an administrative domain
 - the transparency of applications across multiple domains
 - session-based services (e.g., high-definition multimedia, grid)
 - non-session-based services (e.g., e-Business transactions)

cmit

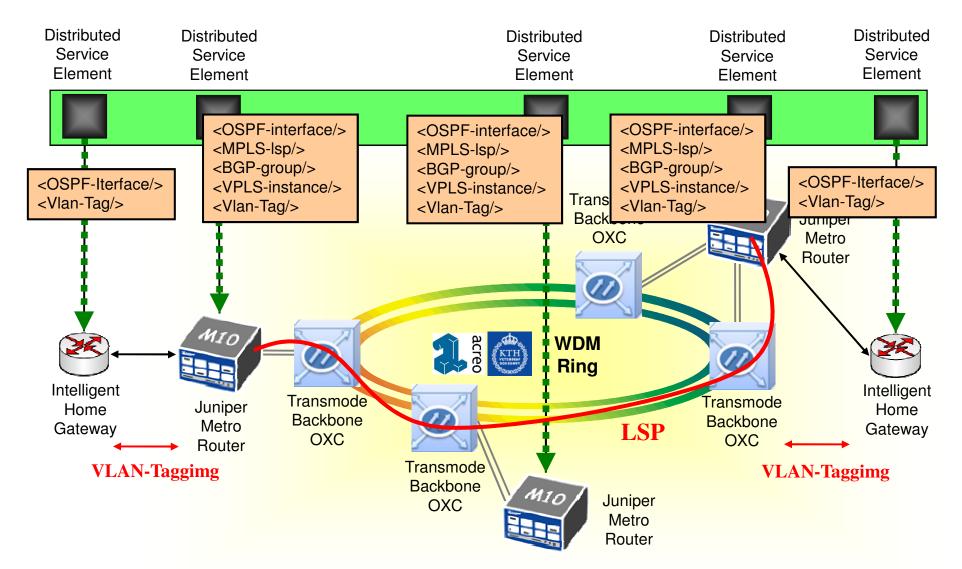
- The Virtual Private LAN Service (VPLS) is an architecture that emulates LAN using the shared physical IP backbone (RFC4761)
- The VPLS is based on :
 - Layer 2 VPN Architecture (full L2 learning and switching capabilities)
 - Virtual LAN (VLAN tagging)
 - MPLS transport network architecture
- The main Benefits are :
 - The possibility of multi-point connectivity
 - The network devices hardware is already aware
- Respect to a simple LSP
 - VPLS provide to a superior coordination at the Metro edge
 - VPLS provide a private routes database
- Respect to VPN L3 architecture:
 - VPLS increases the knowledge towards the end-user domain

Drawbacks:

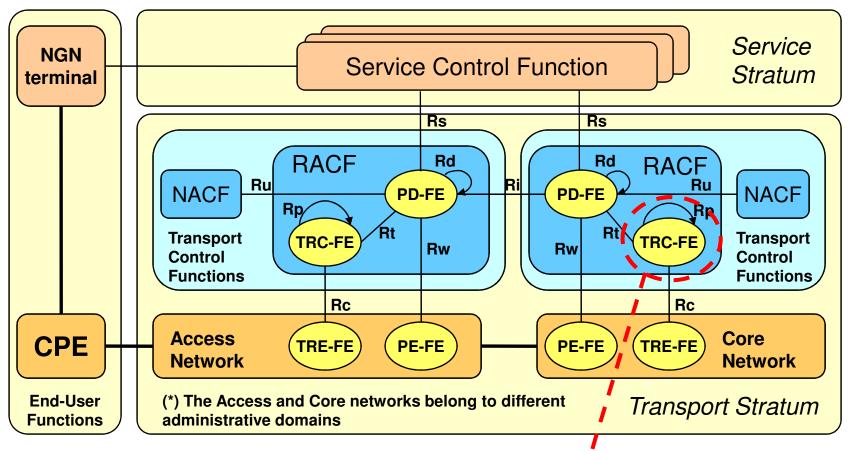

- Complicated provisioning
 - Complex operational setup
 - Complex network design

How to "mask" the complexity of the provisioning Operations?

A practical use case – Logical view



A practical use case - VLAN Script



The ITU-T NGN case

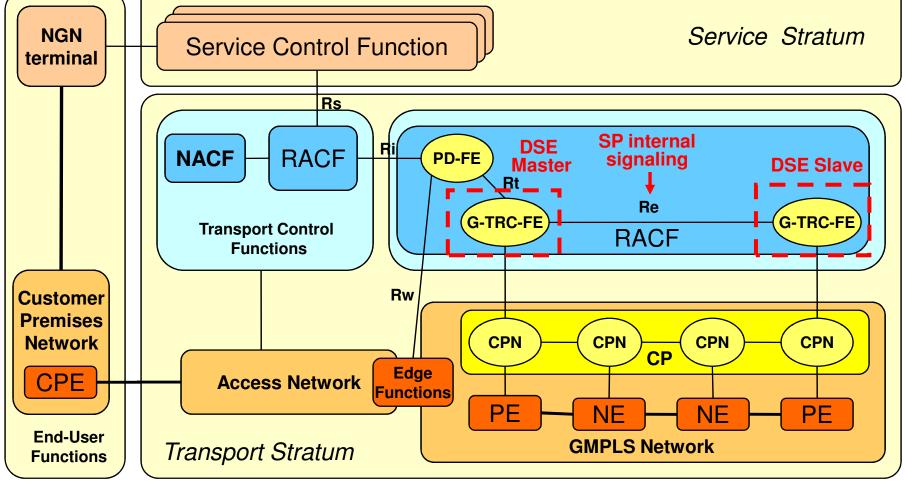
NGN = Next Generation Network

PD-FE = Policy Decision Functional Entity

PE-FE = Policy Enforcement Functional Entity

RACF = Resource and Admission Control Function

NACF = Network Attachment Control Function


TRC-FE = Transport Resource Control Functional Entity

TRE-FE = Transport Enforcement Functional Entity

CPE = Customer Premises Equipment

ITU-T does not specify how TRC-FE interacts with the GMPLS CP

G-TRE-FE = GMPLS Transport Resource Control Functional Entity

CPN = Control Plane Node

UNI-N = User to Network Interface - Network

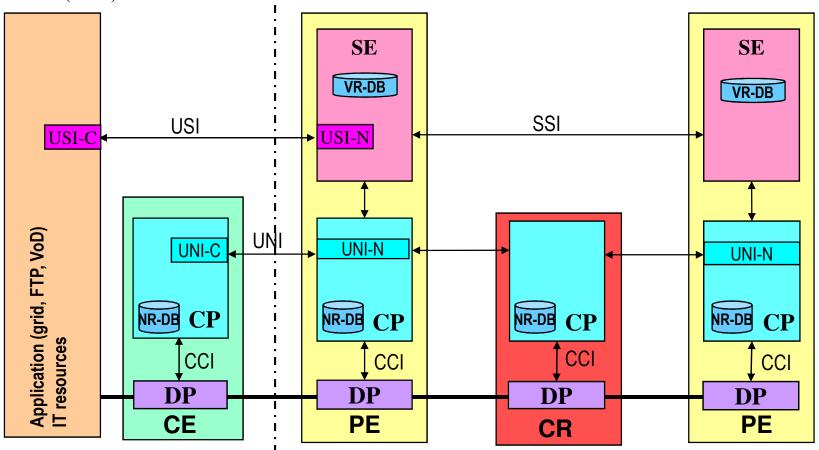
Edge functions = aggregates traffic from different access networks to core network, and supports QoS and traffic control (e.g., DiffServ Class of Service mapping in LSP).

- Issues that differentiate the description and usage of network resources from IT resources
 - Resources are more heterogeneous and lack of a relation of hierarchy
 - Some virtualization effort exist but solutions are heterogeneous (e.g. naming for addressing: Universal Unique Identifier, Universal Resource Identifier, etc)
 - An adequate information model is needed to handle them (discover, publish, etc) that may be resourcedependent
 - Some applications, e.g. grid, already have a well established IT resources virtualization mechanism that do not involve provider networks at all.

Network services vs. IT services The GRID case

Grid Architecture

Internet Architecture


Application	Discipline-Specific Data Grid Application	Application	
Collective (App)	Coherency control, replica selection, task management, virtual data catalog, virtual data code catalog,	Collective	
Collective (Generic)	Replica catalog, replica management, co-allocation, certificate authorities, metadata catalogs	Resource	Application
Resource	Access to data, access to computers, access to network performance data,		
Connect	Communication, service discovery (DNS), authentication, authorization, delegation	Connectivity	Transport Network
Fabric	Storage systems, clusters, networks, network caches,	Fabric	Link

• But grid middleware (i) resides in end hosts and (ii) do not foresee any network resource virtualization.

Joint coordination of network and IT resources Single domain view Provider/Carrier Domain

Client (User) Network

DP: Data Plane

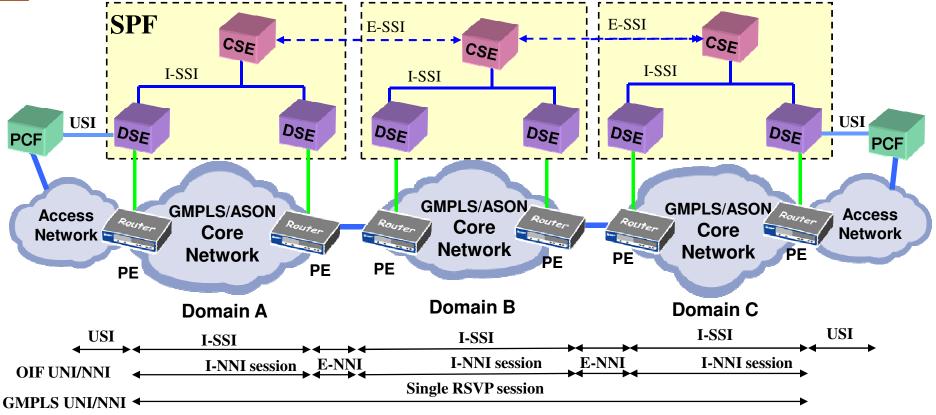
CP: Control Plane

CE: Customer Edge

PE: Provider Edge

CCI: Connection Control Interface NR-DB: Network Resource Database USI: User to Service Interface

UNI: User to Network Interface (OIF or GMPLS/IETF) SE: Service Element


SSI: Service to Service Interface

VR-DB: Virtualized Resource Database

USI-C: User-to-Service Interface (client side) USI-N: User-to-Service Interface (network side) UNI-C: User-to-Network Interface (client side) UNI-N: User-to-Network Interface (network side)

Joint coordination of network and IT resources

OIF UNI/NNI = several RSVP sessions → external coordination for each domain is needed for end-to-end service provisioning GMPLS UNI/NNI = single RSVP session → external coordination among the end points is needed for end-to-end service provisioning (e.g., for obtaining bidirectional connections)

The SP allows to obtain the external coordination needed by the different UNI/NNI implementations

DSE = Distributed Service Element; CSE = Centralized Service Element; USI = User to Service Interface I-SSI = Internal Service to Service Interface; E-SSI = External Service to Service Interface

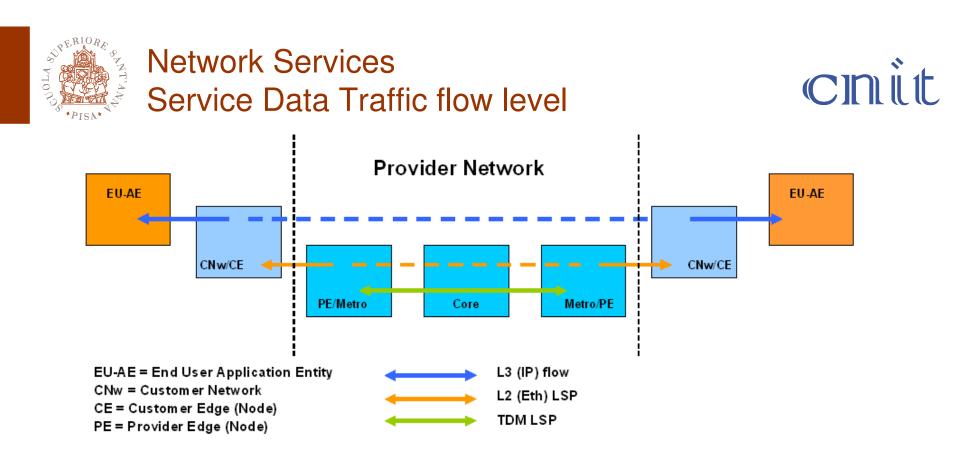
- Network resource virtualization can be expressed in terms of VPN service abstraction through the usage of service platforms
- Service platforms for network services already exist for the access while they are in their infancy for metro-core networks
- Resource virtualization for IT resources need much work for modeling various application scenarios and joint orchestration with network resources.

Acknowledgements

Recent References

- B. Martini, F. Baroncelli, P. Castoldi, "A Novel Service Oriented Framework for Automatic Switched Transport Network", 9th IFIP/IEEE International Symposium on Integrated Network Management (IM 2005), Niece (France) 15-19 May, 2005
- F. Baroncelli, B. Martini, L. Valcarenghi, P. Castoldi, "A Service Oriented Network Architecture suitable for Global Grid Computing", Proc. of ONDM 2005, Milan, Italy, February 2005.
- L. Valcarenghi, L. Foschini, F. Paolucci, F. Cugini, P. Castoldi, "Topology Discovery Services for Monitoring the Global Grid", IEEE Communication magazine, March 2006, pp. 110-117.
- F. Baroncelli, B. Martini, L. Valcarenghi and P. Castoldi "Service Composition in Automatically Switched Transport Networks", IEEE International Conference on Networking and Services (ICNS'06) July 16-18, 2006, Silicon Valley, USA
- F. Baroncelli, B. Martini, V. Martini, P. Castoldi, "A distributed signaling for the provisioning of ondemand VPN services in transport networks" 10th IFIP/IEEE International Symposium on Integrated Network Management (IM 2007), 21-25 May 2007, Munich, Germany.
- F. Baroncelli, B. Martini, V. Martini, P. Castoldi, "QoS support for Multimedia on Demand services in GMPLS networks", 12th European Conference on Networks & Optical Communications (NOC 2007), June 19 21, 2007, Kista, Sweden.
- F. Baroncelli, B. Martini, V. Martini, P. Castoldi, "A novel application-to-network interaction paradigm for the on-demand provisioning of VPN services in transport networks", Annual Review of Communications, Volume 60, Internet Engineering Consortium, Dec. 2007, to appear.
- F. Baroncelli, B. Martini, V. Martini, P. Castoldi, "Supporting Control Plane-enabled networks within ITU-T Next Generation Network (NGN) architecture", submitted to 11th IEEE/IFIP Network Operations and Management Symposium (NOMS 2008), 7-11 April 2008, Bahia, Salvador, Brasil.

Thank you!


E-mail: castoldi@sssup.it

Sant'Anna School & CNIT, CNR research area, Via Moruzzi 1, 56124 Pisa, Italy

Back-up slides

- The EU-AE generates IP traffic that, through the Customer Network, is conveyed into the Provider Network towards a target EU-AE placed in a different Customer Network
- The SPF is not involved in the actual data transfer after the network service is set-up
- The interaction between Customer network and Provider network from a functional point of view involves up to L3 OSI levels.